用户名: 密码: 验证码:
聚环氧琥珀酸对污泥中重金属的萃取过程及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥中重金属的污染是影响其资源化利用的关键问题,如何应用绿色化学的理论解决土壤及污泥中的重金属污染问题是环境科学研究的热点之一。本文在国家自然科学基金项目(No.50478103)的支持下,根据国际上绿色化学的发展趋势,针对城市工业废水污泥中重金属含量较高的特征,以上海市桃浦污水厂污泥为对象,重点研究了易生物降解的聚环氧琥珀酸(Poly-epoxy-succinic Acid,简称PESA)对污泥中重金属的分离过程,并从溶液配位化学的角度研究了聚环氧琥珀酸与典型重金属离子的相互作用机理,提出了用环境友好的聚环氧琥珀酸治理城市污泥重金属污染的修复技术。并针对矿区附近土壤普遍受重金属污染的环境现状,以福建省三明地区实际受重金属污染土壤为对象,研究了污染土壤中重金属的迁移转化规律。论文可以为受重金属污染的污泥或土壤的治理及修复提供理论指导和实际技术支持。
     论文主要分为四部分:(Ⅰ)PESA(聚环氧琥珀酸)与典型重金属离子相互作用机理的研究;(Ⅱ)PESA对污泥中重金属的分离过程研究;(Ⅲ)EDDS(S,S-ethylenediaminedisuccinic Acid,乙二胺二琥珀酸)、EDTA(Ethylene DiamineTetraacetic Acid,乙二胺四乙酸)与PESA对重金属分离作用的比较研究;(Ⅳ)污染土壤中重金属迁移转化规律的研究。
     第一部分:聚环氧琥珀酸与典型重金属离子相互作用机理的研究
     利用pH电位滴定和先进的BEST数据处理程序,研究了PESA与典型重金属离子Zn~(2+)、pb~(2+)、Cd~(2+)、Ni~(2+)、Cr~(3+)、Cu~(2+)之间的配位化学作用,得到了PESA的酸离解常数、相应配合物的稳定常数及不同pH下各种配合物的形态分布图。研究结果表明:(1)将PESA简化为具有五个结构单元的二级电离模型的误差o较小,且模拟滴定曲线与实验滴定曲线的符合程度较好,所得的pK_a1=4.68、pK_a2=4.92,说明实验所设计的配位化学模型比较合理,结果准确。表明通过合理配位化学模型的建立来处理PESA的酸离解及其与重金属离子间的配位化学作用是可行的。(2)从溶液配位化学角度讲,PESA与重金属离子有较强的结合能力。按形成的主要配合物种ML来看,Zn~(2+)、pb~(2+)、Cd~(2+)、Ni~(2+)、Cr~(3+)、Cu~(2+)与PESA配位能力大小的顺序为Cu~(2+)>Cr~(3+)>Cd~(2+)>Zn~(2+)>Ni~(2+)>pb~(2+)。
     第二部分:聚环氧琥珀酸对污泥中重金属的分离过程研究
     以上海市桃浦污水厂污泥为研究对象,研究了聚环氧琥珀酸对污泥中重金属的萃取作用,重点考察了萃取体系pH值、萃取剂用量、萃取时间、萃取温度、重金属的存在形态、添加H_2O_2、添加H_3PO_4等条件对重金属萃取的影响。研究发现:(1)PESA对污泥中的重金属具有较好的萃取效果,当PESA与污泥中重金属总量的摩尔比为2:1且pH=4的条件下,PESA对污泥中目标重金属的综合萃取效果最好,此时PESA对污泥中各重金属的萃取效率由大到小的顺序为:Cd>Zn>Pb>Ni>Cu>Cr,对应的萃取率分别为78%、73%、72%、60%、54%、36%。(2)重金属与PESA配合物的稳定性、PESA用量、萃取体系pH值、萃取时间、萃取温度、重金属的存在形态等是影响污泥中重金属萃取的重要因素。BCR(European Community Bureau of Reference,简称BCR)连续提取法表明,PESA萃取污泥中的重金属主要是从水溶态、酸溶态、可还原态三种形态中提取,可氧化态可实现部分萃取。(3)H_2O_2对污泥中的Ni、Cu、Zn有较好的分离作用,H_2O_2和PESA复合体系对污泥中Cu的分离有明显的促进作用。(4)低浓度的H_3PO_4对污泥中的重金属Zn、Cd、Ni具有很好的分离作用,H_3PO_4与PESA复合体系对Pb的分离有明显的促进作用。
     第三部分:EDDS、EDTA与PESA对重金属分离作用的比较研究
     以上海市桃浦污水厂污泥为实验材料,在萃取剂与重金属总量的摩尔比为1:1和10:1以及调节萃取体系pH值的条件下,比较研究了EDDS、EDTA与PESA对重金属的分离作用。实验结果表明:(1)EDTA在实验pH值范围内对多数目标重金属如Cd、Zn、Pb、Cu、Ni具有较好的萃取作用;当EDTA与重金属总量的摩尔比为10:1时,EDTA对污泥中重金属萃取效率由大到小的顺序为Cd>Zn>Pb>Cu>Ni>Cr。(2)EDDS适合在中性偏碱性条件下使用,对Cu、Cd、Zn、Pb、Ni具有较好的萃取作用;当EDDS与重金属总量的摩尔比为10:1时,EDDS对污泥中重金属萃取效率由大到小的顺序为Cu>Cd>Zn>Pb>Ni>Cr。(3)PESA在偏酸性条件下对Cd、zn、Pb、Ni、Cu、Cr具有良好的萃取作用;当PESA与重金属总量的摩尔比为10:1时,PESA对污泥中重金属萃取效率由大到小的顺序为Cd>Zn>Pb>Ni>Cu>Cr。在pH=4且PESA与污泥中重金属总量的摩尔比为10:1时,PESA对Cd、Zn和Pb萃取效率可与EDTA和EDDS相当,对Cr的萃取效率高于EDTA和:EDDS。(4)对Cr的萃取,PESA优于EDTA和EDDS;对Cu的萃取,EDTA和EDDS优于PESA;对Pb的萃取,EDTA优于:EDDS和PESA。(5)相对于EDTA的难生物降解、EDDS含氮有引起水体富营养化的潜在威胁且价格较昂贵,PESA由于具有环境友好、易生物降解、对重金属螯合性能好的优点,是一种很有发展前途的环境友好替代萃取剂。
     第四部分:污染土壤中重金属迁移转化规律的研究
     以福建三明地区实际受重金属污染的土壤样品为研究对象,通过模拟酸雨淋溶土柱的试验方法,研究了酸雨作用下污染土壤中重金属元素的溶出及迁移转化规律。研究结果表明:(1)随着酸雨pH值的降低,污染土壤淋滤液的电导呈递增变化,而滤液pH值相应降低;随着淋溶量的增加,淋滤液的电导逐渐下降。(2)模拟酸雨作用于该受重金属污染土壤时,污染土壤中不同重金属呈现不同的溶出规律。淋滤液中锌、镍、铜、铬和铅的含量均随模拟酸雨pH值的降低而增加,但锌、镍和铜的释放过程可分为快速释放和准稳定两个阶段,铬和铅的释放过程则分为快速释放和慢速释放两个阶段。(3)相同酸雨强度下,该污染土壤中重金属累积释放量由大到小的顺序为Zn>Cu>Cr>Ni>Pb。(4)不同重金属在酸雨作用下向下层土壤迁移的规律不同。在pH=3.6的酸雨作用下,污染土壤中的Zn、Pb、Cu、Cf、Ni都具有一定的向下层土壤迁移性,Zn、Ni的迁移性较强,而Cu、Pb、Cr的迁移性相对较弱。相同酸雨强度下,污染土壤中各重金属下层土壤的迁移能力由大到小的顺序为Zn>Ni>Cu>Pb>Cr。随着土壤深度的增加,各层土壤中迁移重金属的浓度逐渐降低。同一层土壤中迁移重金属的浓度由大到小的顺序为:Zn>Pb>Cu>Cr>Ni。
The retained heavy metals in sewage sludge will pose the risk of human health and phytotoxicity from land application, which restricts significantly the reuse of sewage sludge. Therefore, how to remove the heavy metals from soil and sewage sludge with the green chemical theory has attracted more attention in recent years. Focussing on the recent development trend of green chemistry and the characteristic for sewage sludge containing higher concentration heavy metal, the extraction efficiencies for poly-epoxy-succinic acid (PESA) as a novel biodegradable chelant to remove heavy metals from sewage aludge based on chemical extraction technology were studied in this paper. The complexation mechanism between PESA and several heavy metal cations were studied by means of acid-base potentionmetric titration. The migration of heavy metals in the actual polluted soil sampled nearby Pb-Zn ore washing plant was investigated based on the condition of soil near ore plant contaminated widely by heavy metals. Under the support of the Natural Science Foundation of China, the purpose of this research is to provide academic suggestion and technical guidance for the development of green remediation technology of soils and sewage sludge contaminated with heavy metals.
     This paper consists of four parts: ( I ) Study on the complexation mechanism between PESA and heavy metal cations. (II) Study on the separation of heavy meatls from sewage sludge with PESA. (III) Study on the comparison of extraction efficiency for heavy metals from sewage sludge with EDDS, EDTA and PESA. (IV) Study on the migration of heavy metals in the actual polluted soil.
     (I) Study on the complexation mechanism between PESA and heavy metal cations. Based on the acid-base potentionmetric titration and the advanced BEST computer program developed by A. E Martell et al, the deprotonnation constant of PESA and the complex formation constants of PESA with six heavy metal cations (Zn~(2+), Pb~(2+), Cd~(2+), Ni~(2+), Cr~(3+), Cu~(2+)) were determined. The distribution curves of the species in aqueous solution at different pH were also given out. It was demonstrated that the H_2L model with five structure unit to describe the coordination chemistry of PESA, which was set up according to the experimental data, is reasonable and the contants are also accurate. The experimental results confirmed that the models were feasible to match the deprotonation of PESA and the conplexation between PESA and heavy metal cations. The chelation abilities of PESA with heavy metal cations are good. Considering the main complex ML, the order of complexation tendency between heavy metal cations and PESA is Cu~(2+)>Cr~(3+)>Cd~(2+)>Zn~(2+)>Ni~(2+)>Pb~(2+).
     (II) Study on the separation of heavy meatls from sewage sludge with PESA. Based on chemical extraction technology, PESA was used to remove the heavy metals from the sewage sludge. For the sewage sludge from Shanghai Taopu Municipal Wastewater Plant, the influence factors including system pH, concentration of PESA, extraction time, extraction temperature, heavy metal species distribution, H_2O_2 and H_3PO_4 addition on the extraction efficiency were investigated. It was found that PESA could extract target heavy metals from sludge effectively. The total extraction efficiency for all of the target heavy metals is good when the molar ratio of PESA to total heavy metals was 2:1 and system pH was 4. The order for heavy metals extracted with PESA is Cd>Zn>Pb>Ni>Cu>Cr, and the extraction efficiency is 78%, 73 %, 12%, 60%, 54% and 36% respectively. The results showed that the complex formation constants of PESA with heavy metal cations, concentration of PESA, system pH, extraction time, extraction temperature, heavy metal species distribution, H_2O_2 and H_3PO_4 addition have a significant effect on the extraction efficiencies. The BCR (European Community Bureau of Reference) analysis of species distribution showed that the extracted heavy metals mainly came from the following species, water soluble, acid soluble, reducible and oxidizable fractions. H_2O_2 addition could remove Ni, Cu and Zn from sludge effectively, and the H_2O_2-PESA associated system could promote the separation of Cu obviously. H_3PO_4 addition could remove Zn, Cd and Ni from sludge effectively, and the H_3PO_4-PESA associated system could promote the separation of Pb apparently.
     (III) Study on the comparison of extraction efficiency for heavy metals from sewage sludge with EDDS, EDTA and PESA. Under conditions of molar ratio of chelat and the sum of heavy metals was 1:1 or 10:1 with system pH adjusted, the extraction efficiencies for heavy metal extracted with EDDS, EDTA and PESA were compared. The result revealed that EDTA had higher extraction efficiency for Cd, Zn, Pb, Cu and Ni within experiment pH range, and the order for heavy meatals extracted with EDTA is Cd>Zn>Pb>Cu>Ni>Cr when molar ratio of EDTA and sum of heavy metals was 10:1. EDDS had higher extraction efficiency for Cu, Cd, Zn, Pb and Ni under neutral or alkali condition, and the order for heavy meatals extracted with EDDS is Cu>Cd>Zn>Pb>Ni>Cr when molar ratio of EDDS and sum of heavy metals was 10:1. PESA had higher extraction efficiency for Cd, Zn, Pb, Ni, Cu and Cr under acidic condition, and the order for heavy meatals extracted with PESA is Cd>Zn>Pb>Ni>Cu>Cr when molar ratio of PESA and sum of heavy metals was 10:1. Under conditions of pH=4 and ratio 10:1, PESA gave comparable better extraction efficiency than EDDS and EDTA in extracting Cd, Zn or Pb. PESA gave better performance than EDDS and EDTA for Cr extraction, EDTA and EDDS better than PESA for Cu, and EDTA better than EDDS and PESA for Pb. In comparison with EDTA or EDDS, PESA gave potential alternative performance in extracting heavy metals such as Cd, Zn, Pb or Cr, in addition to the other advantages, such as ready biodegradability and nitrogen- and phophorus-free components.
     (IV) Study on the migration of heavy metals in the actual polluted soil. The soil column leaching model was used to study the leaching process and migration of heavy metals with the washing of simulated acid rain. The pH of the simulated acid rain was controlled in three levels of 2.5, 3.6 and 5.6. The investigation revealed that, with the pH decrement of the acid rain, the conductivity of the soil leachate increased gradually while the pH of the leachate decreased under the same conditions. With the pH increment of the acid rain, the total content of all the five heavy metals in the leachate showed the rising tendence. However, the results also showed that different kind of heavy metals had their own leaching characteristics. The release of zinc, nickel and copper from the polluted soil increased rapidly in the first stage and then maintained a relative stable state. For the release process of chromium or lead, it can be divided into two stages of fast leaching and slow leaching. The order of the total released amount of five heavy metals was Zn>Cu> Cr>Ni>Pb under the same condition. The results revealed that Zn, Pb, Cu, Cr or Ni in the polluted soil might migrate to deeper soil when pH of the simulated acid rain was 3.6, and the translation ability for Zn or Ni was greater than Cu, Pb or Cr. Under the same acid rain intensity, the heavy metals migration in soil followed the sequence of Zn>Ni>Cu>Pb>Cr, and the heavy metals content in the same soil depths was in the order of Zn>Pb>Cu>Cr>Ni.
引文
[1]国家环保总局,国家发展改革委员会.国家环境保护“十一五,,规划,北京,2008.
    [2]国家建设部.2006城市县城和村镇建设统计公报,北京,2007.
    [3]国家环境保护总局.2005年中国环境状况公报,北京,2006.
    [4]国家环境保护总局.2006年中国环境状况公报,北京,2007.
    [5]李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析[J].首届污泥资源化利用研讨会,北京,2003.
    [6]李金红,何群彪.欧洲污泥处理处置概况[J].中国给水排水,2005,21(1):101-103.
    [7]王涛.污泥焚烧技术现状、存在问题与发展趋势[J].西南给排水,200729(1):7-11.
    [8]黄国峰,吴启堂,孟庆强等.有机固体废弃物在持续农业中的资源化利用[J].土壤与环境,2001,10(3):246-249.
    [9]杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区与控制对策[J].中国环保产业,2005,(3):11-14.
    [10]王静,卢宗文,田顺等.国内外污泥研究现状及进展[J].市政技术,2006,24(3):140—142,195.
    [11]杨子江.城市污泥的综合利用研究[J].再生资源研究,2004,1:32-36.
    [12]易红星,王建龙,李书军.我国污泥农用资源化的处置方法[J].石河子大学学报(自然科学版),2004,22(3):273-276.
    [13]熊帆,黄君涛,钟理.城市污泥的处理处置与资源化利用[J].广东化工,2005,1:87-90.
    [14]黄亚军,屈明.重金属的环境化学行为与毒理学研究[J].环境卫生工程,2003,12(2):80-82.
    [15]常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2003,19(1):59-61.
    [16]Babel S,Dacera D D.Heavy metal removal from contaminated sludge for land application:A review[J].Waste Management,2006,26(9):998-1004.
    [17]陈同斌,黄启飞,高定等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学学报,2003,23(5):561-569.
    [18]Monday O,Michael L,Thompson J S C,et al.Distribution and movement of sludge—derived trace metals in selected Nigerian soils[J].J Environ Qual,2001,30(3):1667-1674.
    [19]周立祥,胡霭堂,戈乃玢等.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193.
    [20]张天红,薛澄泽.西安市污水污泥林地施用效果研究[J].西北农业大学学报,1994,22(2):67—71.
    [21]Berti W R,Jacobs L W.Distribution of trace elements in soil form repiated sewage sludge applications[J].Journal of Environmental Quality,1998,27(6):1280—1286.
    [22]庞金华.污泥对区域生态环境的影响[J].热带亚热带十壤科学,1994,3(1):41-47.
    [23]欧阳喜辉,崔晶,佟庆等.长期施用污泥对农田土壤和农作物影响的研究[J].农业环境保护,1994,13(6):271—274.
    [24]王宏康.污泥在农业上的应用[J].农业环境保护,1980,(1):69-77.
    [25]张桥,吴启堂,黄焕忠等.施用污泥堆肥对作物和土壤的影响[J].土壤与环境,2000,9(4):277-280.
    [26]李国学,黄焕忠,黄铭洪.施用污泥堆肥对土壤和青菜重金属积累特性的影响[J].中国农业大学学报,1998,3(1):113-118.
    [27]马芸,孟昭福,高坤瑞等.西安市污水处理厂污泥施用于土壤中的探讨[J].农业环境保护,2000,19(2):76-78.
    [28]中华人民共和国国家标准.农用污泥中污染物控制标准GB4284-84.北京,1984.
    [29]中华人民共和国国家标准.城镇污水处理厂污染物排放标准GB 18918.2002.北京,2002.
    [30]中华人民共和国国家标准.土壤环境质量标准GBl5618-1995.北京,1995.
    [31]何品晶,顾国维,李笃中等.城市污泥处理与利用[M].北京:科学出版社,2003:211.
    [32]Anastas P T,Williarnson T C.Green Chemis时-Desitming Chemistry for the Environment,Sy mposium Series 62,Washington DC USA,American Chemical Society,May 11-16,1996,254-260.
    [33]Anastas P T,Kirchhoff M M.Origins,Current Status,and Future Challenges of Green Chemistry[J].Ace Chem Res,2002,35(9):686-694.
    [34]Anastas P T,Zimmerman J B.Through the 12 Principles green engineering[J].Environ Sci Teclmol,2003,1:95-101.
    [35]徐汉生编.绿色化学导论[M],第1版.武汉:武汉大学出版社,2002.
    [36]李剑,王拯,饶姗姗.当前绿色化学及其技术在水处理中的应用[J].甘肃科技,2004,20(3):43-44.
    [37]汪拥群,尹占兰.绿色化学在发展.现代化学中的一个重要新理念[J].陕西师范大学继续教育学报,2004,21(2):114-118.
    [38]梁开玉.绿色化学-实现可持续发展的主流[J].重庆工商大学学报,2004,21(4):333-335.
    [39]熊蓉春,魏刚,周娣等.绿色阻垢剂聚环氧琥珀酸钠的合成[J].工业水处理,1999,19(3):11-13.
    [40]何铁林.水处理化学品手册[M].北京:化学工业出版社,2000.
    [41]陈志良,仇荣亮,张景书等.重金属污染土壤的修复技术[J].环境保护,2002,6:21-23.
    [42]Krishnamurti G S R,Huang P M,Van Rees K C J.Kinetics of cadmium release from soils as influenced by organic acids;implication in cadmium availability[J].Environ Oual,1997,26:271-277.
    [43]Garrabrants A C,Kosson D S.Use of a chelating agent to determine the metal availability for leaching from soils and wastes[J].waste Manage,2000,20:155-165.
    [44]Battaglia A,Calace N,Nardi E,et al.Reduction of Pb and Zn bioavailable forms in metal polluted soils due to paper mill sludge addition effects on Pb and Zn transferability to barley[J].Bioresource Technology,2007,98:2993-2999.
    [45]Abumaizar R,Khan L I.Laboratory investigation of heavy metal removal by soil washing [J].Journal of the Air and Waste Management Association,1996,46:765-768.
    [46]Mulligan C N,Yong R N,Gibbs B F.On the use of biosurfactants for the removal of heavy
    ??metals from oil contaminated soil[J].Environmental Process,1999,18(1):50-54.
    [47]Zhao X L,Qing C L,Wei S Q,et al.Heavy metal runoff in relation to soft characteristics [J].Pedosphere,2001,11(2):137-142.
    [48]Hong K J.Evaluation of remedation process with plant-derived biosuffactant for recovery of heavy metals from contaminated soil[J].Chemosphere,2002,49:379-387.
    [49]Van Benschoten J E,Matsumoto M R,Young W H.Evaluation and analysis of soil washing for seven lead-contaminated soils[J].Journal of Environmental Engineering,1997,23(3):217-224.
    [50]Theodoratos P,Papassiopi N,Gcorgoudis T,et al.Selective removal of lead from calcareous polluted soils using the Ca—EDTA salt[J].Water,Air and Soil Pollution,2000.122:351—368.
    [51]Shim Y,Tahei T.Principle and process of heavy metal removal from sewage sludge[J].Environ Sci Technol,2000,34(8):1572-1575.
    [52]Philippe V,Frederik H,Willy V,et al.Metal decontamination of soft,sediment,and sewage sludge by means of transition metal chelant[S,S]-EDDS[J].Journal of Environmental Engineering,2001,127(9):802—811.
    [53]Susan T,Karin B,Roland M,et al.Extraction of heaw metals from softs using biodegradable chelating agents[J].Environ Sci Technol,2004,38(3):937—944.
    [54]Pueyo M,Ruret G Assessment of CaCl_2,NaNO_3 and NH_4NO_3 extraction procedures for the study of Cd,Cu,Pb and Zn extractability in contaminated softs[J].Analytical Chimica Acta,2004,504:217—226.
    [55]蔡全英,莫测辉,吴启堂等.化学方法降低城市污泥的重金属含量及其前景分析[J].土壤与环境,1999,8(4):309-313.
    [56]周立祥,沈其荣,陈同斌等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报,2000,20(3):269-274.
    [57]尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展[J].农业环境保护,2001,20(4):266-269.
    [58]刘玉荣,党志,尚爱安等.儿种萃取剂对土壤中重金属生物有效部分的萃取效果[J].土壤与环境,2002,11(3):245-247.
    [59]刘云国,黄宝荣等.重金属污染_十壤化学萃取修复技术影响冈素分析[J].湖南大学学报(自然科学版),2005,32(1):95-98.
    [60]Wozniak D J,Huang J Y C.Variables affecting metals removal from sludge[J].J Water Pollut Control Fed,1982,54(12):1574-1580.
    [61]Tyagi R D,Couillard D,Tran F T.Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods[J].Environmental Pollution,1988,50:295—316.
    [62]Korolewicz T,Turek M,Ciba J,et al.Speciation and Removal of Zinc from Composted
     Municipal Solid Wastes[J].Environ Sci Technol,2001,35(4):810—814.
    [63]Wasay S A,Barrington S F,Tokunaga S.Remediation of soils polluted by heavy metals
    ??using salts of organic acids and chelating agents[J].Environmental Technology,1997,19:369-380.
    [64]Wasay S A,Barrington S F,Tokunaga S.Organic acids to remediate a clay loam polluted by heavy metals[J].Canadian Agricultural Engineering,1998,40:9—15.
    [65]Veeken A H M,Hamelers H V Removal of heavy metals from sewage sludge by extraction with organic acid[J].Wat Sci tech,1999,40(1):129—136.
    [66]Raman B,Shiv O P.Extraction of metals from a contaminated sandy soil using citric acid [J].Environmental Progress,2000,19(4):275-282.
    [67]Taniguchi S,Yamagata N,Sakurai K Cadmium adsorption on hydroxyaluminosilicate-montamorillonite complex as influenced by oxalate and citrate[J].Soil Sci Plant Nutr,20010,46:315-324.
    [68]Poulsen I F,Hansen H C B.Soil sorption of nickel in presence of citrate or arginine[J].Water Air Soil Pollut,2000,120:249-259.
    [69]Wasay S A,Barrington S F,Tokunaga S.Organic acids for the in situ remediation of soils polluted by heavy metals:soil flushing in colum[J].Water Air and Soil Pollution,2001,127:301-314.
    [70]Oin F,Shan X O,Wei B.Effects oflow-molecular-weight organic acids and residue time on desorption of Cu,Cd,and Pb from soils[J].Chemosphere,2004,57:253-263.
    [71]Liao M,Xie X M.Cadmium release in contaminated soils due to organic acids[J].Pedosphere,2004,14(2):223-228.
    [72]Liao M.Effects of organic acids on adsorption of cadmium onto kaolinite,goethite,and bayerite[J].Pedosphere.2006,16(2):185—191.
    [73]Ke Xin,Li Pei-jun,Zhou Qi-xing,et al.Removal of heavy metals from a contaminated soil using tartaric acid[J].Journal of Environmental Sciences,2006,18(4):727-733.
    [74]Philippe C.Vandevivere,Hans Saveyn,Willy Verstraete,et al.Biodegradation of Metal—IS,S卜EDDS Complexes[J].Environ Sci Technol,200,5:1765—1770.
    [75]Shankha K Banerji,Regmi T P.Biodegradation of the 2,6-pyridine dicarboxylic acid (PDA)used for soil metal extraction[J].Waste Management,1998,18:331—338.
    [76]Robea W Peters.Chelant extraction of heavy metal from contaminated soils[J].Journal of Hazardous Materials,1999,66:151-210.
    [77]Sun B,J Zhao E Lombi E,et al.Leaching of heavy metals from contaminated soils using EDTA[J].Environmental Pollution,2001,113:111-120.
    [78]Chelsea Li,Shankha K,Yongrnei Wang et al.Feasibility of metal recovery from soil using DTPA and its biostability[J].Journal of Hazardous Materials,2002,94:253-272.
    [79]文震,党志,余德顺等.超临界CO_2流体萃取重金属的研究进展[J].化学进展,2001,13(4):310-314.
    [80]Kersch C,Roosmalen M,Woerlee G et al.Extraction of Heavy Metal from Fly Ash and Sand with Ligands and Supercritical Carbon Dioxide[J]。Ind Eng Chem Res,2000,39:4670-4672.
    [81]许艳红.ESA螯合溶解性能研究[D].北京化工大学,2004.
    [82]熊蓉春,魏刚,周娣等.绿色阻垢剂聚环氧琥珀酸钠的合成[J].工业水处理,1999,19(3):11-13.
    [83]Bush Rodney D,Heinzman Stephen W.Ether hydroxypolycarboxylate detergency builders [P].US 4654159,1987.
    [84]Brown J Michael,McDowell John F,Chang Kin—tai.Method of cont rolling scale formation in aqueous systems[P].US 5062962,1991.
    [85]Brown J Michael,McDowell John F,Chang Kin-tai.Method of controlling scale formation in aqueous systems[P].US 5 147555,1992.
    [86]Kesser Stephen M.Method of inhibiting corrosion in aqueous systems[P].US 5256332,1993.
    [87]Zidovec Davor F,Prabhu Preetha M.Calcium carbonate scale controlling method[P].US 5562830,1996.
    [88]Carey.Composition for controlling scale formation in aqueous systems[P].US 5866032.1999.
    [89]Hunter Matthew M,Pomrink Gregory J,Kessler Stephen M,et al.Method and composition for corrosion and deposition inhibition in aqueous systems[P].US 6126859,2000.
    [90]Fuknmoto Yasuhisa,Tangiuchi Takao.Water treating agents for prevention of metal corrosion and scale generation[P].JP 04166298,1991.
    [91]Ito Hitoshi,Tanabe Hirokazu.Agents for inhibiting calcium oxalate scale deposits on waterside of process pipings in paperpulp manufacturing plant[P].JP 266967,2000.
    [92]CaNer Charles G,Fan Lai Du-len,Fan Joseph Chwei-jer,et al.Method of inhibiting corrosion of metals using polytartafic acid[P].EP 0609590,1994.
    [93]Boyette Scott M,Norman Peter E,Smith Kelly S.Method for inhibiting filamentous bacteria bulking[P].WO 2002102719,2002.
    [94]王海宁,李建军.一种绿色阻垢缓蚀剂[P].CN 1438185,2003.
    [95]秦会敏,郦和生,成敏等.一种含聚环氧琥珀酸的复合阻垢缓蚀剂及其应用[P].CN 1616361,2003.
    [96]熊蓉春,魏刚,周庆等.一种以碳酸钙为催化剂的聚环氧琥珀酸制备方法[P].CN 1609132,2003.
    [97]熊蓉春,周庆,魏刚.一种用含聚环氧琥珀酸的缓蚀阻垢水处理方法[P].CN 1609020,2003.
    [98]魏刚,蔡世杰,熊蓉春.1:业锅炉防腐阻垢方法[P].CN 1609019,2003
    [99]赵勇军,黄小钟.一种聚环氧琥珀酸盐的合成[P].CN 1524893,2003.
    [100]王亚权,潘明.聚环氧琥珀酸及其盐的制备方法[P].CN 1470493,2004.
    [101]林强,刘红梅.一种可生物降解的绿色复合缓蚀阻垢水处理剂及其制备方法[P].CN 1660707,2005.
    [102]尤秀兰.绿色阻垢剂的研究进展[J].化学清洗,2000,16(2):36—38.
    [103]熊蓉春,董雪玲,魏刚.绿色化学与21世纪水处理剂发展战略[J].环境工程,2000,18(2):22-25.
    [104]王风云,吕忠芳,董伟等.聚环氧琥珀酸钠的合成及阻垢性能[J].应用化学,2001,18(9):74-748.
    [105]吕志芳,董伟,夏明珠等.聚环氧琥珀酸的阻垢缓蚀性能研究[J].工业水处理,2001,21(3):23-25.
    [106]徐晓东.绿色水处理剂的研究及应用进展[J].石油化工腐蚀与防护,2001,18(3):47-50.
    [107]张冰如,李风亭.聚环氧琥珀酸的多元阻垢性能[J].工业水处理,2002,22(9):21-24.
    [108]白华萍,赵志仁,雷武,夏明珠,王风云.聚环氧琥珀酸的合成及性能评定[J].工业水处理,2002,22(12):24-26.
    [109]熊蓉春,周庆,魏刚.绿色阻垢剂聚环氧琥珀酸的缓蚀协同效应[J].化工学报,2003,54(9):1323-1325.
    [110]胡兴刚,靳晓霞,孙继.“环境友好”型阻垢分散剂及在油田水处理中的应用[J].工业水处理,2003,23(11):30-34.
    [111]周晓蔚,赵鑫.聚环氧琥珀酸对铜缓蚀性能的研究[J].腐蚀科学与防护技术,2004,16(3):172—174.
    [112]孙咏红,周晓慧,马磊等.绿色阻垢剂聚环氧琥珀酸钠的合成[J].大连铁道学院学报,2004,25(1):93-95.
    [113]周晓蔚,何蓉,宿伟成.聚环氧琥珀酸多元阻垢分散性能的研究[J].工业水处理,2004,24(12):46-49.
    [114]胡晓斌,刘逸枫,朱红军.聚环氧磺羧酸的合成及其阻垢性能[J].应用化学,2005,22(1):111-113.
    [115]余育新,李建军.聚环氧琥珀酸钠阻碳酸钙垢性能研究[J].环境工程,2005,23(1):85-87.
    [116]童志勇,杜俊岐,郦和生.活性氧杀菌剂的合成及与常用阻垢缓蚀剂的相容性研究[J].工业水处理,2005,25(5):42-45.
    [117]许艳红,魏刚,熊蓉春.LCl-HNO_3消解法测定聚环氧琥珀酸螯合物中的钙含量[J].北京化工大学学报,2005,32(2):59-62.
    [118]张冰如,李风亭,李辉.绿色生物可降解水质稳定剂聚环氧琥珀酸的国内外发展状况[J].2005全国水处理技术研讨会论文集,23-31.
    [119]张冰如,李辉,李风亭等.聚环氧琥珀酸对碳钢的缓蚀协同效应的研究[J].工业水处理,2006,26(2):53-56
    [120]张建枚,金栋.改性聚环氧琥珀酸的合成及性能研究[J].工业水处理,2006,26(8):36-38.
    [121]王毅,冯辉霞,张婷.聚环氧琥珀酸复合药剂阻垢缓蚀性能的中试研究[J].现代化工,2006,26(4):56-58.
    [122]周伟生,杜启云,于瑞香等.聚环氧琥珀酸在反渗透系统中阻垢效果的评价[J].工业水处理,2006,26(10):58-60.
    [123]徐春菊,王慧龙,辛剑.绿色水处理剂聚环氧琥珀酸的研究进展[J].工业水处理,2006,26(9):1-4.
    [124]高书峰,黄勇,周涛等.绿色阻垢剂聚环氧琥珀酸(钠)的合成及工艺[J].高分子材料科学与工程,2006,22(6):67-70.
    [125]雷武,王风云,夏明珠等.绿色阻垢剂聚环氧琥珀酸的合成与阻垢机理初探[J].化工学报,2006,57(9):2207-2213.
    [126]李璐,张冰如,李风亭.聚环氧琥珀酸在高炉循环冷却水系统中的应用[J].工业用水
    ??与废水,2006,37(6):68-70.
    [127]冯辉霞,张婷,王毅等.一步法合成聚环氧琥珀酸实验研究[J].现代化工2006,26(2):331-334.
    [128]侯振宇,张秋禹,李丹等.聚环氧琥珀酸的合成及其阻垢性能研究[J].工业用水与废水,2006,37(2):73-76.
    [129]张娜,孙咏红,田妍.反渗透阻垢剂的研究进展[J].天津化工,2006,20(4):26-24.
    [130]梅平,刘汉玉,陈武等.聚环氧琥珀酸的阻垢性能研究[J].化学与生物工程,2007,24(12):9-11.
    [131]王丽梅,刘振法,姜红静.聚环氧琥珀酸的合成及其阻垢性能[J].河北省科学院学报,2007,24(3):64-67.
    [132]宋春华,魏刚,熊蓉春.聚环氧琥珀酸对纳米碳酸钙粒子的分散作用[J].北京化工大学学报,2007,34(4):405-408.
    [133]何永智,张冰如,李风亭等聚环氧琥珀酸用于高炉煤气洗涤水的阻垢分散[J].化工进展,2007,26(4):590-593.
    [134]魏刚,许亚男,熊蓉春.阻垢剂的可生物降解性研究[J].北京化工大学学报,2001,28(1):59-62.
    [135]杨莹琴,段香芝,平坤.生物降解性阻垢剂聚环氧琥珀酸的合成及其阻垢性能研究[J].信阳师范学院学报(自然科学版),2004,17(2):221-223.
    [136]杨莹琴,吕蓓红.阻垢剂聚环氧琥珀酸生物降解性能研究[J].信阳师范学院学报(自然科学版),2006,19(4):476-478.
    [137]孙咏红,田妍,周晓慧等.反渗透阻垢剂的可生物降解性研究[J].大连铁道学院学报,2006,27(3):86-88.
    [138]OECD301B,Guideline for the testing of chemicals[M].2003.
    [139]何亮.聚环氧琥珀酸的相对分子质量控制及相对分子质量与性能间的关系[D].北京化工大学,2007
    [140]宋春华.绿色阻垢剂聚环氧琥珀酸对纳米粒子的分散作用[D].北京化工大学,2007.
    [141]慈云祥,周天泽编著.分析化学中的配位化合物[M].北京:北京大学出版社,1986.
    [142]Ramunas J.Motekaitis,Arthur E.Martell.BEST-A new program for rigorous calculation of equilibrium parameters of complex multicomponent system[J].Can J Chem,1982.60:2403-2409.
    [143]Andreas Pohlmeier,Wilhelm Knoche.Kinetics of the complexation of with aminoacids,IDA and NTA[JI.Int J Chem Kin,1996(28);125.
    [144]Fenn-Barrabae C,Pohlmeier A,Knoche W,et al.Kinettics and equilibrium of the complexation of Al~(3+) with poly maleic acrylic acid[J].Colloid Polymer Sci,1998(276):627-637.
    [145]Lee Webster,Malcolm B.Huglin.Complex formation between polyelectrolytes in dilute aqueous solution[J].Polymer.1997,38(6):1373-1380.
    [146]朱志良,邓守权,倪亚明.PBTCA与铜锌镉镍离子间的配位化学研究[J].工业水处理,2002,22(1):23-25.
    [147]朱志良,梁晓明,张荣华.聚天冬氨酸离解常数的测定[J].分析化学,2005,33(12):
    ??1722-1724.
    [148]朱志良,梁晓明,张荣华等.pH电位滴定法测定溶液中钙、镁离子与聚天冬氨酸的生成稳定常数[J].应用化学,2006,23(4):366—369.
    [149]Deluchat Veronique,Serpaud Bernard,Bollinger Jeab-Claude.Protonation constants and complexation of 1-hydroxyethane-l,l diphosphonic acid(HEDP)with respect to divalent cations:study of soluble small complexes of HEDP with Pb(Ⅱ) and Cd(Ⅱ)[J].Phosphorus,Sulfur Sillicon Relat Elem,1995,104(1-4):81-92.
    [150]Deluchat Vemnique,Serpaud Bernard,Alves Efisabeth,et al.Protonation and complexation constants of phosphonic acids with cations of environmental interest[J].Phosphorus,Sulfur Sillicon Relat Elem,1995,104-110.
    [151]Deluchat Vemnique,Bollinger Jeab-Claude,Serpaud Bernard,et al.Divalent cations speciation with the three phosphonate ligands in the pH-range of natural waters[J].Talanta,1997,44(5):897-907.
    [152]傅磊,陈与德.精确计算多组分体系配合物稳定常数的程序[J].铀矿冶,1989,8(2):29-34.
    [153]梁晓明.聚天冬氨酸的合成和阻垢机理研究[D].上海:同济大学,2004.
    [154]邓守权.几种新型阻垢剂与溶液中成垢离子间的配位化学研究[D].上海:同济大学,2001.
    [155]弓晓峰,陈春丽,周文斌等.鄱阳湖底泥中重金属污染现状评价[J],环境科学,2006,27(4):733—736.
    [156]DAI Jia-yin,CHEN Ling,ZHAO Jian—fu,et.al.Characteristics of sewage sludge and distribution of heavy metal in plant with amendment of sewage sludge[J].Journal of Environmental Sciences,2006,6:1094—1100.
    [157]Silva J E,Paiva A P,Soares D,et al.Solvent extraaion applied to the recovery of heavy metals from galvanic sludge[J].Journal of Hazardous Materials B,2005,120(1-3):113-118.
    [158]朱志良,梁栋,张荣华等.污泥堆肥土地利用中重金属在几种观赏植物中富集作用的研究[J].农业环境科学学报,2006,25(3):690-693.
    [159]SI Ji—tao,YU Gui-fen,WU Hong·tao,et.al.Assessing availability,phytotoxicity and bioaccumulation of lead to ryegrass and millet based on the 0.1 moI/L Ca(NO_3)_2 extraction [J].Journal of Environmental Sciences,2006,5:958-963.
    [160]曹红英,梁涛,王立军等.近海潮间带水体及沉积物中重金属的含量及分布特征[J].环境科学,2006,27(1):126-131.
    [161]Barona A,Aranguiz I,Elias A.Metal associations in soils before and after EDTA extractive decontamination:implications for the effectiveness of further clean-up procedures[J].Environmental Pollution,2001,113:79—85.
    [162]Susan T,Rainer S,Bernd N.The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers[J].Chemosphere,2006,62:1454-1463.
    [163]Paul W.J,David R.W.Chemical speciation used to assess[S,S]-ethylenediaminedisuccinic acid(EDDS)as a readily-biode-gradable replacement for EDTA in radiochemical decontamination formulations[J].Applied Radiation and Isotopes.2001,54:587-593.
    [164]Susan T'Adrian A,Rainer S,et al.Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid(EDDS)in soil solution left after soil washing[J].Environmental Pollution,2005.1056:1-9.
    [165]曾敏,廖柏寒,曾清如等.3种萃取剂对土壤重金属的去除及其对重金属有效性的影响[J].农业环境科学学报,2006,25(4):979-982.
    [166]曾清如,廖柏寒,杨仁斌等.EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学.2003,23(6):597-601.
    [167]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究[J].农业环境科学学报,2006,25(1):113-118.
    [168]王显海,刘云国,曾光明等.EDTA溶液修复重金属污染土壤的效果及金属的形态变化特征[J],环境科学,2006,27(5):1008-1012.
    [169]Davidson C M,Thomas R P,Mcvey S E,et al.Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J].Analytica Chimica Acta,1994,291:277-286.
    [170]Thomas R P,Ure A M,Davidson C M,et al.Three—stage sequential extraction procedure for the determination of metals in fiver sediments[J].International Journal of Environmental Analytical Chemistry,1993,51(135):423-429.
    [171]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical chemistry,1979,51(7):844-851.
    [172]Ure A M,Quevauviller P H,Muntau H,et al.Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J].International Journal of Environmental Analytical Chemistry,1993,51:135.
    [173]Quevauviller P H,Rauret G,Lopez—Sfinchez J F,et sl.Certification of trace metal extractable contents in a sediment reference material(CRM601)following a three-step sequential extraction procedure[J].Sci Total Environ,1997,205:223—234.
    [174]Davidson C M,Duncan A L,Littlejohn D,et al.A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially contaminated land[J].Analytica Chimical Acta,1998,363:45—55.
    [175]Elliott H A,Brown G A.Comparative evaluating of NTA and EDTA for extractive decontamination of Pb-pollumd soils[J].Water,Air and Soil Pollution,1989,45:361—369.
    [176]Papassiopi N,Tamboufis S,Kontopoulos A.Removal of heavy metals from calcareous contaminated soils by EDTA leaching[J].Water,Air and Soil Pollution,1999,109:1—15.
    [177]Davis A P,Singh I.Washing of zinc(Ⅱ)from contaminated soil column[J].Journal of Environment Engineering,1995,121:174—185.
    [178]Karl F G,Giger W.Speciation and fate of ethylenediametetaacetate(EDTA)in municipal wastewater treatment[J].Water Research,1996,30(1):122-134.
    [179]Brown G A,Hliott H A.Influence of electrolytes on EDTA extraction of lab from polluted soil[J].Water,Air and Soil Pollution,1992,62:223—229.
    [180] Allen H E, Chert P H. Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA[J]. Environmental Progress, 1993,12:284-293.
    [181] Yu J, Klarup D. Extraction kinetics of copper, zinc, iron and manganese from contaminated sediment using disodium ethylenediaminetetraacetate[J]. Water Air and Soil Pollution, 1994,75:205-225.
    [182] Li Z B, Shuman L M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA[J]. The Science of the Total Environment, 1996,191:95-107.
    [183] Kedziorek M A, Dupuy A, Bourg A C M, et al. Leaching of Cd and Pb from a polluted soil during the percolation of EDTA laboratory column experiments modeled with a non- equillibrlum solubilization step[J]. Environ Sci Technol, 1998,32:1609-1614.
    [184] Tejowulan R S, Hendershot W H. Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques[J]. Environmental Pollution, 1998,103: 135-142.
    
    [185] Ghestem J P, Bermond A. EDTA extractability of trace metals in polluted soils: a chemical- physical study[J]. Environ Technol, 1998,19:409-416.
    [186] Zhuang J, Yu G R, Liu X Y, et al. Characteristics of lead sorption on clay minerals in relation to metal oxides[J]. Pedosphere, 2000,10(1):11-20.
    [187] Nowack B, Karl F G, Kruger H G. The remobilization of metals from iron oxides and sediments by metal-EDTA complexes[J]. Water, Air and Soil Pollution, 2001,125:243-257.
    [188] David F, Alain B, Eduarda S, el al. Heavy metal mobility assessment in sediments baaed on a kinetic approach of the EDTA extraction: search for optimal experiment conditions[J]. Analytlca Chimical Acta, 2002,459:245-256.
    [189] Fangueiro D, Bermond A, Santos E, et al. Heavy metal mobility assessment in sediments based on a kinetic approach of the EDTA extraction: search for optimal experimental conditions[J]. Anal Chim Acta, 2002,459:245-256.
    [190] Kim C, Lee Y, Ong S K. Factors affecting EDTA extraction of lead from lead-contaminated soils[J]. Chemosphere, 2003,51:845-853.
    [191] Wu L H, Luo Y M, Christie P, et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil[J]. Chemosphere, 2003,50:819-822.
    [192] Zhang M K, Ke Z X. Copper and Zinc Enrichment in Different Size Fractions of Organic Matter from Polluted Soils[J]. Pedosphere, 2004,14(1):27-36.
    [193] Li Y F, Becquer T, Quantin C, et al. Microbial activity indices: Sensitive soil quality indicators for trace metal stress[J]. Pedosphere, 2005,15(4):409-416.
    [194] Lim T T, Chui P C, Goh K H. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil[J]. Chemosphere, 2005,58: 1031-1040.
    [195] Manouchehri N, Besancon S, Bermond A. Major and trace metal extraction from soil by EDTA: equilibrium and kineticstudies[J]. Anal Chim Acta, 2006,559:105-112.
    [195]Chen Y C,Xiong Z T,Dong S Y Chemical behavior of cadmium in purple soil as affected by suffactants and EDTA[J].Pedosphere,2006,16(1):91—99.
    [196]雷鸣,廖柏寒,曾清如等.两种污染土壤中重金属Pb Cd Zn的EDTA萃取及形态变化[J].农业环境科学学报,2005,24(6):1233-1237.
    [197]雷鸣,田中干也,廖柏寒等.EDTA及其回收溶液治理重金属污染土壤的研究[J].环境工程学报,2007.1(5):88-93.
    [198]Bucheli-Wi~chel M,Egli T.Envkonmental fate and microbial degradation of aminopoly-carboxyfic acids[J].FEMS Microbiol Rev,2001,25:69-106.
    [199]Nowack B,VanBriesen J M.Chelating agents in the envkonment.In Biogeochemistry of Chelating Agent;Nowack B,VanBriesen J M,Eds.;ACS Symposium Series;American Chemical Society,Washington,DC,2005,910:1-18.
    [200]Grundler O J,vander Steen A T M,Wilmot J.Overview of the European Risk Assessment on EDTA.In Biogeochemistry of Chelating Agent;Nowack B,VanBriesen J M,Eds.;ACS Syposium Series;American Chemical Society:Washington,DC,2005,910:336-347.
    [201]Schowanek D,Feijtel T C J,Perkins C M,et al.Biodegradation of[S,S],[R,R]and mixed stereoisomers of ethylene diamine disuccinic acid(EDDS),a transition metal chelator[J].Chemosphere,1997,34:2375-2391.
    [202]Lukas H,Susan T,Rainer S,et al.Column Extraction of Heavy Metals from Soil Using the Biodegradable Chelating Agent EDDS[J].Envkon Sci Teclmol,2005,39(17):6819-6824.
    [203]Nowack Bernd,Rainer Schulin,Beath Robinson.Critical Assessment of Chelant-Enhanced Metal Phytoextraction[J].Environmental Science&Technology,2006,40(17):5225-5232.
    [204]Meets E,Ruttens A,Hopgood M J,et al.Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J].Chemosphere,2005,58:1011-1022.
    [205]Grcman H,Vodnik D,Velikonja-Bolta S,et al.Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction[J].J Environ Qual,2003,32:500-506.
    [206]Luo C,Shen Z,Li X.Enhanced phytoextraction of Cu,Pb,Zn and Cd with EDTA and EDDS[J].Chemosphere,2005,59:1-11.
    [207]Susan T,Rainer S,Bemd N.Uptake of Metals during Chelant-Assisted Phytoextraction with EDDS Related to the Solubilized Metal Concentration[J].Environ Sci Technol,2006,40:2753-2758.
    [208]Janette Davidge,Christopher P Thomas,David R Williams.Conditional formation constants or chemical speciation data?[J].Chemical Speciation and Bioavailability,2001,13(4):129-134.
    [209]Takahashi R,Fujimoto N,Suzuki M,et al.Biodegradabilities of EDDS and other chelating agents[J].Biosci Biotech Biochem,1997,61,1957-1959.
    [210]Whitburn J S,Wilkinson S D,Williams D R.Chemical speciation of ethylenediamine—N,N′-disuccinic acid(EDDS)and its metal complexes in solution[J].Chem Speciation Bioavail,1999,11(3):85-93.
    [211]Schwartzenbach R C,Scholz R W,Heitzer A,et al,Grossmann B.A regional perspective on contaminated site remediation-Fate of materials and pollutants[J].Envir Sci and Technol,1999,33:2305—2310.
    [212]Susan T,Rainer S,Bernd N.The influence of EDDS on the uptake of heavy metals in hydroponically grown snnflowers[J].Chemosphere,2006,62:1454-1463.
    [213]Polettini A Pomi R,Rolle E.The effect of operating variables on chelantoassisted remediation of contaminated dredged sediment[J].Chemosphere,2007,66:866-877.
    [214]钱猛,沈振国,魏岚.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究[J].农业环境科学学报,2006,25(1):113-118.
    [215]魏岚,陈亚华,钱猛等.可降解螯合剂EDDS诱导植物修复重金属污染土壤的潜力[J].南京农业大学学报,2006,29(2):33-38.
    [216]孙小峰,吴龙华,骆永明.EDDS对海州香薷修复重金属复合污染土壤的田间效应[J].土壤,200638(5):609-613.
    [217]宋静,钟继承,吴龙华等.EDTA与EDDS螯合诱导印度芥菜吸取修复重金属复合污染土壤研究[J].土壤,2006,38(5):619-625.
    [218]王国庆,李敏,骆永明等.红麻对Cu和Cu-EDDS的吸收和富集[J].土壤,2006,38(5):626-1531.
    [219]裘希雅,孙小峰,何旭华等.施用EDDS对海州香薷铜锌吸收的强化作用及淋溶风险[J].浙江农业学报,2006,18(2):86-89.
    [220]吴丹亚,仓龙,周东美等.EDDS应用于Cu/Zn污染土壤电动处理的基础研究[J].农业环境科学学报,2007,26(2):436-442.
    [221]陈亚华,刘亮,王桂萍等.螯合诱导植物修复中污染土壤的重金属淋滤行为[J].南京农业大学学报,2007,30(4):46-51.
    [222]丁竹红,胡忻.生物可降解有机配体EDDS等对土壤外源重金属的植物富集效应研究[J].农业环境科学学报,2007,26(2):458-461.
    [223]胡忻,罗璐瑕,陈逸.生物可降解的螯合剂EDDS提取城市污泥中Cu,Zn,Pb和Cd[J].环境科学研究,2007,20(6):110-114.
    [224]Martell A E,Smith R M,Motekaitis R J.NIST critically selected stability constants of metal complexes.Version 6.0;NIST:Gaitherburg,MD,2001.
    [225]Shrivastav R,Mathur S K,Srivastaba M M.Bricks reveal recent history of heavy metal pollution in soil around a north Indian city[J].The Science of the T0tal Environment.1998,209:41-46.
    [226]Thorjom L,Hans M L,Allies S,et al.Acid deposition and its effects in China:an overview[J].Environmental Science and Policy,1999,2:9-24.
    [227]许中坚,李方文,刘广深等.模拟酸雨对红壤中铬释放的影响研究[J].环境科学研究,2005,18(2):18—21.
    [228]Walnaa B,Siepakb J.Research on the variability of physico-chemical parameters characterising acid precipitation at the Jeziory Ecological Station in the Wielkopolski National Park_Poland[J].The Science of the tal Environment 1999 239:173-187.
    [229]Maflock M M,Howerton B S,Atwood D A.Covalent coating of coal refuse to inhibit leaching[J].Advances in Environmental Research,2003,7:495-501.
    [230]王芳,蒋新,王代长等.模拟酸雨作用下红壤中Cu2+的释放动力学[J].环境化学,2003,22(4):340-344.
    [231]Larssen T,Carmichael G R.Acid rain and acidification in China:the importance of base cation deposition[J].Environmental Pollution,2000,110:89-102.
    [232]朱志良,张华,陈玲等.模拟酸雨对污泥中重金属元素的淋洗作用研究[J].清洗世界,2006,22(1):1-4.
    [233]许中坚,刘广深.模拟酸雨对红壤重金属元素释放的影响研究[J].水土保持学报,2005,19(5):89-93.
    [234]郭朝晖,黄吕勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    [235]张宇峰,姚敏,邵春燕等.酸雨和有机配体(EDTA)对已污染红壤中稀土元素释放的研究[J].农业环境科学学报,2005,24(1):64-68.
    [236]赵卫红.福建省城市酸性降水特征及变化趋势[J].环境科学与技术,2006,29(9):41-43.
    [237]黄游,陈玲,李宇庆等.模拟酸雨对污泥堆肥中重金属形态转化及其环境行为的影响[J].生态学杂志,2006,25(11):1352-1357.
    [238]谢思琴,周德智,顾宗濂.模拟酸雨下土壤中铜、镉行为及急性毒性效应[J].环境科学,1991,12(2)24-28.
    [239]郦逸根,薛生国,吴小勇.重金属在土壤一水稻系统中的迁移转化规律研究[J].中国地质,2004,10(31):87-92.
    [240]冯茜丹,党志,王焕香等.PM_(10)中重金属的分布及其在模拟酸雨中的释放[J].环境科学,2006,27(121:2386-2391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700