用户名: 密码: 验证码:
油田污水防垢与缓蚀技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国油田主要采用注水开发的方式。注入水通常是产出液中分离出的污水,水质复杂,含有大量无机盐、溶解气,可在油井井筒、地面系统和注水地层结垢或导致井筒、管线腐蚀,影响油田正常生产。通过加入防垢剂、缓蚀剂可以防止腐蚀、结垢的发生。木文针对油田的使用条件,系统评价了液体防垢剂的性能,改进了聚马来酸、马束酸酐-醋酸乙烯酯共聚物的合成方法,优化了膦基聚羧酸的合成条件,制备了可在井筒使用的固体防垢块;通过研究碳酸钙晶型分布与防垢率的关系、防垢剂对碳酸钙表面zeta电位影响,探讨了防垢剂作用机理;通过系列咪唑啉和聚氧乙烯烷基苯酚醚磷酸酯的合成,研究了缓蚀剂结构与性能的关系。
     评价了国内15种防垢剂的钙容忍度、热稳定性能、防碳酸钙垢性能和防硫酸钡垢性能,结果表明:(1) 对碳酸钙垢,有机膦酸防垢剂质量浓度为2mg/L时防垢率大于90%,相同浓度的聚合物防垢率不到85%;对硫酸钡垢,聚合物PASP、PAA和有机膦酸EDTMP有一定抑制效果,而将PASP与EDTMP 3∶2复配后,产生明显的协同效应,质量浓度为50mg/L时,对硫酸钡垢防垢率可达到90%。(2) 有机膦酸的钙容忍度低于聚合物防垢剂。分子中含酯基、磺酸根的共聚物防垢剂具有更高的钙容忍度。(3) 除氧后的聚合物防垢剂具有较好的耐温性能,其中丙烯酸-丙烯酸酯共聚物、聚丙烯酸在150℃下加热(除氧)72h后,防碳酸钙垢率仍可达到70%。在HEDP、ATMP、PBTC、EDTMP四种有机膦酸中,HEDP的耐热性能最好;有机膦酸防垢剂可以用于90℃以下,当使用温度高于100℃时,防垢性能会受到不同程度影响。
     以水为溶剂,以防垢率为主要指标,研究了聚马来酸、马来酸酐—醋酸乙烯酯共聚物、膦基聚羧酸的合成:以30%的过氧化氢为引发剂,在过渡金属离子催化作用下合成的聚马来酸,溴值低于150mg/g,防垢率达93.52%(质量浓度为8mg/L);首次在过硫酸铵中引入少量的次亚磷酸钠作为复合引发剂合成马来酸酐—醋酸乙烯酯共聚物,所得防垢剂溴值小于100mg/g,钙容忍度为1500mg/L,防垢率为91.2%(质量浓度为4mg/L);以过硫酸铵-次亚磷酸钠组成的氧化还原体系为引发剂合成的膦基聚马来酸和膦基马来酸-丙烯酸共聚物,质量浓度为2mg/L时,阻碳酸钙垢率分别为85%、90%,优于PAA、HPMA、MA-AA,但即使使用浓度高达50mg/L,对油阳污水也基本没有缓蚀性能。
     制备了可悬挂于抽油泵下面使用的低温、中温、高温三个温度系列的固体防垢块,可分别在60℃、70℃、80℃井筒条件下使用。防垢块主要由防垢剂、胶结剂组成。HEDP防垢性能和热稳定性较好,可用作固体块中的防垢剂,使用前需制成HEDP-Na或Ca_2HEDP,前者易溶于水,后者在水中可缓慢溶解。固体块中的胶结剂由塑料构成。通过比较塑料的熔点和在柴油中的溶解性能,可以用1C10A作为低温防垢块的胶结剂、TN00作中温防垢块胶结剂、7042和1C10A复配作高温防垢块的胶结剂。用HEDP-Na作防垢成份时,由于防垢材料和胶结材料的极性差别较大,造成防垢剂颗粒不能被充分
Watertlood development is used widely in Chinese oilfield. Usually injected water is sewage separated from oilfield produced liquid. It contains multiple constitute such as inorganic salt and solved gas, to which scale and corrosion is ascribed in wellbore, surface equipment at al. The occurrence of scale and corrosion affected usual oilfield production. An effective way to inhibit scale and corrosion is using scale inhibitor and corrosion inhibitor. In this paper , the following research is implemented: systematically evaluation of liquid scale inhibitor, improved synthesis method of polymaleic acid and maleic anhydride-vinyl acetate copolymer, optimum synthesis method of phosphonate containing polymer, preparation of solid scale inhibitor, discuss of scale inhibition mechanism based on the influence of scale inhibitor on crystal form distributatuion and zeta potential of calcium carbonate, relationship of molecular structure and corrosion inhibitor performance.15 scale inhibitors were evaluated for their calcium tolerance, thermal stability, CaCO_3 and BaSO_4 scale inhibition performance. The results indicate: (1) CaCO_3 scale inhibition ratio of phosphonic acid type inhibitor is higher than 90% and that of polymer type scale inhibitor is lower than 85% at concentration of 2mg/L. Although PASP PAA and EDTMP are three effective BaSO_4 scale inhibitors, scale inhibition ratio of single inhibitor is lower than 70%. When PASP is compounded with EDTMP with a ratio of 3:2 , scale inhibition ratio can be improved to 90% with 50mg/L mixture for the occurrence of synergetic effect between PASP and EDTMP. (2)The calcium tolerance of phosphonic acid is lower than polymer type scale inhibitors. Higher calcium tolerance can be reached for ester-containing polymer or sulfonate-containing polymer.(3)The thermal stability of polymer type scale inhibitors is better after aeration, especially for acrylic acid/acrylic ester copolymer, polyacrylic acid ,CaCO_3 scale inhibition ratio can retain 70% after being heated at 150℃ for 72h .The evaluation of thermal stability on HEDP、 ATMP、 PBTC、 EDTMP show that performance of HEDP is best and phosphonic acid can be used at temperature lower than 90℃ .when the medium temperature is high than 100℃,scale inhibitor performance may be debilitated to diffferent extent.The synthesis method of polymaleic acid, maleic anhydride-vinyl acetate copolymer, phosphonate-containing polymer in water were studied based on scale inhibition ratio as main target: for polymaleic acid synthesized in water with a transition metal ion as catalyst and H_2O_2 as stimulant, bromine value is less than 150mg/g and inhibition ratio of calcium
    carbonate scale is 93.52% at concentration of 8 mg/L; for maleic anhydride-vinyl acetate copolymer synthesized with the compounded stimulant of sodium hypophosphite and ammonium persulfate, its bromine value is less than 30mg/g , calcium tolerance is 1500mg/L and inhibition ratio of calcium carbonate scale is 91.2% at concentration of 4 mg/L; for phosponate-containing polymaielic acid and phosphonate-containing maielic acid-acrylic acid copolymer, inhibition ratio of calcium carbonate scale is 85% and 90% respectively, but they exhibit ineffective on corrosion inhibition even at concentration of 50mg/L.To inhibit scale formation in oil well, three types of solid scale inhibitor, which can be hung to oil pump in well ting at low temperature, moderate temperature and high temperature respectively, was made mainly from phosphonic type inhibitors. The experiments show that, HEDP, a wide used scale inhibitor in oilfield now, can be selected as scale inhibiting material in solid scale inhibitor for its excellent scale inhibition performance and thermal stability. Before used to prepare solid inhibitor, HEDP must be made into HEDP-Na, a powder soluble in water or Ca2HEDP, a powder springly soluble in water. By comparing melting point and solubility of different plastic in diesel, 1C10A, TN00, compound of DFDA7042 and 1C10A is selected as consolidating agent for low, moderate,and high temperature solid scale inhibitor respectively. When solid scale inhibitor was made only from consolidating agent and HEDP-Na, HEDP-Na would swiftly solve in water because it wasn't not be well consolidated by consolidating agent for their great difference of polarity. After the polarity was conjusted by amphiprotic polymer ,a solid scale inhibitor with good slow releasing ability can be produced.To probe mechanism of scale inhibition, calcium carbonate scale was collected before and after the addition of scale inhibitors and analysized by SEM,FT-IR,XRD qualitatively or quantitately. The results confirm that, after addition of inhibitors, both morphology and content of vaterite is changed. Scale inhibition ratio is higher, change of morphology and increase of vaterite content is more great. It can be inferred that change of morphology is ascribed to the change of crystal form.There are three stage in crastallizing process including occurrence and disappearing of unstable phase , occurrence and disappearing of metastable phase, development of stable phase. When scale inhibitors are added, the second stage and the first stage can be controlled preceedingly to different content according to scale inhibition efficency, so crystal form is changed.To verify the effect of HEDP on surface electrical properity of calcium carbonate scale, which is one of classical scale inhibiting mechanism, zeta potential of freshly CaCC>3 originated from admixture of equimolar of Ca2+ and CO32" was measured during
    precipitating process with time. The results show that the produced CaCO3 is negatively charged and IIEDP had no obvious effect on zeta potential of CaCO3 if having been added during precipitation. In addition, zeta potential of CaCO3 originated from admixture of equimolar ot Cai4 and CO3"" was also measured during dissolution. With the preceding of dissolution , zeta potentials of CaCO3 and the values of pH continuously decreased. Whether the Scale inhibitor was added or not during CaCO3 prepartation,the zeta potential had no obvious difference and whether the dispersion contained HEDP or not, zeta potential also had no obvious difference -To investigate annnelation during synthesis of imidazoline, resultants from oleic acid and diethyienetriamine at 160°C for different time were analyzed by IR and UV, produced water rate and acid value was measured, and corrosion inhibitor performance was investigated by electrochemical polarization curves. The results indicate that cyclization and amidation is developed at the same time and performance of corrosion inhibitor with cyclized structurehigher is better.For series imidazoline with different lipophilic tail and hydrophilic group ,the corrosion inhibitor performance for A3 steel in synthetic brine saturated with CO2 was investigated, and the relationship between molecular structure and performance was suggested. Results show that, in solution containing less than 5X 104mg/L salt, imidazoline with longer lipophilic tail exhibit more efficient, especially when there is double bond in the hydrophobic chain. In solution containing more than 5 X 104mg/L salt, performance of imidazoline with long hydrophobic chain, such as l-aminoethyl-2-pentadecylimidazoline,l-aminoethyl-2-septadecylimidazoline and l-aminoethyl-2-septadecylene imidazoline ,is weaken with the increase of salt content in solution, while that is slightly enhanced for short hydrophobic chain imidazolines such as 1-aminoethyl-2-unadecyl imidazoline and l-aminoethyl-2-tridecyl imidazoline.Also the performance affected by salty change, l-aminoethyl-2-septadecylene imidazoline is always most efficient in mentioned imidazoline. Aong another four imidazoline from resultants of septadecylene imidazoline with ehloroacetic acid, acetic acid and sulfaminic acid respectively, performance of l-aminoethyl-l-carboxymethyl-2-septadecylene imidazoline is best and performance of aminoethyl imidazoline is better than that of hydroxylimidazoline.Also corrosion inhibitor performance was evaluated for a series of octyl-phenol-polyoxythylene ether phosphates with different oxythylene chain length and monoester content. The results indicate that length of oxythylene chain have substantial influence on corrosion inhibitor performance,which can be improved with the change of oxythylene chain length from 10 to 4. A corrosion inhibition ratio over 90% can be
    obtained at the concentration of 10 mg/L when oxythylene chain is 4(OPP4). While monoester content has slightly influence on corrosion inhibitor performance . Corrosion inhibition ratio increases by no more than 4% when mono-ester content of the product increases from 29.78% to 91.55%.
引文
[1] 赵福麟.油田化学.山东东营:石油大学出版社,2000:286
    [2] 舒干,邓皓,王蓉沙.油气田防垢技术与应用.油气田地面工程,1996;15(4):40~43
    [3] 巨全义,管慧珠.油田开发中的化学防垢技术.石油钻采工艺,1990;4:69~74
    [4] 何高荣,陈博武,蒋毅章,鲍其鼐.PAPEMP与西部冷却水处理.工业水处理,2002;22(1):19~23
    [5] 李本高,祁鲁梁,李永存.石化工业水处理技术.北京:中国石化出版社,1999:2~50
    [6] 杨伙成.低钙腐蚀型水质的稳定剂研究.工业水处理,1995;15(6):9~12
    [7] 何思列.用苯酐副产物顺酐制备2-膦酸丁烷.1,2,4-三羧酸(PBTCA)的工艺及特点.工业水处理,1999;19(5):11~14
    [8] 鲍其鼐.冷却水处理中的水溶性聚合物.化工进展,1999;5:56~58
    [9] 夏笑虹.聚丙烯酸钠的阻垢、缓蚀机理研究[硕士学位论文].长沙:湖南大学,2001:2~45
    [10] 金梅.马来酸酐及丙烯酸系多元共聚反应的应用研究[硕士学位论文].兰州:兰州大学,1996:15~40
    [11] 孙阳.马来酸酐-丙烯酸阻垢剂的合成与应用[硕士学位论文].大庆:大庆石油学院,2003:15~30
    [12] 靳晓霞.含膦聚羧酸型阻垢分散剂的合成及应用研究[硕士学位论文].兰州:兰州大学,1997:20~40
    [13] 孙元鹏.膦基羧酸共聚物B134的合成及性能研究[硕士学位论文].南京:南京理工大学,2001:15~40
    [14] 赵谨.膦酰基羧酸在工业冷却水中的应用[硕士学位论文].天津:天津大学,2002:15~35
    [15] 贾成凤.新型膦基聚马来酸缓蚀阻垢剂的研制及性能研究[硕士学位论文].上海:同济大学,2003:20~60
    [16] 蔡张理.新型易生物降解水处理剂-聚天冬氨酸的缓蚀性能研究[硕士学位论文].上海:华东理工大学,2000:15~35
    [17] 郜俊影.绿色水处理剂聚天冬氨酸的合成、缓蚀阻垢性能以及表面增强拉曼散射研究[硕士学位论文].上海:同济大学,2003:20~40
    [18] 徐耀军.聚天冬氨酸的合成及其性能评定[硕士学位论文].南京:南京工业大学,2002:20~30
    [19] 侯永江.聚天门冬氨酸的化学合成及应用研究[硕士学位论文].天津:天津大学,2001:20~35
    [20] 郑艳青,施尔畏,李汶军等.晶体生长理论研究现状与发展.无机材料学报,1998;14(3):321~331
    [21] 李国华,王大伟,黄志良.晶体生长界面相研究.人工晶体学报,2001,30(2):172~177
    [22] 李国华,王大伟,张树根.晶体生长理论的发展趋势与界面相模型.现代技术陶瓷,2001:1:13~18
    [23] 赵福麟.采用用剂.山东东营:石油大学出版社,1997:135~138
    [24] 朱义吾,赵作滋,巨全义等.油田开发中的结垢机理及其防治技术.陕西西安:陕西科学技术出版社,1995:178~182
    [25] 陆柱,郑士忠,钱滇子等.油田水处理技术.北京:石油工业出版社,1990:167~208
    [26] 赵珊茸,王继扬,孙大亮等.原子力显微晶在晶体生长机理研究中的应用.硅酸盐通报,2001;2:40~44
    [27] 王京.常用阻垢剂结构分析及其阻钙垢机理研究[博士学位论文].北京:中国石油化工科学研究院,1998:14~16
    [28] Wilken G. Morphology of inhibitor-treated CaCO_3 precipitate. Desalination, 1980: 33: 201~210
    [29] R. J. Davey, S. N. Black, L. A. Bromley et al. Molecular design based on recognition at inorganic surfaces. Nature, 1991; 353:549~550
    [30] Weijnen M P C, Marchee W G J, Van Rosmalen G M. A quantification of the effectiveness of an inhibitor on the growth process of a sealant, desalination, 1983; 47: 81~92
    [31] 李中和,陈海波.结晶化学.杭州:浙江大学出版社,1989.148~151
    [32] 杨桦,崔爱莉,李悦等.不同几何形状碳酸钙超微粒子的合成.吉林大学自然科学学报,1997;2:83~85
    [33] Qingfeng Yang, Yangqiao Liu, Anzhong Gu et al. Investigation of Calcium Carbonate Scaling inhibition and scale morphology by AFM. Journal of Colloid and interface science, 2001; 240:608~621
    [34] Hua Tong, Wentao Ma, Leilei Wang et al. control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials, 2004; 25:3923~3929
    [36] A. Jada, A. Verraes. Preparation and micrelectrophoresis characterization of calcium carbonate particles in the presence of anionic polyeletrolyte. Colloid and surface A: physicochem. Eng. Aspects, 2003; 219: 7~15
    [37] Hubbell Jack W, Cowley Charles H. Method of treating glass sheets or plates. US3071501, 1963
    [38] Hughes William B. Method of inhibiting corrosion of metals. US:2793997, 1957
    [39] Leboucher B; Pdllieux. Fr. Patent1133393, 1957
    [40] August Chwala; Edmund Waldmarm. Imidazolines containing sulphuric acid radicals and process of preparing them. US2199780, 1940
    [41] Redmore D. Use of phosphoramidates of cyclic amidines as corrosion inhibitors. US3711404, 1973
    [42] Jerome Green. Process for preventing corrosion. US2888400, 1959
    [43] Redmore D. Corrosion inhibitors employing phosphate esters of cyclic amidines. US3711403, 1973
    [44] Prilleux Marcel. Fr. Patentl 158594, 1958
    [45] 马金鼎,王建华,任斐.硫代磷酸酯和磷酸酯咪唑啉衍生物缓蚀阻垢剂的制备方法.CN1030263,1989
    [46] 旷富贵,邹津耘,姚禄安等.一种新型炼油厂用油溶性缓蚀剂.CN1091781,1994
    [47] 张玉芳,路民旭.一种油田用注水缓蚀剂.CN1277241,2000
    [48] Outlaw B.T; Thompson Neil E S. Imidazoline compounds containing sulfur and amino groups. US4622404, 1986
    [49] 苏俊华,张学元,王风平等.饱和CO_2的高矿化度溶液中味嗅琳缓蚀机理的研究.材料保护,1999;32(5):32~33
    [50] 杨怀玉,陈家坚,曹楚南等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究—Ⅶ:H_2S溶液中咪唑啉衍生物对碳钢腐蚀电极过程的影响.中国腐蚀与防护,2002;22(6):321~325
    [51] Suzuki K. The study of inhibitor for sour gas service. NACE Corrosion, 1982; 7:38~389
    [52] Jovancicevic V, Ramachandran S, Prince P. Inhibition of CO_2 corrosion of mild steel by imidazoline and their precursors. NACE Corrosion Science Section, 1999; 55(5): 449~455
    [53] A. Edwards, C. Osbome, S. Webster. Mechanisitic studies of the corrosion inhibitor oleic imidazoline. Corrosion science, 1994; 36 (2): 315~325
    [54] 杨怀玉,陈家坚,曹楚南等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究—Ⅵ:H_2S溶液中咪唑啉衍生物对碳钢腐蚀电极过程的影响.中国腐蚀与防护,2002;22(3):148~152
    [55] A. Edwards, C. Osbome, S. Webster. Mechanisitic studies of the corrosion inhibitor oleic imidazoline. Corrosion science, 1994: 36(2): 315~325
    [56] 颜红侠,张秋禹,张军平等.咪唑啉型缓蚀剂的合成及其抑制CO_2腐蚀性能的研究.石油与天然气化工,2002;31(6):319~328
    [57] 宁世光.咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关系.中国腐蚀与防护学报,10(4):383~389
    [58] Blair C M. The existence of imidazoline corrosion inhibitors dicussion. Corrosion, 1985; 5(41): 616~623
    [59] 王清,黄清涛,杨文治.多元醇磷酸酯类水质稳定剂(PC-602)的缓蚀作用机理.中国腐蚀与防护学报,1988:8(1):59~63
    [61] Jasbir S. Gill. A novel inhibitor for scale control in water desalination. Desalination, 1999: 124:43~50
    [62] 石油天然气行业标准.SY/T5673-1993,油田用防垢剂性能评定方法
    [64] 郑淳之,梅建.水处理剂和工业循环冷却水系统分析方法.北京:化学工业出版社,2000:58~90
    [65] Jordan M M, Sorbie K S, Graham G M et al. The implementation of HP/HT reservoir conditions on the selection and application of scale inhibitors. Oil field chemicals 7th international symposium. 17~20 Maech 1996, Dr Holms Hotel, Geilo, Norway.
    [65] 何铁林.水处理化学手册.北京:化学工业出版社,2000:191~199
    [66] 钟辉,安莲英,梁渠等.高钙油田污水复合防垢剂.油田化学,1995:12(2):147-149
    [67] 傅承碧,宋育红,候杰.水解聚马来酸酐防垢剂合成的研究.辽阳石油化工高等专科学校学报,2002;18(2):1~5
    [68] 王世亮.聚马来酸酐的制备方法.安徽化工,1996;83(2):18~20
    [69] 王世云,鲁守叶,鲍延林.合成水解聚马来酸酐清洁生产新工艺简介.山东环境,1998:6:33~34
    [70] 王春华,王江,李宁等.聚马来酸的合成研究.化学与粘合,2001;3:115~116
    [71] 沈炫东,赵邦蓉.聚马来酸防垢性能的研究.北京化工大学学报,1999;26(3):64~66
    [72] 张健,梁斌,杨亚玲等.水解聚马来酸酐的合成及防垢性能的测定.云南化工,2001;28(1):4~6
    [73] 刘祥,李谦定.一种合成水解聚马来酸的新方法.工业水处理,2000;20(4):22~24
    [74] 朱城临,邱靖,鲍其鼐.水解聚马来酸酐生产新工艺研究.工业水处理,1997;17(2):11~12
    [75] Yamaguchi, Shioji, Irie, Fujiwara. Process for producing acid-type maleic acid polymer and water-treating agent and detergent additive containing said polymer. EP0337694, 1989
    [76] 马泰山,翟广通,王立荣等.酸型马来酸聚合物的制造方法.CN1104653,1995
    [77] 潘祖仁.高分子化学.北京:化学工业出版社,1986:80-82
    [78] Mccallum Ⅲ Thomas Francis, Weinstein Barry. Process for preparing phosphonate-terminated polymers. US 5866664, 1999
    [79] 潘祖仁,于石璋.自由基聚合.北京:化学工业出版社,1983:56-104
    [80] 杨力,宋彬.膦基聚马来酸酐防垢剂.油田化学,1998;15(2):137~140
    [81] 周作明,荆国华.耐高硬高碱高pH值防垢剂的研制.细化工中间体,2001:31(4):21~24
    [82] 蔡淑姜,郑邦乾.油井长效固体防垢剂的研制.石油钻采工艺,1987;9(6):67~75
    [83] Ronald J. Powell, Arland. Fischer, Rich D. Gdanski. Encapsulated scale inhibitor for use in fracturing treatments. SPE30700, 1995
    [84] R. J. Powejj, R. D. Gdanski, M. A. McCabe. Controlled-released scale inhibitor for use in fracturing treatments. SPE2899, 1995
    [85] J. S. Al-Thuwaini, Saudi ARAMCO, B. J. Burr. Encapsulated scale inhibitor treatment. SPE37790, 1997
    [86] Hugh Malcolm Bourne, Peter Arne Read. Well treatment. US5964291, 1999
    [87] Thomas Charles Kowalski, Robert Wayne Pike.Microencapsulated oil field chemicals. US5922652,1999
    [88] Gene H. Zaid, Beth Ann wolf. Well treatment pellets. US6135207, 2000
    [89] J. F. Hsu, A. K. Al-Zain. Encapsulated scale inhibitor treatments experience in the Ghawar Field, Saudi Arabia. SPE60209, 2000
    [90] 徐僖,朱清泉,郑邦乾.水溶性马来酸酐.醋酸乙烯酯共聚物的合成和防垢效果的研究.石油化工,1983;12(10):599~604
    [91] 陈延民,霍树松,侯守福.HEDP钠盐及质子化双HEDP铜(Ⅱ)配合物的制备及其表征.哈尔滨师范大学自然科学学报,1998:14(2):61~66
    [92] Berkshire D C, Lawson J B, Richardson E A. Treating wells with self-precipitating scale inhibitor. US4357248, 1982
    [93] Browing F H, Fogler H S. Precipitation and dissolution of calcium-phosphonates for the enhancement of squeeze lifttimes. SPE25164, 1993
    [94] Tomson M B, Kan A T, Oddo J E. Acid/base and metal complex solution chemistry of the polyphosphonate DTPMP versus temperature and ionic strength. Langmuir, 1994, 10: 1442~1449
    [95] Kan A T, Oddo J E, Tomson M B. Formation of two calcium diethylenetriaminepentakis(methylene phosphonic acid) precipitates and their physical chemical properties. Langmuir, 1994; 10:1450~1455
    [96] Browning F H, Fogler H S. Effect of synthesis parameters on the properties of calcium phosphonate precipitates. Langmuir, 1995; 11: 4143~4152
    [97] Browning F H, Fogler H S. Effect of precipitating conditions on the formation of calcium-HEDP precipitates. Langmuir, 1996; 12:5231~5238
    [98] Pairat R, Sumeath C. Precipitation and dissolution of calcium-ATMP precipitates for the inhibition of scale formation in porous media. Langmuir, 1997; 13:1791~1798
    [99] Rizkalla E N, Zaki M T M, Ismail M I. Metal chelates of phosphonatecontaining ligands, stability of some 1-hydroxyethane-1, 1-diphosphonic acid metal chelates. Talanta,1980; 27(9): 769~770
    [100] L. Holysz, M. Chibowski, E. Chibowski. Time-dependent changes of zeta potential and other parameters of in situ calcium carbonate due to magnetic field treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208:231~240
    [101] L. Higashitani, A. Kage, S. Katamura, K. Imai, S. Hatade. J. Colloid Interface Sci., 1993; 156:90
    [102] J. M. D. Coey, S. Cass. J. Magnetism Magnet Maer. 2000; 209:71
    [103] S. Kobe, G. Drazic, P. J. McGuiness, J. Strazisar. The influence of the magnetic field on the crystallization form of calcium carbonate and the testing of a magnetic water-treatment device. Journal of magnetism and magnetic material, 2001; 236: 71~76
    [104] Mitsutaka Kitamura. Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion. Journal of colloid and interface science, 2001; 236:318~327
    [105] Norio Wada, Kimihiro Yamashita, Takao Umegaki. Effect of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion. Journal of Crystal Growth, 1995; 148:297~304
    [106] C. Gabrielli, G. Maurin, G. Poindessous, R. Rosset. Nucleation and growth of carbonate by an electrochemical scaling process. Journal of Crystal Growth, 1999; 200:236~250
    [107] 杨庆峰,顾安忠,丁洁,沈自求.换热面上碳酸钙的结垢行为及垢型.化工学报,2002:52(9):924~930
    [108] N. Abdel-Aal, K. Sawda. Inhibition of adhesion and precipitation of CaCO3 by aminopolyphosphonate. Journal of Crystal Growth, 2003; 256:188~200
    [109] N. Abdel-Aal, K. Sawda, Takeshi Ogino, Toshio Suzuki, Kiyoshi Sawada, The formation and. transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, 1987; 151:2757~2767
    [110] Plummer L N, Busenberg E. The solubilities of calcite, aragonite and vaterite in CO_2-H_2O solutions between 0 and 90℃, and an evaluatuin of the aqueous model for the system CaCO_3-CO_2-H_2O. Geochim Cosmochim Acta, 1982; 46: 1011~1040
    [111] Brecevic L. Solubility of amorphous Calcium Carbonate. J. Crystal Growth, 1989; 98: 504~510
    [112] Takeshi Ogino, Toshio Suzuki, Kiyoshi Sawada. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, 1987; 151: 2757~2767
    [113] Wray J. L., Daniels F. Precipitation of calcite and aragonite. J. Amer. Chem. Soc, 1957, 79: 2031~2034
    [114] Yamaguchi T, Murakawa K. Preparation of spherical CaCO_3(vaterite) powder transition to calcite in water. Zairyo, 1981; 30: 856~860
    [115] Nakahara Y, Tazawa T, Miyata K. Properties of calcium carbonate prepared by interfacial reaction method. Nippon Kagaku Kaishi, 1976: 5: 732~736
    [116] Turnbull A G.. A thermochemical study of vaterite. Geochim Cosmochim Acta, 1973; 37: 1593~1601
    [117] Murakami K, Hirakawa M, Fujihashi N. Formation and properities of μ-CaCO_3(Ⅰ) Gelatinuous CaCO_3. Gypsum &Lime, 1968; 93:732~736
    [118] Mastuda S, Nemori M., Shiroma A, Sato M. Transformation of vaterite(Ⅰ)(transformation in sodium carbonate solution). Koubutsugaku-zasshi, 1968; 9: 30~36
    [119] Kralj D, Brecevic L, Kontrec J, Vaterite growth and dissolution in aqueous solution Ⅲ kinetics of transformation. J. Cryst. Growth, 1997; 177: 248~257
    [120] Ogino T, Suzuki T, Sawada K. The formation and transformation mechansism of calcium carbonate in water. Geoctsim Cosmoctsim Acta, 1987; 51: 2757~2767
    [121] Takeshi Ogino, Toshio Suzuki, Kiyoshi Sawada. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, 1987; 151: 2757~2767
    [122] Nikos Spanos, Petros G. Koutsoukos, The transfprmation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of crystal growth, 1998; 191:783~790
    [123] 邝钜炽.碳酸钙垢晶析出机理探讨及新型阻垢剂的试验研究[硕士论文].武汉:华南理工大学,2003:1~40
    [124] 杨庆峰.池式沸腾中碳酸钙结垢机理研究[博士后论文].上海:上海交通大学,2003:1~50
    [125] Nancollas G. H, Sawada K, formation of scale of calcium carbonate polymorphs: the influence of magnesium ion and inhibitors. J. Petrol. Technol, 1982, 34:645-652
    [126] Xyla A G, Mikroyannidis J, Koutsoukos P G. The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compound. J. Colloid Interface Sci, 1992; 153: 537~551
    [127] Apostolis Katsifaras, Nikos Spanos. Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite. Journal of crystal growth, 1999; 204:183~190
    [128] M. P. C Weijnen, G. M. van Rosmalen. Adsorption of phosphonate on gypsum crystals. J crystal growth, 1986; 79:157~168
    [129] A. J. Gratz, P. E. Hillner. Poisoning of calcite growth in the atomic force microscope. J crystal growth, 1993; 129:789~793
    [130] 陈敬中.现代晶体化学-理论与方法,北京市东城区:高等教育出版社,2001:138~139
    [131] G. H. Nancollas, K. Sawada. Formation of sacles of calcium carbonate polymorphs: the influence of Magnesium ion and inhibitors. Journal of prtroleum technology, 1982; 34: 645~652
    [132] Neda Vdovic, Damir Kralj. Electrokinetic properties of spontaneously precipitated calcium carbonate polymorphs: the influence of organic substances. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2000; 161: 499~505
    [133] Marek Kosmulski, Edward Maczka, Krystyna Marczewska-Boczkowska. Electrokinetic potentials of mineral oxide and calcium carbonate in artificial seawater. Marine pollution bulletin, 2003; 46:120~122
    [134] Dudley William Thompson, Pamela Gillian Pownall. Surface electrical properties of calcite. Jouranal of Colloid and Interface Science, 1989; 131 (1): 74~82
    [135] E. Chibowshi, L. Hotysz, A. Szczes. Time dependent changes in zeta potential of freshly precipitated calcium carbonate, Colloids and Surfaces A: physicochem. Eng. Aspects, 2003; 222:41~54
    [136] Thomas Foxall, Gordon C. Peterson, Henry M. Rendall, Alec L. Smith. Charge determination at calcium salt/aqueous solution interface. J. Chem. Soc. Faraday Trans, 1979; 75: 1034~1039
    [137] Daniel S. Cicerone, Alberto E, Regazzoni, Miguel A. Biesa. Electrokinetic properties of the calcite/water interface in the presence of magnesium and organic matter. Journal of Colloid and interface science, 1992; 154(2): 423~433
    [138] S. L. S. Stipp. Toward a conceptual model of the calcium surface: hydration, hydrolysis, and surface potential. Geochimica Cosmochimica Acta, 1999; 63 (19/20): 3121~3131
    [139] Stipp S. L, Hochella M F. Structure and bonding environments at the calcite surface as a bserved with x-ray photoeletron spectroscopy(XPS) and low energy electron diffraction(LEED). Geochimica Cosmochimica Acta, 1991; 55: 1723~1736
    [140] 王京,陆婉珍.不同阻垢剂对方解石和磷酸钙表面电位的影响.盐矿测试,1998;17(4):241~247
    [141] Neta Vdovic. Electrokinetic behaviour of calcite-the relationship with other calcium properties. Chemical Geology, 2001; 177:241~248
    [142] N. V. Vagenas, A. Gatsouli, C. G. Kontoyannis. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 2003; 59: 831-836
    [143] Braga Thomas G, Mcrnahon Jo Ann. Combinations of imidazolines and wetting agents as environmentally acceptable corrosion inhibitors. US6338819, 2002
    [144] Li Bassi Guiseppe, Mcgregor William. Corrosion inhibitors for the petroleum industry. EP 1333108, 2003
    [145] Mcmahon Jo Ann, Martin Richard L. Biodegradable corrosion inhibitors of low toxicity. EP0651074, 1994
    [146] Ackley. R. R. Imidazoline derivatives and process of marking the same. US2200815, 1940
    [147] 李宗石.表面活性剂合成与工艺.北京:轻工业出版社,1990:15~32
    [148] Nimerick Kenneth H. Inhibitor to corrosive attack and method of use. US3692675, 1972
    [149] George James Arndt. Imidazolines. GB1078101, 1964
    [150] Seffens W. Corrosion inhibitors for refining & petrochemical processing equipment. US 3766053, 2002
    [151] Maddox Jim Jr, Schoen William. Composition and process for inhibiting corrosion in oil wells. US3687847, 1972
    [152] Foroulis Zisis Andrew. Prevention of corrosion using heterocyclic nitrogen compounds, US 3553101, 1971
    [153] 史真,杨魏国.二羟乙基咪唑啉阳离子表面活性剂的合成.化学世界,1994;01:14~15
    [154] 吴荫顺.金属腐蚀研究方法.北京:冶金工业出版社,1993:2~30
    [155] SY/T5273-2000,油田采出水用缓蚀剂性能评价方法
    [156] 曹楚南.腐蚀电化学.北京:化学工业出版社,1994:170~180
    [157] 范维玉,杨孟龙,陈树坤等.SF-103油田注水缓蚀剂的合成及性能考察.石油大学学报(自然科学版),1999;23(2):82~85
    [158] 苏俊华,张学元,王风平等.饱和CO_2的高矿化度溶液中咪唑啉缓蚀机理的研究.材料保护,1999;32(5):32~33
    [159] 何耀春,王汪,黄步耕等.咪唑啉衍生物MC、MP的合成及在油田回注水中的缓蚀阻垢作用.油田化学,1997;14(4):336~339
    [160] Oppenlaender Knut, Barthold Klaus. Imidazoline based corrosion inhibitors which inhibit corrosion caused by CO_2 and H_2S.US4388214, 1983
    [161] 邹宗柏,谢荣才,余健.咪唑啉阳离子表面活性剂作为缓蚀剂的研究.东南大学学报,1992;22(6):101~106
    [162] 雷良才,肖恺,沈愚等.咪唑啉缓蚀剂的合成与缓蚀性能研究.腐蚀与防护,2001;22(10):420~423
    [163] 胡耿源,周黎芳.咪唑啉表面活性剂水解机理研究.日用化学工业,1989;3:1~4
    [164] 赵荣国,周绍箕.高级脂肪酰胺烷基咪唑啉的合成.印染助剂,1995;12(1):8~11
    [165] 岳可芬,周春生,史真等.新型咪唑啉两性表面活性剂的合成及性能测定.西北大学学报(自然科学版),2002;32(3):258~260
    [166] 杨怀玉,陈家坚,曹楚南等.H2S水溶液中的腐蚀与缓蚀作用机理的研究—Ⅷ咪唑啉衍生物在H_2S溶液中的吸附作用行为.中国腐蚀与防护学报,2003;23(2):75~78
    [167] General aniline film Corporation. A new phosphate ester and its use in corrosion inhibiting compositions. GB 1016238, 1964
    [168] Martin R L. The reaction product of nitrogen bases and phosphate esters as corrosion inhibitors. EP0567212, 1993
    [169] Charles Voegtlin and Hans Stettler. Improvements in or relating to fuel additives. GB2147005, 1985
    [170] James S at. el. Process for inhibition of scale and corrosion using a polyfunctional phosphated polyol ester having at least 75% primary phosphate ester groups. US3580855, 1971
    [171] William Robert Hollingshad at. el. Corrosion inhibition with triethanolamine phosphate ester compositions. US3932303, 1976
    [172] 新型水质稳定剂PC-602的研制与测试试验报告.北京化工学院缓蚀剂科研组,1980
    [173] Ali Naraghi.Corrosion inhibitor containing phosphate groups. US5611991, 1997
    [174] Ali Naraghi. Corrosion inhibitor blends with phosphate erters. US5611992, 1997
    [175] Leslie M at. el. Process for preparing phosphate ester surface active agents in the presence of a bis(hydroxymethyl) phosphinic acid color inhibitor, US:3629377, 1971
    [176] 张小希,胡天戈.磷酸酯中结合磷与无机磷的分析测定.精细化工,2001;18(3):178~180
    [177] 高慧莲,金雅凤,金鲜花.磷酸酯中单、单双酯比例的快速测定.浙江化工,2001;4:38~40
    [178] 刘成勤.电导法测定壬基酚聚氧乙烯醚磷酸酯中酯与磷酸含量.精细石油化工,1996;6:53~56
    [179] 马自权,马章生.烷基芳基聚乙二醇磷酸单酯、双酯的电位滴定.化学世界,1981(3)
    [180] 王清,黄清陶,杨文治.水质稳定剂“PC-602”(多元醇磷酸酯)缓蚀作用机理的研究.北京化工学院学报,1986;01:14~24
    [181] 王清,黄清陶.多元醇磷酸酯及重铬酸钾缓蚀剂对金属缓蚀作用的对比研究.腐蚀与防护,1987;4:34~37
    [182] 王清,黄清陶.多元醇磷酸酯缓蚀剂对碳钢、铝、不锈钢缓蚀作用的研究.陕西化 工,1986:5:19~21
    [183] 王清.多元醇磷酸酯、膦酰基多元羧酸对水介质中碳钢的缓蚀作用与机理的研究.第十二届全国缓蚀剂学术讨论会论文集,2001,32~37
    [184] 赵永韬,吴建华,于辉等.多元醇磷酸酯对船舶用钢的缓蚀作用和机理研究.第十一届全国缓蚀剂学术讨论会,1999,109~113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700