用户名: 密码: 验证码:
胺类捕收剂可生物降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿业的发展,由浮选药剂引起的环境污染越来越严重。为了控制和防治浮选药剂污染问题,以及为选矿药剂的合成和科学合理使用提供理论依据,本研究选取六种典型的胺类捕收剂作为研究对象,运用BOD5/CODCr法、振荡培养法和CO2生成量法等三种评价方法,对典型胺类捕收剂在好氧条件下的生物降解性能进行研究,并初步探讨了典型胺类捕收剂的生物降解动力学模型。运用多元线性回归,对典型胺类捕收剂的生物降解性能与分子结构之间的关系模型进行了研究,并通过红外光谱分析,对胺类捕收剂的可能生物降解途径进行了探讨。
     运用BOD5/CODCr法、振荡培养法和CO2生成量法等三种评价方法,研究了典型胺类捕收剂十二胺、十八胺、醚胺609、醚胺601、十二烷基三甲基氯化铵和十二烷基三甲基溴化铵在好氧条件下的生物降解性能,综合分析三种评价结果,六种药剂均为可生物降解有机物。其中,十二胺、十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十八胺的降解性能较好,而醚胺609、醚胺601的生物降解性能相对较差。
     通过分析有关生物降解性与化学结构定量关系模型的研究现状,分析了有关的分子结构参数以及模型建立方法,选取EHOMO、ELUMO、Vm、Clog P、μ以及分子二阶连接性指数2X作为药剂分子的结构性参数,通过回归分析,建立了胺类捕收剂的定量结构——生物降解性能关系模型(QSBR),并进行了预测。ClogP、EHOMO(疏水性大小和电性参数)对胺类捕收剂的生物降解性能有显著影响。
     利用红外光谱分析,对胺类捕收剂的生物降解途径进行了探讨。醚胺类捕收剂的降解可能存在两种途径,一种途径是首先C-N键断裂,然后经ω、β氧化,生成代谢产物。另一种可能的途径是C-O键断裂,生成丙胺和脂肪酸,然后进一步被氧化;脂肪伯胺可能的降解途径是,首先C-N键断裂,生成NH3和脂肪醇,脂肪醇进一步经微生物氧化生成最终产物;季铵盐阳离子捕收剂可能的降解途径是,首先C-N键断裂,生成(CH3)3N和脂肪醇,脂肪醇进一步经微生物的氧化作用生成最终代谢产物。
With the development of mineral industries, the pollution caused by flotation agents is more and more serious. In order to control and prevent the pollution of agents, and provide the theory for the synthesis and reasonable application of flotation agent, six kinds of amine collectors were selected as objects of study. The aerobic biodegradability of amine collectors has been evaluated by the methods of BOD5/CODCr, shaking cultivation and the amount of CO2 produced, and their kinetics models of biodegradability were investigated preliminarily. Making use of multiple linear regression, the relationship between the biodegradability of typical amine collectors and their chemical structure were discusssed. The degradation pathway of amine collectors were analysized by use of infrared spectroscopic analysis.
     Utilizing the methods of BOD5/CODCr, shaking cultivation and the amount of CO2 produced, the aerobic biodegradability of lauryl amine, octadecylamine, laurtrimonium chloride, lauryl trimethyl ammonium bromide, decane-propyl ether amine and dodecyl propyl ether amine were studied. By means of analyzing the evaluation results synthetically, all of these test substances are biodegradable. Among of them, lauryl amine, laurtrimonium chloride, lauryl trimethyl ammonium bromide and octadecylamine is more easy to be degradated than decane-propyl ether amine and dodecyl propyl ether amine.
     According to analyzing the situation of study on the relationship between the biodegradability of compounds and their chemical structure, and comparing the parameters of chemical structure and the methods of building model, these parameters, such as EHOMO, ELUMO, Vm, ClogP,μ, and 2X, were selected as the ones of amine collectors. Through the regression analysis, the quantitative structure biodegradability relationships (QSBR) on amine collectors was created, and the biodegradability of amine collectors were predicted. The biodegradability of amine collectors are affected by ClogP and EHOMO markedly.
     By use of infrared spectroscopic analysis, the biodegradation pathway of amine collectors were analysized. There are two kinds of potential biodegradation pathway for ether amine, the one is the rupture of C-N firstly, and via the oxidation ofωandβ, the ultima metabolites are produced, the another one is the rupture of C-O firstly, and the products are propylamine and fatty acid which is oxidized furthermore. The possible biodegradation pathway for primary amine is the rupture of C-N firstly, the the products are NH3 and aliphatic alcohol which is oxidized furthermore. And quaternary ammonium salt is biodegradated as a result of the rupture of C-N firstly, (CH3)3N and aliphatic alcohol are produced, and aliphatic alcohol is degradated to finalproducts.
引文
[1]金相灿.有机化合物污染化学—有毒有机物污染化学.北京:清华大学出版社.1990
    [2]黄益宗,王毅力.选矿废水的污染治理及其循环利用对策.科技创新导报,2008:185,188
    [3]李明晓,孙力军,张景绘.光催化降解选矿废水的初步研究.矿产保护与利用,2008,(4):44-46
    [4]王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1982.3-6
    [5]V.Krjavainen, N.Sehreithofer, K.Heiskanen. Effeet of ealium and this ulfate irons on Flotation selectivity of niekel-copper ores. Minerals Engineering,2002,15(1-2):1-8
    [6]北京矿冶研究总院.有机浮选药剂分析.北京:冶金工业出版社,1987,2-4
    [7]云锡黄茅山选厂.重浮选—重流程处理锡矿泥生产实践.云锡科技,1975,14-16
    [8]艾光华,魏宗武.矿山选矿药剂对生态环境的污染与防治探讨.矿业快报,2008,(10):72-74
    [9]Prasad M S. Reagents in the mineral industry recent trends and applications. Minerals Engineering,1992,3-5,279-294
    [10]张海英.选矿药剂对生态环境的污染与防治.中国非金属矿工业导刊,2004,(3):43-45
    [11]吴国振.选矿药剂污染及其防治措施.甘肃冶金,2009,31(1):82-84
    [12]栾和林,姚文.选矿药剂中持久性有机污染物现状与问题.有色金属,2003,55(3):74-77
    [13]王文,桂祥友,宁德志.矿区水体污染与防治.矿业安全与环保,2001,28(5):48-52
    [14]唐锦涛.选矿废水的危害及防治.工程设计与研究,1992,(3):41-45
    [15]马骁轩.金属矿山开发利用过程中典型化学药剂的污染及控制对策.中国矿业,2009,18(2):54-57
    [16]喻晗.典型矿山化学药剂与重金属复合污染的成因与迁移规律研究:[硕士学位论文].武汉:武汉大学,2005
    [17]朱建光.2001年浮选药剂的进展.国外金属矿选矿,2002,(2):4-7
    [18]朱建光.浮选药剂[M].北京:冶金工业出版社,1993.1-8
    [19]王淀佐.矿物浮选和浮选剂:理论与实践.长沙:中南工业大学出版社,1986.1-11
    [20]杨慧芬.微生物选矿药剂的应用研究现状及发展方向.矿产综合利用,2001,(1):33-36
    [21]李晓明,刘敬勇,梁德沛等.矿山选矿有机化学药剂的环境污染与防治研究.安微农业科学,2009,37(11):5086-5087,5116
    [22]王琦.中国选矿药剂品种质量2010年展望.北工矿山技术,1997,(2):16-19
    [23]朱建光.2007年浮选药剂的进展.国外金属矿选矿,2008,(4):3-10
    [24]朱建光.2008年浮选药剂的进展.国外金属矿选矿,2009,(1-2):2-9
    [25]罗仙平,谢明辉.金属矿山选矿废水净化与资源化利用现状与研究发展方向.中国矿业,2006,15(10):51-56
    [26]严群,罗仙平,赖兰萍等.会东铅锌矿选矿废水净化回用工艺的试验研究.工业水处理,2008,28(3):57-60
    [27]谢光炎,孙水裕,宁寻安等.选矿废水的回用处理研究与实践.环境污染治理技术与设备,2002,3(2):67-70
    [28]袁增伟,孙水裕,赵永斌等.选矿废水净化处理及回用试验研究.水处理技术,2002,28(4):232-234
    [29]陶银河,贾乃文,庞锦娟.选矿废水中醚胺的某些环境化学特性研究.环境科学,1993,14(5):72-75
    [30]刘敏婕.对选矿废水综合利用的探讨.中国钼业,1995,19(3):43-46
    [31]赵永红,成先雄,谢明辉等.选矿废水中黄药自然降解特性的研究.矿业安全与环保,2006,33(6):33-34
    [32]冯秀娟,刘祖文,朱易春.混凝剂处理选矿废水的研究.矿冶工程,2005,25(4):27-29
    [33]吴烈善,覃登攀,唐景静.化学混凝法处理选矿废水的实验研究.矿业安全与环保,2007,34(5):15-17
    [34]张学洪,陈志强,张颖等.混凝沉淀法处理钨矿选矿废水生产实践研究.吉林化工学院学报,2000,17(3):38-40
    [35]赵永斌,袁增伟,戴文灿等.混凝吸附处理选矿废水的研究.广东工业大学学报,2001,18(4):94-97
    [36]顾泽平,孙水裕,肖华花.Fenton试剂处理选矿废水的试验研究.水资源保护,2006,22(4):82-84
    [37]徐劲,孙水裕,蔡河山等.Fenton试剂处理选矿废水的实验研究.环境科学与技术,2005,28(6):9-11
    [38]赵永红,姜科.Fenton试剂去除选矿废水中黄药的试验研究.江西理工大学学报,2009,30(5):33-36
    [39]顾泽平,孙水裕,肖华花.用次氯酸钠法处理选矿废水.化工环保,2006,26(1):35-37
    [40]翁建浩,王睿,黄道玉.选矿废水中残余黄药降解规律的试验研究.化工矿物与加工2001,(5):18-41
    [41]吴海杰,刘志奎,张超允.高效微生物处理含胺选矿药剂生产废水试验研究.化工矿物与加工,2005,(8):22-24
    [42]阳承胜,束文圣,徐润林等.利用PFU原生动物群落监测铅锌尾矿人工湿地废水净化效能.环境污染与防治,2000,22(5):20-22
    [43]夏洋.脂肪胺浮选捕收剂光化学降解性能的研究.[硕士学位论文].武汉:武汉理工大学,2007
    [44]朱静,吴丰昌.改性粉煤灰在处理锑矿选矿废水中的应用.环境科学学报,2010,30(2):361-367
    [45]王润欢.采用密闭瓶二氧化碳法对有机污染物的好氧生物降解性研究:[硕士学位论文].乌鲁木齐:新疆农业大学,2008
    [46]Ludzack F J, M.B.Ettinger. Estimating Biodegradability and Treatability of Organic Water Pollutants. Biotechnol. Bioeng.,1963, (5):309-310
    [47]王奕,杨凤林,张兴文等.化学品生物降解性的评价与预测.化工环保,2002,22(4):209-212.
    [48]Alexander M. Biodegradation of Organic Chemical. Environ. Sci. Technol.,1985, (19): 106-107
    [49]孙丹红,王震毅,杨卓慧等.有机化合物好氧生物降解性的研究方法.皮革科学与工程,2005,15(2):16-20.
    [50]汤改风.废水中硝基酚好氧生物降解性及降解动力学研究:[博士学位论文].青岛:中国海洋大学,2006
    [51]胡兴刚,孙继,靳晓霞等.水处理剂生物降解性能评价方法研究.工业水处理,2007,27(1): 65-67
    [52]张自杰.排水工程.北京:中国建筑工业出版社,1996.93
    [53]Brid P G. The Effect of Nitrification in the BOD Test. J. Water Pollut. Control,1981,80: 378
    [54]Urano K, Saito M. Adsorption of Surfactants on Microbiologies. Chemasphere,1984,13: 285
    [55]鄢恒珍,龚文琪.有机物生物降解性能的评价方法.三峡环境与生态,2009,2(2):47-50
    [56]李遵峰,张立勇等.半连续活性污泥法测定表面活性剂的好氧生物降解度.日用化学工业,2007,37(2):85-87,96
    [57]孙立新,蒋展鹏,师绍琪.ATP法测定有机物好氧生物降解性的研究.环境科学,1996,17(1):1-4
    [58]谭铁鹏.ATP测定在活性污泥法中的应用研究.云南化工,1995,(4):62-66
    [59]蒋展鹏,杨宏伟,孙立新等.有机物好氧降解性的综合测试评价方法.环境科学,1999,20(6):10-13
    [60]顾夏声.废水生物处理数学模式.北京:清华大学出版社,1993.42-88
    [61]张自杰.活性污泥生物学与反应动力学.中国环境科学出版社,1989
    [62]王昆,方建华,陈波水等.润滑油生物降解性快速测定方法的研究.石油学报(石油加工),2004,20(6): 74-78
    [63]Predelle J J. Effect of Oligoncleotide Probes Targeted Against Thiothrix Niveaand Type 021V 16S rRNA for in Situ Identification and Population Monitoringin Activated Sludges.Wat.Sci.Tech.,1998,37(4-5):431-440
    [64]徐美倩.废水可生化性评价技术探讨.工业水处理,2008,28(5):17-20
    [65]朱健卫,周如禄,陈维维等.测定BOD5/CODCr值评价废水可生化性特例的研究.煤矿环境保护,2000,14(5):36-38
    [66]王燕,李遵峰.可生物降解——表面活性剂发展的瓶颈与机遇.中国洗涤用品工业,2007(6):44-48
    [67]马育,周光明.阳离子表面活性剂测定技术.化工时刊,2005,19(8): 60-63
    [68]北京矿冶研究总院有机浮选药剂分析组.有机浮选药剂分析.北京:冶金工业出版社,1987.286-288
    [69]GB/T15818-2006,表面活性剂生物降解度试验方法[S].
    [70]王国惠.环境工程微生物学.北京:化学工业出版社,2005
    [71]秦勇,张高勇,赵郁梅等.油溶性表面活性剂生物降解度的测定.日用化学工业,2006,36(6):351-354
    [72]赵郁梅,秦勇,张高勇.表面活性剂生物降解度的测定.日用化学工业,2002,32(6):60-6
    [73]陈韵.水基润滑剂生物降解及其动力学研究:[硕士学位论文].合肥:合肥工业大学,2004
    [74]蒋展鹏,师绍琪,买文宁等.有机物好氧生物降解性二氧化碳生成量测试法的研究.环境科学,1996,17(3):11-14
    [75]OECD301B. Guideline for the testing of chemicals.2003
    [76]李云政,蔡博伟,朱鹤孙等.在可控条件下测定塑料生物降解性的试验评价方法.塑料,1999,28(3):43-48
    [77]孙咏红,田妍,周晓慧等.反渗透阻垢剂的可生物降解性研究.大连铁道学院学报,2006,2(3):86-88
    [78]魏刚,许亚男,熊蓉春.阻垢剂的可生物降解性研究.北京工业大学学报,2001,28(1):59-62
    [79]陈勇生,陈丽侠,杨杰等.32种芳香化合物的好氧生物降解性表征.环境化学,1997,16(4):25-28.
    [80]J. Struijs, J. Stoltenkamp.Testing surfactants for ultimate biodegradability. Chemosphere 1994,28(8):1503-1523
    [81]Milena Eleonore Lapertot, Cesar Pulgarin. Biodegradability assessment of several priority hazardous substances:choice, application and relevance regarding toxicity and bacterial activity. Chemosphere,2006,65(4):682-690
    [82]Elzbieta Beran. Experience with evaluating biodegradability of lubricating base oils. Tribology International,2008,41(12):1212-1218
    [83]H. A. Painter, P. Reynolds, S. Comber. Application of the headspace CO2 method (ISO 14 593) to the assessment of the ultimate biodegradability of surfactants:results of a calibration exercise. Chemosphere,2003,50(1):29-38
    [84]Yong Qin, Gaoyong Zhang, Baoan Kang, et al.Primary aerobic biodegradation of cationic and amphoteric surfactants.Journal of Surfactants and Detergents,2005,8(1):55-58
    [85]DA Wei-liang, TONG Zhang, Herbert H. P. Fang, et al. Phthalates biodegradation in the environment. App. Microbio. Biotechno.,2008(80):183-198
    [86]万金培.酞酸酯最终好氧生物降解性及其动力学研究:[硕士学位论文].合肥:合肥工业大学,2004
    [87]穆云松,刘磊,张爱茜等.手性物质的QSAR研究及环境学意义.化学进展,2009,(10):2235-2241
    [88]陆光华,王凤杰,赵元慧.有机化合物结构与生物降解性的定量关系研究.东北师大学报自然科学版,2001,33(2):6-46
    [89]瞿福平,杨义燕,冯旭东等.定量结构—生物降解性能关系(QSBR)研究原理及进展.中国环境科学,1999,19(1):18-21
    [90]刘次全.量子生物学及其应用.北京:高等教育出版社,1990
    [91]Dearden J C, Hewitt M, Geronikaki A A, et al. QSAR Investigation of New Cognition Enhancers. QSAR&, Combinatorial Science,2009,28(10):1123-1129
    [92]Hoeoy H.A.A newly proposed quantity characterizing the topogical nature of structural isomer of hydrocarbons.Bulletin of the Chemistry Society,1971,44:2332-2336
    [93]王连生,支正良.分子连接性与分子结构.北京:中国环境出版社,1992
    [94]Kupchik E.J. Structure-molar relationships of alkylgermanes using molecular conectivity.Quantitative Structure-Activity Relationships,1988,7:57-59
    [95]Kier L B. Molecular connectivity in chemistry and drug re-search.Academic Press,1986
    [96]Manivannan E, Chaturvedi S C. QSAR Investigations On Benzylideneamino and Phenyliminomethyl Scaffolds for Selective Cox-2 Inhibition:A Hansch Approach. Medicinal Chemistry,2009,5(5):440-445
    [97]Taskin T, Sevin F. QSAR Approach to Correlate Trpvl Antagonist Activity for a Series of Heteroaromatic Urea. QSAR& Combinatorial Science,2009,28(10):1098-1111
    [98]王飞越.有机物结构—活性定量关系及其在环境化学和环境毒理学中的应用.环境科学进展,1992,2(1):26
    [99]刘征涛,王连生,曹洪法等QSAR法研究芳烃类化合物的生物毒性.科学通报,1996,(15):369-372.
    [100]印春生,潘忠孝,张懋森.QSAR结合人工神经网络方法研究取代芳烃分子结构与Na-K-ATP酶活性.计算机与应用化学,2000,(21):376-383.
    [101]戴玄吏,王晓栋,黄宏等.应用分子全息QSAR技术预测硝基芳烃的遗传毒性.环境科学学报,2003,(05):674-678.
    [102]程倩.硝基芳烃对隆线蚤的毒性作用及QSAR研究.辽宁师范大学学报(自然科学版),1999,(02):499-500.
    [103]支霞辉,王红武,马鲁铭.分子定量结构与生物降解性关系模型的研究进展及性能评价.环境污染与防治,2005,27(8):26-326
    [104]杨绍贵,赵元慧,程香菊.部分取代苯定量结构—生物降解相关性(QSBR)研究.东北师大学报自然科学版,2000,12:42-44
    [105]杨绍贵,陆光华,赵元慧.取代苯胺及苯酚类化合物定量结构—生物降解相关性(QSBR)研究.化学通报,2001,9:586-589
    [106]瞿福平,张晓健,何苗等.氯代芳香化合物生物降解性能与其化学结构的相关性.环境科学,1998,(11):26-28
    [107]夏凤毅,郑平,周琪等.邻苯二甲酸酯化合物生物降解性与其化学结构的相关性.浙江大学学报(农业与生命科学版),2004,30(2):141-146
    [108]赵文谦,陆光华.取代苯甲酸在天然河流中的生物降解及其定量结构——生物降解性相关研究.重庆环境科学.2003,25,(9):23-25
    [109]陆光华,赵元慧,汤洁.有机化学品的生物降解性及构效关系.化学通报,2002,(2):113-118
    [110]Yang H W, Jiang Z P, Shi S Q. Anaerobic biodegradability of aliphatic compounds and their quantitative structure biodegradability relationship. Science of the Total Environment, 2004,322:209-219
    [111]Spivak D A, Simon R, Campbell J. Evidence for shape selectivityin non-covalently imprinted polymers. Analytica Himica Acta.,2004,504:23-30
    [112]Lyman W J, Reehl W F. Handbook of Chemical Property Estimation Methods. New York: MC Graw-Hill Press,1982
    [113]Fredenslund A., Jones R.L., Prausnitz J.M. Group-estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal,1975,21 (6):1086-1099.
    [114]Robo J.M., Kaiser K.L.S..Effects of selected chemicals to photoluminescence bactaria and their correlation with acute and sublethal effects on other organisms. Chemosphere,1983, 30:1421-1442.
    [115]Tabak H H, Govind R. Prediction of biodegradation kinetics using a nonlinear group contribution method. Environmental Toxicology and Chemistry,1993,12(2):251-260
    [116]Howard P H, Boethling R S, Stiteler W. Development of a Predictive Model for Biodegradability Based on BIODEG the Evaluated Biodegradation Data Base. Science of the Total Environment,1991,109(10):635-641
    [117]Degner P, Nendza M, Klein W. Predictive QSAR Models for Estimating Biodegradation of Aromatic Compounds. Science of the Total Environment,1991,109(10):253-259
    [118]Gombar, V K, Enslein, K, Hart J B, et al. Estimation of maximum tolerated dose for long-term bioassays from acute lethal dose and structure by QSAR. RISK ANALYSIS.1991,11(3):509-517
    [119]Boethling R S, Sablijic A. Screening level model for aerobic biodegradability based on a survey of expert knowledge. Environ. Sci. Technol.,1989,23:672-679
    [120]Andrews C W, Bennett L, Lawrence X Y. Predicting human oral bioavailability of a compound:development of a novel quantitative structure bioavailability relationship. Pharmaceutical Research,2000,17:639-644
    [121]Dearden J C, Nicholson R M. Correlation of biodegradability with atomic charge difference and superdelocalizability. In:Kaiser KL E (Ed.). QSAR in Environmental Toxicology, Reidel, Dordrecht,1997
    [122]Kompare B. Estimating environmental pollution by xenobiotic chemicals using QSAR (QSBR) models based on artificial intelligence. Water Science and Technology,1998,37: 9-18
    [123]胡守仁.神经网络导论.北京:国防科技大学出版社,1993
    [124]Cambon B, Devillers J. Quant. Structure Biodegradability Relationships (SBRs) for Estimating Half-Lives of Organic Contaminants in Soil Systems. Biodegradation Predicion, Academic Press,1996,115-138
    [125]Devillers J. Neural modelling of the biodegradability of benzene derivatives. SAR QSAR Environ. Res.,1993,1(2-3):161-167
    [126]郭明,许禄.酚类化合物的QSAR研究.环境科学学报,1998,18(21):22-126
    [127]张爱茜,韩朔睽,沈洲等.运用回归分析与人工神经网络预测含硫芳香族化合物好氧生物降解速率常数.环境科学,1998,19(1):37-40
    [128]王世明,施汉昌,钱易.利用人工神经网络预测芳香化合物的生物可降解性.环境化学,2000,19(1):48-52
    [129]张锡辉.高等环境化学微生物学原理及应用.北京:化学工业出版社,2001.8-255
    [130]张超杰,周琪,吴志超等.氟苯酚好氧生物降解性能及其与化学结构的相关性研究.环境化学,2005,24(6):638-642
    [131]陈胜慧,金晓红,李素悦.季铵盐类表面活性剂的生物降解性与其结构的关系.化工学报,2003,54(2):277-279
    [132]秦勇.表面活性剂好氧初级生物降解研究:[博士学位论文].太原:太原理工大学,2006
    [133]陆光华,王超,包国章.江中有机污染物结构与生物降解性定量关系研究.河海大学学报(自然科学版),2003,31(2):200-202
    [134]甘小莉.活性污泥中取代苯类化合物的生物降解性与分子结构关系的研究:[硕士学位论文].北京:中国地质大学,2006
    [135]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(下卷):难降解有机物.北京:中国环境科学出版社,2000.52-56
    [136]罗纪盛,张丽萍,杨建雄等.生物化学简明教程(第三版).北京:高等教育出版社,2007.200-220
    [137]鹿政理,张如彦,李兴正等.环境保护与净化的化学.北京:化学工业出版社,1989.257-264
    [138]余仲建,李松兰,张殿坤.现代有机分析.天津:天津科学技术出版社,1994.7
    [139]郭睿,胡应燕,彭丽等.表面活性剂生物降解性能的研究进展.日用化学品科学,2009,32(8)::20-24
    [140]张冲,李克勋,刘东方.季铵化合物对环境的影响及微生物降解研究进展.环境污染与防治,2009,31(8):84-87
    [141]伦世仪.环境生物工程.北京:化学工业出版社,2002,89-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700