用户名: 密码: 验证码:
卫星编队飞行动力学建模与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星编队飞行技术是空间技术的一个重要发展方向,卫星编队飞行相对运动控制技术是实现卫星编队飞行的关键技术之一。卫星编队飞行相对轨道运动和相对姿态运动控制系统的性能不仅取决于控制系统硬件的性能与精度,还与其所采用的控制算法密切相关。本文从动力学和控制的角度研究卫星编队飞行的相对轨道构形保持控制和相对姿态控制。
     本文对比分析了卫星编队飞行的较一般非线性相对轨道运动模型与线性化模型以及C-W方程之间的模型误差。基于非线性相对轨道运动模型,研究了卫星编队飞行构形保持的非线性鲁棒控制方法,分别采用幂次趋近律、带边界层的幂次趋近律、指数趋近律和神经网络与指数趋近律相结合的滑模变结构控制方法设计了相对轨道构形保持控制律。
     推导了卫星编队飞行的相对姿态动力学和运动学模型,该模型描述了卫星编队飞行过程中伴随星本体坐标系相对主星本体坐标系的相对姿态运动情况。基于相对姿态运动模型,分别采用滑模变结构控制方法和反步法设计了全状态反馈的相对姿态控制律。考虑编队卫星的载荷限制,以及角速度测量设备价格昂贵、易损坏等因素,论文提出了两种通过设计观测器来实现无角速度测量的相对姿态控制方法。第一种方法利用反步法设计角速度观测器来直接估计角速度变量;第二种方法通过设计微分观测器来间接地获得角速度。从减少星间通信量的角度考虑,论文还研究了卫星编队飞行相对姿态的神经网络参数自适应控制,通过神经网络的训练学习,来估计模型中的部分参数。
     分析了卫星编队飞行相对轨道运动和相对姿态运动之间的耦合关系,建立了卫星编队飞行的耦合六自由度动力学模型。基于该模型,分别提出了卫星编队飞行的六自由度全状态反馈控制方法和基于观测器的六自由度控制方法。
     研究了非合作目标编队飞行的相对轨道的运动特点,建立了非合作目标编队飞行的相对轨道运动动力学模型。考虑到非合作目标编队飞行的目标星不会主动提供相关的模型参数,提出了非合作目标编队飞行相对轨道构形保持的参数自适应控制方法,分别采用反步法和李雅普诺夫方法设计了参数自适应控制律。
     论文以两颗卫星组成的主从式结构的卫星编队飞行为背景,对所设计的控制律进行了数学仿真验证。仿真结果表明:滑模变结构控制能够在设定的时间内实现任务要求的控制目标,且对模型不确定性和模型参数变化具有较好的鲁棒性。论文中所设计的观测器均能在1000秒以内实现对真实状态的准确观测,从而保证了在某些系统状态无法测量的情况下的编队飞行相对运动控制。对非合作目标编队飞行,即使在无目标星的相应反馈信息的情况下,论文中设计的参数自适应控制方法仍然能够完成任务要求的相对轨道构形保持控制。
Satellite formation flying (SFF) is an enabling technology for future space science mission. The control of relative states of a formation is one of the key technologies that maintain satellite formation. The control performances of relative position and relative attitude are not only decided by the quality of the hardware, but also depend on the control algorithms. In this thesis, the control algorithms used to maintain the desired relative position and desired relative attitude of SFF were studied from aspects of dynamics and control.
     The model errors between the general nonlinear model of relative orbit motion for SFF、linearized model and C-W equations were analyzed. Based on the general nonlinear model, nonlinear robust control methods which adopted sliding mode control basede on power reaching law、power reaching law with boundary layer、exponential reaching law and exponential reaching law combined with neural network were designed respectively.
     The dynamics and kinematics models of relative attitude of SFF were derived to describe the relative motion between the body coordinate of the leader and the follower’s body coordinate. Based on the relative attitude model, two control laws were derived from sliding mode control and integrator backstepping control respectively. Due to the load limits of satellite in a formation, as well as the angular velocity measuring equipment is expensive and easy to damage, control algorithms based on state observer were studied. One method was to design the observer using integrator backstepping method to get the angular velocity directively. And another is to design a differential observer to caculate the angular velocity from the observed state. In order to reduce the comunication between satellites in a formation, a parameters adaptive control combined neural network is deduced. The neural network is trained to estimate some parameters of the model.
     The coupled relationship between the relative orbit motion and the relative attitude was analyzed. And the 6-DOF coupled dynamic model was derived. Based on coupled dynamic model, the SFF 6-DOF full-state feedback control method and observer-based control methods were studied respectively.
     The characteristics of the relative orbit motion of uncooperative formation flying were also studied, and the relative model was established. Consider that the target satellite in the uncooperative formation would not actively provide us the parameters in the model which is related to it, the parameters adaptive control algorithms based on integrator backstepping and Lyapunov theory were derived respectively.
     In order to show the effectiveness of the control law designed in this thesis, the satellite formation flying composed of two satellites called Leader-Follower satellite formation was used to simulate. The simulation results denoted that: Sliding mode control can achieve the task requirement within the set time. And sliding mode control has good robustness against the model uncertainty and model parameters’variation. All the observers designed in this thesis could track the real state accurately less than 1000 seconds, which was a guarantee to the control of relative motion for SFF without some state measurement. For the uncooperative formation flying, the adaptive control law can complete the task even without information feedback from the target satellite.
引文
[1] Hartman K R, Gramling C J, Lee T et al. Relative navigation for spacecraft formation flying [J]. Advances in Astronautical Science, 1998, 97(1): 685-699.
    [2] Wang P K C, Yee J, and Hadaegh F Y. Synchronized rotation of multiple autonomous spacecraft with rule-based control: experimental study [J]. Journal of Guidance Control and Dynamics, 2001, 24 (2): 352-360
    [3] NASA New Millennium Program, September 17, 2003, http://nmp.jpl.nasa.gov, October 28, 2003.
    [4] Andrew W L. Creating large space platforms from small satellites[C]. 13th AIAA/USU Conference on Small Satellites, Logan, Utah, AIAA, 1999: SSC-99-VI-6.
    [5]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D], [博士学位论文].长沙:国防科学技术大学,2006.
    [6] Meissinger H F, Collins J, Gwynne G, et al. Low-cost minimum-size satellites for demonstration of formation flying modes at small, kilometer-size distances[C]. 13th AIAA/USU Conference on Small Satellite, Logan, Utah, AIAA, 1999: SSC-99-VI-3.
    [7] Christoper Kitts, Freddy Pranajaya. Emerald: an experimental mission in robust distributedspace systems[C]. 13th AIAA/USU Conference on Small Satellite, , Logan, Utah, AIAA, 1999: SSC-99-VI-5.
    [8]王兆魁.分布式卫星动力学建模与控制研究[D], [博士学位论文].长沙:国防科学技术大学,2006.
    [9]张乃通,李晖,张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报, 2007, 28(4): 786-792.
    [10]吴宝林.小卫星编队队形优化设计及其控制研究[D], [博士学位论文].哈尔滨:哈尔滨工业大学, 2005.
    [11] Ticker R L,Azzolini J D. 2000 survey of distributed spacecraft technologies and architectures for NASA’s Earth science enterprise in the 2010-2025 Timeframe[R]. NAS 1.15209964; NASA TM-2000-209964; Rept-2000-03777-0, 2000.
    [12]韦娟.双基站卫星群布设分析及控制研究[D], [博士学位论文].西安:西北工业大学,2002.
    [13]张振民,林来兴.小卫星编队飞行动力学及其应用[J].航天控制, 2002, 20(3): 44-50.
    [14] Jeff W, Susan J, Martin S. Microsatellite constellation for disaster monitoring. 13th AIAA/USU Conference on Small Satellite, Logan, Utah, August 23-26, 1999, SSC-99-V-2.
    [15] Blomquist R. Solar blade nano-satellite development: heliogyro deployment, dynamics and control. 13th AIAA/USU Conference on Small Satellite, Logan, Utah, August, 1999,SSC-99-VII-2.
    [16]张育林,范丽,张艳等.卫星星座理论与设计[M].北京:科学出版社, 2008.
    [17]闻新,马文第,周露.小卫星编队飞行的应用模式及展望[J].中国航天: 2005, 8: 40-43.
    [18]张玉琨.卫星编队飞行的动力学与控制技术研究[D], [博士学位论文].长沙:国防科学技术大学, 2002.
    [19] The Earht Science Enterprise Series. Formation Flying: The afternoon“A-Train”satellite constellation [J]. NASA Facts, 2003: 1-6.
    [20] Sedwick R J, Miller D W, Kong Edmund M C. Mitigation of differential perturbations in clusters of formation flying satellites[C]. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Breckenridge, CO: AAS/AIAA, 1999:323-342.
    [21] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry[C]. International Geoscience and Remote Sensing Symposium, Anchorage Alaska, IEEE, 2004: 1000-1003.
    [22] Fiedler H, Krieger G, Mittermayer J. Comparison of several bostatic SAR configuration for spaceborne SAR interferometry[C], International Geoscience and Remote Sensing Symposium (IGARSS01), Sydney, Australia, IEEE, 2001.
    [23] http://www.vs.afrl.af.mil/VSD/TechSat21/.
    [24]王海丽.军用侦察卫星星座技术研究[D], [博士学位论文].长沙:国防科技大学研究生院, 2001.
    [25] Frayssinhes E, Lansare E. Designing clusters of satellite for radiolocalisation purposes[C]. AAS/AIAA Astrodynamics Specialists Conference, Halifax, Nova Scotia, Canada, AAS, 1995-334.
    [26] Frayssinhes E, Lansare E. Mission analysis of clusters of satellite [J]. Acta Astrnautica, 1996, 39(5): 347-353.
    [27]林来兴.小卫星星座与编队飞行三维定位系统和控制[J].控制工程, 2006(6):1-5.
    [28]林来兴.微小卫星编队飞行及应用论文集[A].北京:国家高技术航天领域专家委员会微小卫星技术组,2000.
    [29] David D B, Roger C H, Alan R W, et al. XSS-10 Micro-satellite demonstration [C]. AIAA Defense and Civil Space Programs Conference and Exhibit, Huntsville, AL, AIAA, 1998: 339-346.
    [30] NASA New Millennium Program, September 17, 2003, http://nmpljpl.nasa.gov/, October 28, 2003.
    [31] Jeffrey G R, Raymond J S, Manuel M S. Micropropulsion system selection for precision formation flying satellite[D], [Master Thesis], Massachusetts : Massachusetts Institute of Technology, 2001.
    [32] Eenneth L, Mark C, Blackwood G et al. The new millennium formation flying opticalinterferometer[C]. AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug. 11-13, 1997, Collection of Technical Papers. Pt. 2 (A97-37001 10-63), Reston, VA, American Institute of Aeronautics and Astronautics, 1997: 650-655.
    [33] Cyrus D J, David W M. A reliability model for the design and optimization of separated spacecraft interferometer arrays[C]. Proceedings of the 11th AIAA/USU Conference on Small Satellites, Logan, UT, Sept. 1997, SSC-97-XI-2.
    [34] Kim L, Maurice M, Mike S. University Nanosatellite distributed satellite capabilities to support techsat21[C]. AIAA/USU Small Satellite Conference, Logan UT, AIAA/USU, 1999: SSC99-III-3.
    [35] Robert T, Jonathan H. Orion: a microsatellite testbed for formation flying[C]. 12th AIAA/USU Conference on Small Satellites, Logan, Utah, AIAA/USU, 1998: SSC98-XII-6.
    [36] Brian E, Robert T. The Orion microsatellite mission: a testbed for command, control and communications for formation fleets[C]. In Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, AIAA/USU, 2000: SSC00-II-4.
    [37] Jonathan P H, Robert Tl. Orion: a low-cost demonstration of formation flying in space using GPS[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, MA, AIAA/AAS, 1998: 276-286.
    [38] Robertson A, Inalhan G, Jonathan P H. Spacecraft formation flying control design for the orion mission[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, Aug. 9-11, 1999, Collection of Technical Papers. Vol. 3 (A99-36576 09-63), Reston, VA, AIAA, 1999: 1567-1576.
    [39] Peter C E R, Tom S B, Stephen E H. Mustang: a technology demonstrator for formation flying and distributed systems technologies in spae[C]. Dynamics and Control of Systems and Structures in Space (DCSSS), 5th conference, Kings College, Cambridge, Cranfield University; School of Engineering, July 2002.
    [40]孙文科.低轨道人造卫星与高精度地球重力场[J].大地测量与地球动力学, 2002, 22(1): 92-100.
    [41] Han S C, Jekeli C, Shum C K. Static and temporal gravity field recovery using grace potential difference observables [J]. Advances in Geosciences, 2003, 1: 19-26.
    [42] Kirschner M, Montenbruck O, Tettadpur S. Flght dynamics aspects of the grace formation flying[C]. 2nd International Workshop on Satellite Constellations and Formation Flying, Haifa, Israel, 2001: 1-8.
    [43] Alok D, Richard C. Techsat 21-Space missions using collaborating constellations of satellite[C]. 12th AIAA/USU Conference on Small Satellites, Logan Utah, AIAA/USU, 1998: SSC-98-VI-1.
    [44] Maurice M, Steve K. Techsat 21 and revolutionizing space missions using microsatellites[C].15th AIAA/USU Small Satellite Conference, Utah State University, AIAA, 2001:SSC-01-1-3.
    [45] Chien S, Sherwood R, Burl M, et al. The techsat-21 autonomous sciencecraft constellation demonstration[C]. The 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Montreal, Canada, IEEE, June 2001.
    [46]周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报, 2003, 31(12): 1939-1944.
    [47]梁甸农.小卫星分布式雷达系统总体研究[C].分布式航天器新概念及其应用研讨会,北京,中国宇航学会,2004.
    [48]姜昌.编队飞行卫星在间断式导航、天基干涉仪和分工工作卫星的可行性构想[J].遥测遥控, 2001: 1-7.
    [49]林来兴,张洪华,车汝才.地球同步轨道卫星编队飞行的区域性导航系统方案[J].航天控制, 2003, (2): 14-21.
    [50]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学E辑信息科学, 2004, 34(6):654-662.
    [51]陆宏伟,邱志强.基于卫星编队序列图像的摄影测量[J].国防科技大学学报, 2004, 26(3): 15-19.
    [52]王元钦,马宏.分布式航天器相对状态测量方法研究[J].遥测遥感与导航定位, 2007, 37(8): 25-28.
    [53]陈宏宇,朱振才,周依林等.神舟七号微小卫星伴随飞行技术试验[J].空间科学学报,2009, 29(3): 319-325.
    [54]夏南银,张守信,穆鸿飞.航天测控系统[M].北京:国防工业出版社, 2002.
    [55]潘科炎. GPS在航天器编队飞行任务中的基础性作用[J].航天控制, 2003, (3): 53-60.
    [56] Imere E, Phil P, Yoshi H. Precise relative orbit determination of low earth orbit formation flights using GPS pseudorange and carrier-phase measurements[C]. 16th AIAA/USU Small Satellite Conference, Logan, UT, AIAA, 2002: SSC02-IV-2.
    [57] Corazzini T, Jonathan P H. Onboard pseudolite augmentation system for relative navigation[C]. Proc. Of the ION-GPS Conference, 1999: 1559~1568.
    [58] Park C W. Precise relative navigation using augmented CDGPS[D], [PhD. Thesis]. California: Stanford University, 2001.
    [59] Philip A F. Distributed estimation and control technologies for formation flying spacecraft[D], [Master Thesis]. Boston: MIT, 2003.
    [60] Franz D B, Jonathan P H, James S. Demonstration of adaptive extended kalman filter for low earth orbit formation estimation using CDGPS [J]. Navigation, 2003, 50(2): 79-93.
    [61]王元钦,马红,陈谷仓.分布式航天器相对状态测量方法研究[C].分布式航天器新概念及其应用技术研讨会论文集,北京,中国宇航学会,2004: 114-121.
    [62] Wu S C, Kuang D. Positioning with autonomous formation flyer (AFF) on space-technology3[C]. ION GPS Conference 99, California, 1999:14-20.
    [63] Gary M. High-accuracy ranging using spread-spectrum technology[C]. 15th Annual AIAA/USU Small Satellite Conference, Logan Utah, AIAA, 2001: SSC01-VI-2.
    [64]黄卫东.分布式卫星系统轨道构形设计与控制方法研究[D],[博士学位论文].国防科技大学, 2004.
    [65] Creamer N G. Multiple quantum well retromodulators for spacecraft-to-spacecraft laser interrogation, communication and navigation[C]. 15th AIAA/USU Small Satellite Conference,, Logan Utah, AIAA, 2001: SSC01-VI-6.
    [66] Junkins J L, Hughes D C, Wazni K P et al. Vision-Based navigation for rendezvous docking and proximity operation[C]. 22nd Annual AAS Guidance and Control Conference, Breckenridge, CO, AAS, 1999: 99-021.
    [67] Crassidis J L, Roberto A, John L J. Optimal attitude and position determination from line-of-sight measurements[C]. Battin Astrodynamics Conference, College Station, Texas, 20-21 March, 2000:407-423.
    [68] Roberto A, Crassidis J L, John L J. Vision-Based relative navigation for formation flying of spacecraft[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Denver, CO, AIAA, 2000: AIAA-2000-4439.
    [69]聂万胜,庄逢辰.航天器电推进技术现状与发展趋势[J].装备指挥技术学院学报, 2003, 14(1): 37~45.
    [70] James R W, Wiley J L. Space mission analysis and design (3rd Version) [M]. Space Technology Library, Microcosm Press and Kluwer Academic Publishers, 1999.
    [71] Rachel L, Neal K L. Discussion of Micro-Newton Thruster Requirements of a Drag-Free Control System[C]. 16th AIAA/USU Small Satellite Conference, Logan, UT, AIAA, 2002: SSC02-Ⅷ-1.
    [72]郝继刚.分布式卫星编队构形控制研究[D],[博士学位论文].国防科技大学,2006。
    [73] Mark C. UW DAWGSSTAR: one third of ION-F[C]. 13th AIAA/USU Conference on Small Satellites, Logan, Utah, AIAA, 1999: SSC99-III-4.
    [74]尤政,张高飞,任大海. MEMS微推进技术的研究[J].纳米技术与精密工程, 2004, 2(2): 98~105.
    [75] Nicola M, Nayak P P. Remote Agent: To boldly go where no AI system has gone before[J]. Artificial Intelligence, 1998, 103(1-2): 5~47.
    [76]李新洪,曾国强,王兆魁.分布式航天器自主运行技术的发展[C].分布式航天器新概念及其应用技术研讨会论文集,北京,中国宇航学会,2004: 122~125.
    [77] Bernard D E, Dorais G A, Fry C et al. Design of the Remote Agent Experiment for Spacecraft Autonomy[C]. Proceedings of the 1998 Aerospace Conference, Snowmass Aspen Co, IEEE, 1998: 259-281.
    [78] Thomas S, Mark C, Derek S. Multiple agent-based autonomy for satellite constellation[J]. Artificial Intelligence, 2003, 145 (1): 147~180.
    [79] Wang W, Xi N, Sparks A. Formation control of autonomous agents in 3D workspace[C]. Proceedings of the 2000 IEEE International Conference on Robotics&Automation, San Francisco CA, IEEE, 2000: 1755~1760.
    [80] Stephen L S. Commanding and safeguarding the three corner satellite constellation[C]. 16th AIAA/USU Conference on Small Satellites, 2002.
    [81] Blaise M, Nicholas W. Collective management of satellite clusters[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, Aug. 9-11, 1999, Collection of Technical Papers. Vol. 3(A99-3657609-63), Reston, VA, American Institute of Aeronautics and Astronautics, 1999: 1576-1584.
    [82] Manop A, Phil P, Alex da S C. Phase acquisition and formation keeping of a new power consumption monitoring satellite constellation[C]. 13th Annual AIAA/USU Conference on Small Satellite, Logan, Utah, August 23-26, 1999: SSC-99-VI-2.
    [83] Sedwick R J, Miller D, Kong E. Mitigation of differential perturbations in formation flying satellite clusters [J]. The Journal of the Astronautical Sciences, 1999, 47(3-4): 309-331.
    [84] William S, Tarunraj S, Warren S. On-off control of flexible spacecraft with specified fuel usage[C]. American Control Conference, Albuquerque New Mexico, American Automatic Control Council, 1997: 2308-2312.
    [85] Veres S M, Gabriel S B, Rogers E et al. Analysis of formation flying control of a pair of nano-satellite [J]. AIAA Journal of Guidance, Control, and Dynamics, 2002, 25(5): 971-974.
    [86] Schweighart S A, Sedwick R J. A perturbative analysis of geopotential disturbances for satellite cluster formation flying[C]. IEEE 2001 Aerospace Conference, Big Sky MT, IEEE, 2001: 1001-1019.
    [87] Ping L. Nonlinear predictive cntrollers for continuous systems [J]. Jouranl of Guidance Control and Dynamics, 1994, 17(30): 553-560.
    [88] Yan Q, Kapila V, Sparks A G. Pulse-based periodic control for spacecraft formation flying[C]. Proceeding of the American Control Conference, Chicago, IL, American Automatic Control Council, 2000:374–378.
    [89] Queiroz D, Kapila V, Qiguo Y. Adaptive nonlinear control of satellite formation flying[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, Aug. 9-11, 1999, Collection of Technical Papers. Vol. 3 (A99-36576 09-63), Reston, VA, American Institute of Aeronautics and Astronautics, 1999: 1596-1640.
    [90] Queiroz D, Qiguo Y, Yang G et al. Global output feedback tracking control of spacecraft formation flying with parametric uncertainty[C]. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, IEEE, 1999: 584-589.
    [91] Pan H, Kapila V. Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics[C]. Proceedings of the Conference on Decision and Control, Orlando, FL, 2001: 2057-2062.
    [92] Alfriend K T, Schaub H, Gim D W. Gravitaional perturbations nonlinearity and circular orbit on formation flying control strategies[C]. AAS Guidance and control, AAS, 2000: 139-158.
    [93] Vadali S R, Alfriend K T, Vaddi S. Hill’s Equations, Mean orbital elements, and formation flying of satellites[C]. Proceedings of the Texas A&M University/AAS Richard H.Battin Astrodynamics Symposium, College Station Texas, AAS, 2000: 187-203.
    [94] Van der Ha J, Mugellesi R. Analytical models for relative motion under constant thrust [J]. Journal of Guidance Control and Dynamics. 1990, 13(4): 644-650.
    [95] Inalhan G, Michael T, Jonathan P H. Relative dynamics and control of spacecraft formations in eccentric orbits [J]. Journal of Guidance Control and Dynamics, 2002(25): 43-60.
    [96]于萍,张洪华.椭圆轨道编队的构形变化控制方法[J].中国空间科学技术, 2006(1): 1-8.
    [97]方茹,张世杰,林晓辉等.椭圆轨道编队飞行相对运动动力学初始化条件[J].哈尔滨工业大学学报, 2006, (7): 1028-1033.
    [98] Tan Z, Bainum P M, Strong A. The implementation of maintaining constant distance between satellites in elliptic orbits [J]. The Journal of the Astronautical Sciences, 2002, 50(1):53-69.
    [99]肖业伦,张晓敏.编队飞行卫星群的轨道动力学特性与构形设计[J].宇航学报, 2001, 22(7): 7-12.
    [100] Qi guo-yan. Nonlinear dynamics and output feedback control of multiple spacecraft in elliptical orbits[C]. Proceedings of the American Control Conference, Chicago, Illinois, American Automatic Control Council, 2000: 839-843.
    [101]杨宇,韩潮.编队飞行卫星群描述及摄动分析[J].中国空间科学技术, 2002, 22(2): 15-23.
    [102]李俊峰,高云峰.卫星编队飞行动力学与控制研究[J].力学与实践, 2002, 24(2): 1-6.
    [103] Vassar R H, Richard B S. Formation keeping for a pair of satellites in a circular orbit [J]. Journal of Guidance, Control, and Dynamics, 1985, 8(2): 235-242.
    [104] Redding D C, Adams N J. Linear-quadratic station keeping for the STS orbiter [J]. Journal of Guidance, Navigation and Control, 1989, 12(2): 739-745.
    [105] Kapila V, Sparks A G, James M B et al. Spacecraft formation flying: dynamics and control [J]. AIAA Journal of Guidance Control and Dynamics, 2000, 23(3): 561-564.
    [106] Starin S R, Yedavalli R K, Sparks A G. Design of a LQR controller of reduced inputs for multiple spacecraft formation flying[C]. Proceedings of the American Control Conference, Arlington, VA, 2001: 1327-1332.
    [107] Yedavalli R K, Sparks A G. Satellite formation flying control design based on hybrid control system stability analysis[C]. Proceeding of the American Control Conference, Chicago, IL, 2000: 2210-2214.
    [108] Sparks A. Linear control of spacecraft formation flying[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver CO, AIAA, 2000: A00-37335.
    [109] Qeiroz D, Kapila V, Yan Q. Adaptive nonlinear control of multiple spacecraft formation flying [J]. Journal of Guidance, Control and Dynamics, 2000, 23(3): 385-390.
    [110]刘少然,曾国强.编队飞行航天器平均轨道根数非线性控制研究[J].中国空间科学技术. 2005, 25(5): 24-28.
    [111] Yeh H, Nelson E, Sparks A. Nonlinear tracking control for satellite formation[J]. Journal of Guidance, Control and Dynamics, 2002, 25(2):376-386.
    [112]王兆魁,张育林.分布式卫星精确构形保持变结构控制[J].航天控制, 2005, 23(6): 27-30.
    [113] Wang Zhao-kui, Zhang Yu-lin. Sliding mode control for satellite formation keeping against J2 perturbation[C]. Proceeding of the 23rd Chinese Control Conference, Shanghai, CAA, 2004: 1386-1390.
    [114] Hao Ji-gang, Zhang Yu-lin. Application of phase-plane method in the co-plane formation maintenance of formation flying satellite[C]. Proceedings of the 25th Chinese Control Conference, Harbin, CAA, 2006:1900-1904.
    [115]郝继刚,张育林.基于大气阻力的卫星编队构形沿航迹模糊控制方法[J].国防科技大学学报, 2007, 29(3): 6-10.
    [116]王鹏基.卫星编队飞行相对运动动力学与对性控制方法及应用研究[D], [博士学位论文].哈尔滨:哈尔滨工业大学, 2004.
    [117] M Tillerson, How J. Formation flying controlin eccentric orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canda, AIAA, 2001: AIAA-2001-4092.
    [118]于萍,张洪华.椭圆轨道编队飞行的典型模态与构形保持方法[J].宇航学报, 2005, 26(1): 7-12.
    [119]吴宝林,曹喜滨.摄动椭圆参考轨道的相对运动状态转移方程[J].宇航学报, 2005, 26(6): 702-706.
    [120]韦娟,袁建平.小卫星编队飞行的相对运动学方程研究[J].飞行力学, 2002, 20(1): 29-32.
    [121] SCHAUB H. Spacecraft relative orbit geometry description through orbit element difference[C]. 14th US National Congress of Theoretical and Applied Mechanics, Blacksburg, VA, 2002:1-9.
    [122] John E P, Chiu Jeng-Hua. Optimal multiple-impulse time-fixed rendezvous between circular orbits[J]. Journal of Guidance Control and Dynamics, 1986, 9(1):17-22.
    [123] Ilgen M R. Low thrust OTV guidance using lyapunov optimal feedback control techniques [J]. Advances in the Astronautical Sciences, 1993, 85(2): 1527-1545.
    [124] Schaub H, Vadali S R. Spacecraft formation flying control using mean orbit elements [J].Journal of the Astronautical Sciences, 2000, 48(1): 69-87.
    [125] Schaub H, Alfriend K T. Hybrid Cartesian and orbit element feedback law for formation flying spacecraft [J]. Journal of Guidance Control and Dynamics, 2002, 25 (2): 387–393.
    [126] Naasz B J. Classical element feedback control for spacecraft orbital maneuvers [D], [Master Thesis]. Master Thesis of Virginia Polytechnic Institute and State University, 2002.
    [127] Ahmed J, Coppola V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5): 684-692.
    [128] CHEN Borsen, WU Charngshi, JAN Yingwen. Adaptive fuzzy mixed H2/H∞attitude control of spacecraft [J]. Aerospace and Electronic Systems, 2000, 36(4): 1314-1359.
    [129] Kim J, Ohn L C, Disturbance accommodating sliding mode controller for spacecraft attitude maneuvers[C]. Proceedings of the AAS/GSFC International Symposium on Space Flight Dynamic. UNITED STATES: American Astronautical Society Publication, 1998: 141-153.
    [130] Guang Q X, Shabbir A. P, Nonlinear attitude state tracking control for spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 624-626.
    [131]苏罗鹏,李俊峰,高云峰.卫星编队飞行的相对姿态控制[J].清华大学学报, 2003, 43(5): 683-685,689.
    [132] Shan J. Six-degree-of-freedom synchronized adaptive learning control for spacecraft formation flying[J]. IET Control Theory and Applications, 2008, 2(10): 930-949.
    [133]陈刚,康兴无,乔洋,陈士橹等.航天器相对大角度姿态跟踪非线性控制器设计[J].宇航学报, 2009, 30(2): 556-559.
    [134] Kristiansen R, Loria A, Chaillet A et al. Spacecraft relative rotation tracking without angular velocity measurements[J]. Automaic, 2009(45): 750-756.
    [135] Anne K B, Kristin Y P, Tommy G J. Leader/Follower synchronization of satellite attitude without angular velocity measurements[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005: 7270-7277.
    [136] Philip N K, Ananthasayanam M R. Relative Position and attitude estimation and control schemes for the final phase of an autonomou docking mission of spacecraft [J]. Acta Astronautica. 2003, 52(7): 511-522.
    [137] Hong Wong, Haizhou Pan, Kapila V. Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics[C]. American control conference, Porland OR, 2005: 2419-2426.
    [138]张治国,李俊峰.卫星编队飞行轨道和姿态控制研究[J].应用数学和力学, 2008, 29(1): 38-46.
    [139]李化义,张迎春,强文义等.相对位置和相对姿态耦合的编队控制[J].上海航天, 2008(1): 11-15.
    [140] Veera Venkata Swaha Sai Vaddi. Modelling and Control of Satellite Formations [D],[Docotor Thesis]. Texas A&M University, 2003.
    [141] Howard D C. Orbital Mechanics for Engineering Students. Elsevier Ltd, 2005.
    [142] Dennis C P. Linearized Equations for J2 perturbed relative to an elliptical orbit [D], [Docotor Thesis]. San Jose State University, 2005.
    [143] Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous [J]. Journal of the Astronautical Sciences, 1960, 27(9): 653-678.
    [144]郗晓宁.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [145]吕建婷.三周稳定卫星姿态控制算法研究[D], [博士学位论文].哈尔滨:哈尔滨工业大学, 2007.
    [146]杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社, 2000.
    [147]黄圳圭.航天器姿态动力学[M].长沙::国防科技大学出版社, 1997.
    [148]张帆,曹喜滨,邹经湘.一种新的全角度四元数与欧拉角的转换算法[J].南京理工大学学报, 26(4): 376-380.
    [149]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社, 2001.
    [150]肖业伦.航空航天器运动的建模——飞行动力学的理论基础[M].北京:北京航空航天大学出版社, 2003.
    [151]胡跃明.变结构控制理论与应用[M].北京:科学出版社, 2003.
    [152] Slotime J E, W Li. Applied nonlinear control [M]. Englewood Cliffs, New Jersey. Prentice-Hall, 1991.
    [153] Young K D, Ozguner U. Sliding mode control of nonholonomic mobile robots [J]. IEEE Control Systems Magazine, 1999, 19(2): 91-99.
    [154]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996.
    [155] Franco G, Luigi G. Robust control via variable structure and Lyapunov techniques [M], London: Springer-Verlag, 1996.
    [156] Kokotovic P V. The joy of feedback: nonlinear and adaptive [J]. IEEE Control Systems Magazine, 1992, 12(3):7-17.
    [157]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社, 2002.
    [158] Gao Youtao, Lu Yuping, Xu Bo. A new sliding mode control for satellite formation[C]. Proceedings of the 6th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing (CSECS '07), 2007: 258-263.
    [159] Wei Kang, Yeh H H, Sparks A. Coordinated attitude control of multi-satellite systems [J]. International Journal of Robust and Nonlinear Control, 2002(12):185-205.
    [160] VanDyke M C. Decentralized coordianted attitude control of a formation of spacecraft [D], [Master’s Thesis]. Virginia Polytechnic Institute and State University, 2004:1-6.
    [161]戴华.矩阵论[M].北京:科学出版社, 2001.
    [162]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(2): 313-317.
    [163]周丽,姜长生,都延丽.一种基于反步法的鲁棒自适应终端滑模控制[J].控制理论与应用, 2009, 26(6): 678-682.
    [164] Kristiansen R. Dynamic Synchronization of spacecraf_modeling and coordinated control of Leader-Follower spacecraft formations [D], [Docotor’s thesis]. Department of Engineering Cybernetics Norwegian University of Science and Technology, 2008.
    [165] Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computation [M]. MA: Addison-Wesley, 1991.
    [166] Hagan M T, Demuth H B, Beale M. Neural network design [M]. China Machine press, 2002: 437-438.
    [167]张日东,王树青.基于神经网络的非线性系统预测函数控制[J].控制理论与应用, 2007, 24(6): 949-953.
    [168]高有涛,陆宇平,徐波.卫星编队飞行的探测目标指向动力学与控制方法研究[J].宇航学报, 2009, 03: 1000-1005.
    [169]车汝才,张洪华.追踪星跟踪空间非合作目标的相对轨道设计[J].航天控制, 2006, 24(5): 40-45.
    [170] Jacobovits A, Thomas W V. AeroAstro’s Escort– A microsatellite for on-orbit inspection of space assets[C]. 17th Annual AIAA/USU Conference on Small Satellite, Utah, AIAA, 2003: SSC03-IV-7.
    [171] Thomas M D, Major T L, Baker T A et al. XSS-10 micro-satellite flight demonstration program[C]. 17th Annual AIAA/USU Conference on Small Satellite, 2003, SSC03-1-IV-1: 339-346.
    [172]李化义,张迎春,强文义等.与非合作目标编队的相对姿态控制[J].宇航学报, 2007, 28(5): 1210-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700