用户名: 密码: 验证码:
基于DPV的蓝色和白色有机发光器件及其效率滚降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪以来,中国,日本,韩国以及一些西方国家等都在不断研究有机发光二极管(OLED),并且迅速地发展以OLED为基础的显示,照明产业和产业链。在平板显示领域,OLED因为其具有化学直流驱动、高效率、自发光、高亮度、功耗低、视角广阔、超薄、造成本低、寿命长、可大面积显示、发光彩色齐全、制耐低温、工作温度范围宽等突出优点,被称为是继液晶显示(LCD)、等离子显示器(PDP)之后的新一代平板显示产品和技术。
     随着OLED的技术不断完善与发展,尤其是白色有机发光器件,因其既可以应用于全色显示也可以应用于固态照明等,并且具有许多潜在优势,因此近些年来受到了业界的追捧。其在照明领域已经渐渐地从研发阶段进入广泛地商业化应用阶段,例如应用于柔性基板照明,大面积面光源的照明等等。
     蓝色有机发光器件不仅是红绿蓝全彩显示的主要成分,也是白光照明中不可或缺的一部分。有机发光器件引入磷光材料对提高器件的性能有着显著的效果,这是因为磷光材料可以同时收获单线态和三线态激子,使器件的内量子效率达到100%。然而由于磷光材料寿命短,价格高,再加上蓝色磷光材料色纯度低的缺点,因此结合蓝色荧光材料橘黄(或者绿,红)磷光材料可以有效地解决这一问题。我们引入蓝色荧光材料DPV,制作了不同结构的蓝光和白光器件,并对有机发光器件效率滚降问题进行了系统分析。
     首先我们介绍了有机发光电致器件效率的定义后,大致分析了一下影响效率的几个因素和提高效率的方法。主要介绍了引起效率滚降的因素:载流子传输不平衡和激子的扩散与湮灭。并细分了激子的三种湮灭方式:三线态-三线态湮灭,三线态极化湮灭,电场引起的三线态激子的解离。并对这些过程用公式进行了表述和分析。了解了器件效率滚降的主要因素后,总结了降低滚降的几个方法:控制载流子传输的平衡;对自由电子、空穴复合区域的调整,以达到形成一个稳定并且增大了的激子复合区域;控制激子的形成机制以及激子的扩散过程;引入寿命较短的有机材料。在这之后用一个具体实验更清晰地解释和分析了在合理控制激子的扩散和载流子传输并且采用适合的发光材料后,器件效率的滚降问题得到了很好的解决。
     其次,在对器件效率滚降问题进行研究后,我们制作了基于荧光材料DPV的蓝色有机电致发光器件,器件结构十分简单:ITO/HTL/2-diphenylamino-7-(2,2"-diphenylvinyl)-9,9'-spirobifluorene/ETL/LiF/Al。通过比较不同的空穴传输层和电子传输层的能级以及载流子传输特性后,实现了器件的高效率,滚降小,高亮度,色纯度高等优点。这都归因于很好的控制了器件中载流子传输的平衡,以及扩大了激子的形成区域。其中以4,4',4"-tris(3-methylphenylphenylamino)triphenylamine(NPB)和4,7-diphenyl-1,10-phenanthroline (Bphen)分别为空穴传输层和电子传输层的器件最为突出。在亮度1000cd/m2下,最大效率达到5.8cd/A,电压也只有4.6V。更为突出的是器件从最大效率时的亮度到10000cd/m2,效率的滚降只有16%。
     结合蓝色荧光材料DPV效率高,稳定性好和良好的载流子传输特性,我们希望引用红色荧光材料DCV制作全荧光白色有机电致发光器件。为了对DCV的特性进行分析,我们首先制备了基于DCV的黄光发光器件,结构为ITO/m-MTDATA(30nm)/NPB(20nm)/DCV:Alq3(40nm)/BCP(5nm)/Alq3(30nm)/LiF/A1。此器件的特点是最大效率可达4.8 cd/A,掺杂浓度的增加器件的发光光谱红移,效率下降,这些现象都与传统的红光染料相类似。
     接着我们又制备了基于DCV的红光发光器件,结构为ITO/m-MTDATA(30nm)/NPB(20nm)/DCV(xnm)/BCP(5nm)/Alq3(30 nm)/LiF/Al,DCV的厚度分别为40 nm和0.5nm,当DCV的厚度为40nm时,峰值波长为640nm,发出标准的红光;当DCV的厚度为0.5nm时,可以同时观察到DCV和NPB的发光,器件为白光发光。
     根据DCV掺杂在Alq3可以得到效率滚降小,且效率较高这一特性,结合蓝色荧光材料DPV,我们制作了四个不同结构的全荧光白色有机电致发光器件。效率最高达到7.2cd/A,更为出色的特性是器件非常稳定,色坐标变化很小。从效率最大时的亮度到10000cd/m2器件的效率滚降只有4.8%。
     最后我们希望制作基于蓝色荧光材料DPV的效率更高的荧光/磷光白色有机电致发光器件。在对黄色磷光材料(BT)2Ir(acac)进行分析后,我们利用了DPV三线态能级高,载流子迁移率不受电场影响等特性制作了荧光磷光型白色有机电致发光器件。通过合理的结构设计,器件的载流子复合区域变大,载流子传输平衡,能量损失小。从效率最大(25.1cd/A)时的亮度到10000cd/m2效率滚降到19.5cd/A。在1000cd/m2亮度下,功率效率14.11m/W,色坐标(0.41,0.41)。为了进一步增强效率,我们引入了微透镜阵列(MLA)来增强器件的光输出耦合,在1000cd/m2亮度下,效率升高到18.61m/W。
Since 21st century, China, Japan, Korea and some Western countries are all doing the research of organic light-emitting diode (OLED), with the rapid development of the OLED-based displays, lighting industry and the industrial chain. In the flat panel display, because of its chemical DC drives, high efficiency, self-luminous, high brightness, low power consumption, wide angle, ultra-thin, long life time, large area displays, LED color is complete, the system stable temperature, and other prominent advantages, OLED is expected to be the next-generation flat panel display products and technologies after the liquid crystal display (LCD), plasma display panel (PDP).
     With the development of OLED technology, especially the white organic light-emitting device, as it can not only be used in full-color display,but also can be used in solid-state lighting, so in recent years, so the research gained rapid development, gradually the application area had wider to the commercial application stage, such as flexible substrates lighting, large area of surface light illumination and so on.
     Blue OLED not only is the major constituent for red-green-blue full color displays,but also the indispensable element for the white OLED, which has practical solid-state lighting applications. OLEDs employing phosphorescent materials are most effective because phosphorescent materials can harvest both singlet and triplet excitons which lead to the potential for achieving 100% internal quantum efficiency. However, due to the common problem of short operational lifetimes and the high material cost, electrophosphorescence-based OLEDs with acceptable blue color purity are relatively rare. So the combination of blue fluorescent and orange (or green, red) phosphorescent dyes may solve these problems and provide efficient and stable WOLEDs.2-Diphenylamino-7-(2,2"-diphenylvinyl)-9,9'-spirobifluorene (DPV) is a very promising nondoped blue fluorescent material for its color purity and high quantum yield. We make blue and white organic light emitting devices based on blue fluorescence material DPV with some different structure. We also have a deep research on the problem of OLED roll-off.
     Firstly, we delimit the OLEDs efficiency, then we analysis the factors that affect the efficiency, especially introduce the reason for the efficiency roll-off:carrier transmission imbalance and exitons diffusion and non-radiative exciton quenching. The mutual triplet-triplet or triplet-plaron annihilation, a process that becomes very efficient at high triplet concentration, is a general explanation for the efficiency roll-off under high current density. The field-assisted dissociation of charge pairs is another principal cause of the efficiency drop at high electric fields. On the basis of experimental and analytical results, we propose some methods to solve the problem of efficiency roll-off. To select molecular systems with strongly bound excitons, low exciton diffusivity and a wide recombination zone in addition to short lifetime of triplet excitons are thus expected to minimize the exciton quenching effect.
     We make a non-doped blue organic light-emitting devices with a structure of ITO/hole transporting layer (HTL)/2-diphenylamino-7-(2,2"-diphenylvinyl)-9,9'-spirobifluorene/electronic transporting layer (ETL)/LiF/Al are fabricated. The performances of the devices are dependent on the charge mobility, charge injection, and energy level characteristics of HTL and ETL. The device with 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine and 4,7-diphenyl-1,10-phenanthroline as HTL and ETL shows high efficiency and brightness at low voltage (5.8 cd/A and 1000 cd/m2 at 4.6 V). Furthermore, the device shows a slight efficiency roll-off of 16% from the brightness at maximum current efficiency to 10 000 cd/m2. We attributed this to the formation of a broader carrier recombination zone and relative charge-balancing in the device.
     In order to make a outperformance white OLED based on DPV, we introduce a red fluorescent material DCV. For the purpose of acknowledge the character of DCV, we make a yellow OLED with a structure of:ITO/m-MTDATA(30nm)/ NPB(20nm)/DCV:Alq3(40nm)/BCP(5nm)/Alq3(30 nm)/LiF/Al. The maximus current efficiency is 4.8cd/A. As the concentration increasing, the spectrum shows a little red-shift and the efficiency declines.
     Moreover, we also make the red OLEDs based on DCV with the structure of ITO/m-MTDATA(30nm)/NPB(20nm)/DCV(xnm)/BCP(5nm)/Alq3(30 nm)/LiF/Al. The red emission layer with two thickness (40nm and 0.5nm). When the thickness is 40nm, the spectrum show the typical DCV ELcharacteristics with a peak at 640nm. When the thickness is 0.5nm, the spectrum shows a white light emission with two peak, which from DCV and NPB emission.
     We fabricat the white OLEDs using fluorescent donor-acceptor-substituted spirobifluorene compounds, red DCV and DPV with four different structures. The maximum current efficiency is 7.2 cd/A. Remarkably, the EL spectrum of the devices and the CIE coordinates remains almost the same when the brightness ranged from 1000 cd/m2 to 10000 cd/m2. Besides the high efficiency and the stable colour, the present device's efficiency roll-off was only 4.8% from the brightness at maximum current efficiency to 10000 cd/m2.
     Then we hope to make a high efficiency F/P WOLEDs using the ambipolar blue fluorescent emitter 2-diphenylamino-7-(2,2"-diphenylvinyl)-9,9'-spirobifluorene (DPV) and the phosperescent material (BT)2Ir(acac). Particularly, DPV has a relatively electric-field independent hole and electron mobilities. The effects of the triplet energies and charge transporting properties of the blue materials on the performance of the white device are discussed. By using such a blue emitter in the device, a broader charge recombination zone is formed and the energy loss is reduced. WOLEDs with a maximum current efficiency of 25.1 cd/A which shift to 19.5 cd/A at 10000 cd/m2 have been achieved. The power efficiency of the device can reach 14.1 lm/W at 1000 cd/m2. By attaching a microlens array on the backside of the substrate, the outcoupling of electroluminescence in the forward direction is enhanced, resulting in elevated power efficiency 18.6 lm/W at 1000 cd/m2.
引文
[1]M.Pope, H.Kallmann, P.J.Magnante, Electroluminescence in organic crystals[J], J. Chem. Phys.,1963,38:042.
    [2]W. Helfrich, W. G. Schneider, Recombination radiation in anthracene crystals[J], Phys. Rev. Lett.1965,14:229.
    [3]F. Lohmann, W. Mehl, Dark injection and radiative recombination of electrons and holes in naphthalene crystals[J], J. Chem. Phys.1969,50:500.
    [4]D. M. Williams, M. Schadt, A simple electroluminescence diode[J], Proc. IEEE, 1970,58:476.
    [5]P. S. Vincett, W. A. Barlow, R. A. Hann, G. B. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J], Thin Solid Film 1982,94:171.
    [6]P. S. Vincett, W. A. Barlow, R. A. Hann, G. B. Roberts, Electrical conduction and low voltage blue electroluminescene in vacuum-deposited organic films[J], Thin Solid Films 1982,94:171.
    [7]C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes[J], Appl. Phys. Lett 1987,51:913.
    [8]R. H. Partridge, Polymer,1983,24:733.
    [9]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.Friend, P. L. Burnsan, A. B. Holmes, Light-emitting diodes based on conjugated polymers[J], Nature,1990,347:539.
    [10]D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes[J], Appl. phys. Lett.1991,58:1982.
    [11]M.A. Baldo, S. Lemansky, P.E. Burrows, M.E. Thompson,S.R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl.Phys. Lett.1999,75:4.
    [12]P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J]. J. Appl. Phys.1996,79:7991.
    [13]A. M. Ramos, M. T. Rispens, J. K. J. van Duren, et al., Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendent fullerenes[J], J. Am. Chem. Soc.,2001,123:6714.
    [14]李善君,纪才圭,高分子光化学原理及应用[M],复旦大学出版社,1993,1.
    [15]D.O.科恩,R.L.德里斯科著,丁树明,史永基译,有机光化学原理[M],科学出版社,1989,1.
    [16]E. Aminaka, T. Tsutsui, S. Saito, Electroluminecent behaviors in multi-layer thin-film electroluminescent devices using 9,10-bissty rylanthracene deriratives[J]. Jpn.J.Appl.Phys.,1994,33:1061.
    [17]S. R. Forrest, P. E. Burrows, M. E. Thompson,Laser Focus World[J], February, 1995,31:99.
    [18]I. D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J. Appl. Phys.1994,75:1656.
    [19]P. E. Burrows, S. R. Forrest, Electroluminescenct from trap-limited current transport in vacuum deposited organic light emitting devices[J]. Appl. Phys. Lett., 1994,64:2285.
    [20]S. Karg, M. Meier, W. Riess, Light-emitting diodes based on poly-p-phenylene-vinylene:I.Charge-carrier injection and transport[J]. J. Appl. Phys.,1997,82:1951.
    [21]P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J]. J. Appl. Phys.,1996,79:7991.
    [22]M. Strukelj, T. M. Miller, F. Papadimitrakopoulos, S. Son, Effects of polymeric transporters and the structure of poly(p-phenylenevinylene) on the performance of light-emitting diodes [J]. J. Am. Chem. Soc.1995,117:11976.
    [23]J. R. Sheats, H. Antoniadis, M. Hueschen, organic electroluminescence devices[J]. science,1996,273:884.
    [24]Y. Ohmori, A. Fujii, M. Yoshida, K. Yoshino, Novel characteristics of electroluminescent diode with organic multiple-quantum-well structure[J]. Jpn. J. Appl. Phys.1995,34:3790.
    [25]A.Fujii, M.Yoshida, Y.Ohmori, K.Yoshino, Polarization anisotropy of organic electroluminescent diode with periodic multilayer structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine[J]. Jpn. J. Appl. Phys.1995, 34:L621.
    [26]Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode[J]. Appl. Phys. Lett.,1993,62:3250.
    [27]Jingsong Huang, Kaixia Yang, Zhiyuan Xie, Baijun Chen, Hongjin Jiang, and Shiyong Liu, Effect of well number on organic multiple-quantum-well electroluminescent device characteristics[J]. Appl. Phys. Lett.1998,73:3348.
    [28]A. Dodabalapur, L. J. Rothberg, T. M. Miller, Color variation with electroluminescent organic semiconductors in multimode resonant cavities[J]. Appl. Phys. Lett.1994,65:2308.
    [29]A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, Microcavity effects in organic semiconductors[J]. Appl. Phys. Lett. (1994) 64,2486.
    [30]G. Parthasarathy, G.Gu, S. R. Forrest, A Full-Color Transparent Metal-Free Stacked Organic Light Emitting Device with Simplified Pixel Biasing[J]. Adv. Mater.,1999,11:907.
    [31]G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Transparent organic light emitting devices[J]. Appl.Phys.Lett.1996,69: 2959-2961.
    [32]P. E. Burrows, S. R. Forrest, S. P. Sibley, and M. E. Thompson, Color-tunable organic light-emitting devices[J]. Appl. Phys. Lett.,1996,69:2959-2961.
    [33]P. E. Burrows, V. Khalfin, G. Gu, S. R. Forrest, Control of Microcavity Effects in Full Color Stacked Organic Light Emitting Devices[J]. Appl. Phys. Lett.1998, 73:435-437.
    [34]G. Gu, G. Parthasarathy, P. Tian, P. E. Burrows, and S. R. Forrest, Transparent Stacked Organic Light Emitting Devices. Ⅰ. Design principles and transparent compound electrodes[J]. J. Appl. Phys.1999,86:4067-4075.
    [35]G. Gu, G. Parthasarathy, P. Tian, P. E. Burrows, and S. R. Forrest, Transparent Stacked Organic Light Emitting Devices. Ⅱ. Device Performance and Applications to Displays[J]. J. Appl. Phys.1999,86:4076-4084.
    [36]L. S. Liao, K. P. Klubek, C. W. Tang, High-efficiency tandem organic light-emitting diodes[J]. Appl. Phys. Lett.2004,184:167-169.
    [37]J. Kido, T. Matsunmoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi[C]. SID03 Digest 2003,34:964.
    [38]C. Adachi, T. Tsutsui, S. Saito, Blue light-emitting organic electroluminescent devices[J]. Appl. Phys. Lett.,1990,56:799.
    [39]B. Hu, N. Zhang, F. E. Karasz, Bright red electroluminescence from a dye/copolymer blend. J. Appl. Phys.,1998,83:6002.
    [40]Y. Shirota, Y. Kuwabara, H. Inada, Multilayered organic electroluminescent device using a novel starburst molecule,4,4' 4'-tris(3-methylphenylphenylamino)triphenylamine,as a hole transport material[J]. Appl. Phys. Lett.,1994,65:807.
    [41]I. N. Kang, H. K. Shim, Yellow-light-emitting fluorine-substituted PPV derivative[J]. Chem.Mater.,1997,9:746.
    [42]T. Noda, H. Ogawa, N. Noma, Y. Shirota, A novel yellow-emitting material, 5,5"-bis{4-[bis(4-methylphenyl)amino] phenyl}-2,2':5', 2''-terthiophene, for organic electroluminescent devices[J]. Appl.Phys.Lett.,1997,70:699.
    [43]H. Tang, F. Li, J. Shinar, Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes[J]. Appl. Phys. Lett.,1997,71:2560.
    [44]V G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, M. E. Thompson,Optically pumped blue organic semiconductor lasers Appl. Phys. Lett. [J].1998,72:144.
    [45]E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, M. E. Thompson, Metal ion ependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices[J]. Appl. Phys. Lett.1994,64:2718.
    [46]T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A. Schmidt, B. kippelen, A.B. Padias, H. K. Hall, Jr., N. Peyghambarian, and N. R. Armstrong, Chem.Mater.,1996,8:344.
    [47]Y Hamada, T. Sano, M. Fujita, T. Fujii, Y Nishio, K. Shibata, Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter[J]. Jpn. J. Appl. Phys. (1993) 32, L514.
    [48]Y Hamada, T. Sano, K. Shibata, K. Kuroki, Influence of the emission site on the running durability of organic electroluminescent devices[J]. Jpn. J. Appl. Phys., 1995,34:L824.
    [49]T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki, K. Shibata, Design of conjugated molecular materials for optoelectronics[J]. J. Mater. Chem.2000,10: 157.
    [50]Y. Liu, J. Guo, J. Feng, H. Zhang, Y. Li, Y. Wang, High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex[J]. Appl. Phys. Lett.2001,78:2300.
    [51]S. Anderson, M. S. Weaver, A. J. Hudson, Materials for organic electroluminescence:aluminium vs. boron[J], Synth. Met.,2000,111:459.
    [52]C. Schmitz, H.-W. Schmidt, M. Thelakkat, Lithium-Quinolate Complexes as Emitter and Interface Materials in Organic Light-Emitting Diodes[J], Chem. Mater.,2000,12:3012.
    [53]S. Tokito, K. Noda, H. Tanaka, Y. Taga, T. Tsutsui, Organic light-emitting diodes using novel metal-chelate complexes[J], Synth. Met.2000,111:393.
    [54]J. Kido, K. Nagai, Y. Ohashi, Electroluminescence in a terbium complex[J]. Chem. Lett,1990,4:657.
    [55]J. Kido, K. Nagai, Y. Okamoto, T. Skotheim, Electroluminescence from polysilane film doped with europium complex[J]. Chem.Lett.,1991,7:1267.
    [56]J. Kido, K. Nagai, Y. Okamoto, organic electroluminescent devices using lanthanide complex[J]. J. Alloy Compd.,1993,192:30.
    [57]J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter[J]. Appl. Phys. Lett,1994,65:2124.
    [58]X. C. Gao, H. Cao, C. Huang, B. Li, S. Umitani, Electroluminescence of a novel terbium complex[J]. Appl.Phys.Lett,1998,72:2217.
    [59]W. Li, C. Liang, Z. Hong, X. Liu, J. Peng, L. Liu, Z. Liu, J. Yu, D. Zhao, S. Lee, Redistribution of carriers in OEL devices by inserting a thin charge-carrier blocking layer[J]. Synth. Met.,1997,91:275.
    [60]Dyreklev P, Berggren M, Inganas O, Andersson M R, Wennerstrom O, Hjertberg T. Polarized electroluminescence from an originated substituted polythiophene in alight-emitting diode[J]. Adv. Mater.,1995,7:43-45.
    [61]Halls J J M, Baigent D R, Cacialli F, Greenham N C, Friend R H, Moratti S C, Holmes A B. Light-emitting and photoconductive diodes fabricated with conjugated polymers[J], Thin Solid Films.,1996,276:13.
    [62]Kanbara. T, Inoue. T, Sugiyama. K, Yamamoto. T, Preparation of poly (quinoxaline-5,8-diyl) derivatives by using zero-valent nickel complexes:Electrical and optical properties and light-emitting diodes[J]. Synth. Met.,1995,71:2207.
    [63]Fukuda T, Kanbara T, Yamamoto T, Ishikawa K, Takezoe H, Fukuda A.Polyquinoxaline as an electron injecting material for electroluminescent device[J]. Synth. Met.,1997,85:1195.
    [64]Fukuda T, Kanbara T, Yamamoto T, Ishikawa K, Takezoe H, Fukuda A.Polyquinoxaline as an excellent electron injecting material for electroluminescent device[J]. Appl. Phys. Lett.,1996,68:2346.
    [65]Pei Q B, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene[J]. J. Am. Chem. Soc.,1996,118:7416.
    [66]Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Electroluminescence in conjugated polymers[J]. Nature.,1999,397:121.
    [67]Grice A W, Bradley D D C, Bernius M T, Inbasekaran M, Wu w w, Woo E P. High brightness and efficiency blue light-emitting polymer diodes. Appl. Phys. Lett[J].1998,73:5:629.
    [68]M. Stolka, J. F. Yanus, D. M. Pai, Hole transport in solid-solutions of a diamine in polycarbonate[J]. J. Phys. Chem.,1984,88:4707.
    [69]S. A. Vanslyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability[J]. Appl. Phys. Lett,1996,69:2160.
    [70]H. Hamada, C. Adachi, T. Tsutsui, S. Saito, Blue-light-emitting organic electroluminescent device with oxadiazole dimmer dyes as an emitter[J]. Jpn. J. Appl. Phys.,1992,31:1812.
    [71]C. H. Chen, J. Shi and C. W. Tang, Recent developments in molecular organic electroluminescent materials[J]. Macromol. Symp.,1997,125:1.
    [72]T. Noda, Ogawa H, Shirota Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material,5,5'-bis(dimesitylboryl)-2,2'-bithiophene[J]. Adv. Mater.,1999,11:283.
    [73]T. Noda, Shirota Y.5,5'-bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-bis(dimesitylboryl)-2,2',5',2"-terthiophene as a novel family of electron transporting amorphous molecular materials[J]. J. Am. Chem. Soc,1998,120: 9714.
    [74]M.Uchida, Izumizawa T, Nakano T, Yamaguchi S, Tamao K, Furukawa K. Structural optimization of 2,5-diarylsiloles as excellent electron-transporting materials for organic electroluminescent devices[J]. Chem. Mater.,2001,13:2680.
    [75]S.Yamaguchi, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K. Toward new materials for organic electroluminescent devices:synthesis, structures, and properties of a series of 2,5-diaryl-3,4-diphenylsiloles[J]. Chem. Eur. J.,2000,6: 1683
    [76]S. B.Heidenhain, Y. Sakamoto, Suzuki T, Miura A, Fujikawa H, Mori T, Tokito S, Taga Y. Perfluorinated oligo(p-phenylene)s:Efficient n-type semiconductors for organic light-emitting diodes[J]. J. Am. Chem. Soc,2000,122:10240.
    [77]S. Komatsu, Y. Sakamoto, Suzuki T, Tokito S. Perfluoro-1,3,5-tris(p-oligophenyl) benzenes:amorphous electron-transport materials with high-glass-transition temperature and high electron mobility[J]. J. Solid State Chem.,2002, 168:470.
    [78]W. Yu, J. Pei, Y. Cao, W. Huang, Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes[J]. J. Appl. Phys., 2001,89:2343.
    [79]L. S. Hung, C. W. Tang, M.G. Mason. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl. Phys. Lett., 1997,70:152.
    [80]J. Kido, T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer[J]. Appl. Phys. Lett.,1998,73:2866.
    [81]T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, F. Cacialli LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes[J]. Appl. Phys. Lett.,2000,77:3096.
    [82]G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices[J]. Appl. Phys. Lett.,1998,73:1185.
    [83]H. Tang, F. Li, J. Shinar, Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes[J]. Appl. Phys. Lett.,1997,71:2560.
    [84]G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson[J]. Opt. Lett.,1997,22:396.
    [85]黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社[M],2001。
    [86]日经BP社http://www.olight.com.cn/Article_Show.asp.ArticleID=2949.
    [87]汤顺青,“色度学”[M],北京理工大学出版社,1990:152
    [88]李亨,“颜色技术原理及其应用”[M],1994了,科学出版社,53.
    [89]Aziz, Z. Popovic, S. Xie, A. Hor, N. Hu, C. Tripp, G. Xu, Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices[J], Appl. Phys. Lett.,1998,72:756.
    [90]M. Yan, L. Rothberg, M. E. Galvin, T. M. Miller, Defect quenching of conjugated polymer luminescence[J], Phys. Rev. Lett.,1994,73:744.
    [91]Y. Hamada, T. Sano, K. Kuroki, Influence of the emission site on the running durability of organic electroluminescent devices[J], Jpn. J. Appl. Phys.,1995,34: L824.
    [92]M. Fujihira, L.M. Do, A. Koike, D. M. Han, Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices[J], Appl. Phys. Lett.,1996,68:1787.
    [93]M. Do, E. M. Han, Observation of degradation processes of Al microscopy, atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy[J], J. Appl. Phys.,1994,76:5118.
    [94]Y. Hirose, A. Kahn, Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact:In/perylenetetracarbosylic dianhydride[J], Appl. Phys. Lett.,1996,68:217.
    [95]I. D. Parker, Y. Cao, C. Y. Yang, Lifetime and degradation effects in polymer light-emitting diodes[J], J. Appl. Phys.,1999,85:2441.
    [96]S. M. Sze, Physics of semiconductor devices[J], Wiley, New York,1981.
    [97]C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys., 2001,90:5048.
    [98]H. Lai, P. Ng, M. C. Y. Chan, W. Chan, E. H. Li, CLEO/Pacific Rim'99/WL6[C], 1999, IEEE.
    [99]T. Yakashi, K. Sumioka, T. Tsutsui, Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium[J], Appl. Phys. Lett.,2000,76:1243.
    [100]C. F. Madigan, M. H. Lu, J. C. Sturm, Improvement of output coupling efficiency oforganic light-emitting diodes by backside substrate modification[J], Appl. Phys. Lett.,2000,76:1650.
    [101]Novel Concepts for High-Eciency White Organic Light-Emitting Diodes, Dissertation by Gregor Schwartz[C], Dresden,2007.
    [102]S.J.Su, E.Gonmori, H.Sasabe and J. Kido, Influence of interlayer on the performance of stacked white organic light-emitting devices[J], Adv. Mater.,2008,20: 4189.
    [103]F. So, J. Kido and P. Burrows, A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer[J], MRSBull.,2008,33:663.
    [104]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley M. E. Thompson and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices [J], Nature,1998,395:151.
    [105]G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer and K. Leo, Triplet Harvesting in Hybrid White Organic Light-Emitting Diodes[J], Adv. Funct. Mater., 2009,19:1319.
    [106]M. A. Baldo, D. F. O'Brien, M. E. Thompson and S. R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film[J], Phys. Rev. B.,1999,60: 14422.
    [107]M. A. Baldo, C. Adachi and S. R. Forrest, Phys. Rev. B., Transient analysis of triplet-triplet annihilation[J],2000,62:10967.
    [108]S. Reineke, K. Walzer and K. Leo, Phys. Rev. B., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J],2007,75: 125328.
    [109]J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori and P. DiMarco, Phys. Rev. B., Quenching effects in organic electrophosphorescence[J], 2002,66:235321.
    [110]J. Kalinowski, J. Mezyk, F. Meinardi, R. Tubino, M. Cocchiand, D. Virgili, J. Appl. Phys., Phosphorescence response to excitonic interactions in Ir organic complex-based electrophosphorescent emitters[J],2005,98:063532.
    [111]R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich and M. E. Thompson, Reduced geminate recombination in iridium based electrophosphorescent materials[J], Org. Electron.,2006,7:163.
    [112]J. Kalinowski, W. Stampor, J. Szmytkowski, D. Virgili, M. Cocchi, V. Fattori and C. Sabatini, Coexistence of dissociation and annihilation of excitons on charge carriers in organic phosphorescent emitters[J], Phys. Rev. B.,2006,74:085316.
    [113]N. C. Giebink and S. R. Forrest, Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes[J], Phys. Rev. B., 2008,77:235215.
    [114]U. S. Bhansali, H. Jia, M. A. QuevedoLopez, B. E. Gnade, W. H. Chen and M. A. Omary, High-efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in a phosphine oxide host. Appl. Phys. Lett.,2009,94: 203501.
    [115]G. Schwartz, S. Reineke, K.Walzer and K. Leo, Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes[J], Appl.Phys.Lett.,2008, 92,053311.
    [116]T. Tsuboi, J. Lumin., Electronic states of phosphorescent molecules Ir(ppy)3 and PtOEP used in organic light emitting diodes[J],2006,288:119-120.
    [117]T. Forster, Ann. Phys.,2,551948.19
    [118]J. Simon and J.J.Andre, Molecular semiconductors and junction formation: Phthalocyanine derivatives[C], Molecular Semiconductors Springer Verlag, Berlin, 1985.
    [119]D. L. Dexter, Theory of Sensitized Luminescence in Solids[J], J. Chem. Phys., 1953,21:836.
    [120]V. Ern, H. Bouchriha, J. Fourny, and G. Delacote, Triplet exciton — trapped hole interaction in anthracene crystals[J], Solid State Commun.1971,9:1201.
    [121]M.S. Weaver, V. Adamovich, M. Hack, P. Kwong, J.J. Beown, in Proc. Int. Conf. Electroluminescence of Molecular Materials and Related Phenomena[C], Jein Island, Korea,2003, O-35.
    [122]J.W. Chung, H. R. Guo, C.T. Wu, K.C. Wang, W.J. Hsieh, T.M. Wu, C.T. Chung,in Proc. Int. Display Manufacturing Conf.[C], Taipei, Taiwan,2005,278.
    [123]H. Becker, H. Vestweber, A. Gerhard, P. Stoessel, R. Fortte, in Proc. Int. Display Manufacturing Conf.[C], Taipei, Taiwan,2005,329.
    [124]H. Becker, H. Vestweber, A. Gerhard, P. Stoessel, R. Fortte, in Proc. Soc. Information Display[C],Seattle, WA,2004,796.
    [125]K. Okinaka, A. Saitoh, T. Kawai, A. Senoo, K. Ueno, in Proc. Soc. Information Display[C], Seattle, WA,2004,686.
    [126]M. Heck, J.J. Brown, OLED excitement[J], Inf. Display,2004,20:12.
    [127]S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen, New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices[J], Adv. Mater.,2005,17:285.
    [128]S. A. VanSlyke, US Patent,1992,5151629.
    [129]B. X. Mi, Z. Q. Gao, C. S. Lee, H. L. Kwong, N. B. Wong, Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device[J], Appl. Phys. Lett.,1999,75: 4055.
    [130]J. M. Shi, C. W. Tang, C. H. Chen, US Patent.1999,5935721.
    [131]Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon, Novel Blue Emitting Material with High Color Purity[J], Adv. Mater.,2001,13: 1690.
    [132]C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, Y. Y. Chien, Unusual Nondispersive Ambipolar Carrier Transport and High Electron Mobility in Amorphous Ter(9,9-diarylfluorene)s[J], J. Am. Chem. Soc., 2003,125:3710.
    [133]K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P.Y. Hsieh, C. C.Wu, C.H. Chou, Y.O. Su, G.H. Lee, S. M. Peng[J], J. Am. Chem. Soc., 2002,124:11576.
    [134]C.C. Wu, Y.T. Lin, K.T. Wong, R.T. Chen, Y.Y. Chien, Efficient Organic Blue-Light-Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties[J], Adv. Mater.,2004,16:61.
    [135]C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, C. W. Chen, K. T. Wong, Y. L Liao, G. H.Lee, S.M. Peng, Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds[J], Appl. Phys. Lett.,2002,81:577.
    [136]C. Hosokawa, H. Tokailin, H. Higashi, T. Kusumoto, Efficient electroluminescence of distyrylarylene with hole transporting ability[J], J. Appl. Phys. Lett,1995,78:5831.
    [137]Y. T. Tao, E. Balasubramaniam, A. Danel, P. Tomasik, Dipyrazolopyridine derivatives as bright blue electroluminescent materials[J], Appl. Phys. Lett.,2000,77: 933.
    [138]L. H. Chan, H. C. Yeh, C. T. Chen, Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds[J], Adv. Mater.,2001,13: 1637.
    [139]L. H. Chan, R. H. Lee, C. F. Hsieh, H. C. Yeh, C. T. Chen, Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials[J], J. Am. Chem. Soc.,2002,124:6469.
    [140]A.J. Makinen, I. G. Hill, T. Noda, Y. Shirota, Z.H. Kafafi, Photoemission study of frontier orbital alignment at a metal-organic interface as a function of conjugation length of oligothiophene derivatives[J], Appl. Phys. Lett.,2001,78:670.
    [141]Y. Liu, J. Guo, J. Feng, H. Zhang, Y. Li, Y. Wang, High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex[J], Appl.Phys. Lett.,2001,78:2300.
    [142]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovic, M. A. Baldo, M. E. Thompson, S.R. Forrest, Endothermic energy transfer:A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J], Appl. Phys. Lett.,2001,79:2082.
    [143]R. J. Holmes, B. W. D'Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, Efficient, deep-blue organic electrophosphorescence by guest charge trapping[J], Appl. Phys.Lett.2003,83:3818.
    [144]V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, M. E.Thompson, C. Adachi, B. W. D'Andrade, S. R. Forrest, High efficiency single dopant white electrophosphorescent light emitting diodes[J], New J. Chem.,2002,26: 1171.
    [145]S. W. Liu, C.A. Huang, J.H. Lee, K.H. Yang, C.C. Chen, Y. Chang, Recombination zone in mixed-host organic light-emitting devices[J], Thin Solid Films, 2004,453:312.
    [146]C.H. Liao, M. T. Lee, C. H. Tsai, C.H. Chen, Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer[J], Appl. Phys. Lett.,2006,86:203507.
    [147]Chiang, C. L., Tseng, S. M., Chen, C. T., Hsu, C. P., Shu, C. F., Influence of Molecular Dipoles on the Photoluminescence and Electroluminescence of Dipolar Spirobifluorenes[J]. Adv. Funct. Mater.,2008,18:248.
    [148]Chi, C. C., Chiang, C. L., Liu, S. W., Yueh, H., Chen, C. T., Chen,C. T. Achieving high-efficiency non-doped blue organic light-emitting diodes: charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility[J]. J. Mater. Chem.,2009,19:5561.
    [149]Staudigel J., Stossel M., Steuber F., Simmerer J., Comparison of mobility and hole current activation energy in the space charge trap-limited regime in a starburst amine[J]. Appl. Phys.Lett.,1999,75:217.
    [150]Tse, S. C., Kwok, K. C., So, S. K., Electron transport in aphthylamine-based organic compounds[J]. Appl. Phys. Lett.,2006,89:262102.
    [151]Naka, S., Okada, H., Onnagawa, H., Tsutsui, T., High electron mobility in bathophenanthroline[J]. Appl. Phys. Lett.,2000,76:197
    [152]Xie, Z. Y., Wong, T. C., Hung, L. S., Lee, S. T., Transient electroluminescence of organic quantum-well light-emitting diodes[J]. Appl. Phys. Lett.,2002,80:1477.
    [153]Wu, F. I., Shu, C. F., Wang, T. T., Diau, E. W. G., Chien, C. H., Chuen, C. H., Tao, Y. T., Bis(2,2-diphenylvinyl)spirobifluorene:An efficient and stable blue emitter for electroluminescence applications[J]. Synth. Met.,2005,151:285.
    [154]Tao, S. L., Xu, S. D., Zhang, X. H., Efficient blue organic light-emitting devices based on novel anthracence derivatives with pronounced thermal stability and excellent film-forming property[J]. Chem. Phys. Lett.,2006,429:622.
    [155]Tao, S. L., Lee, C. S., Lee, S. T., Zhang, X. H., Efficient blue and white organic light-emitting devices based on a single bipolar emitter[J]. Appl. Phys. Lett.,2007,91: 013507.
    [156]Tao, S. L., Zhou, Y. C., Lee, C. S., Lee, S. T., Huang, D., Zhang, X. H., Highly Efficient Nondoped Blue Organic Light-Emitting Diodes Based on Anthracene-Triphenylamine Derivatives[J]. J. Phys. Chem. C.,2008,112:14603.
    [157]Tong, Q. X., Lai, S. L., Chan, M. Y., Zhou, Y. C., Kwong, H. L., Lee, C. S., Lee, S. T., Lee, T. W., Noh, T. Y., Kwon, O. Y., A High Performance Nondoped Blue Organic Light-Emitting Device BasedonaDiphenylfluoranthene-Substituted Fluorene Derivative[J]. J. Phys. Chem.C.,2009,113:6227.
    [158]Wu, K. C., Ku, P. J., Lin, C. S., Shih, H. T., Wu, F. I., Huang,M. J., Lin, J. J., Chen, I. C., Cheng, C. H., The Photophysical Properties of Dipyrenylbenzenes and Their Application as Exceedingly Efficient Blue Emitters for Electroluminescent Devices[J]. Adv. Funct. Mater.,2008:18,67.
    [159]J. Kido, K. Hongawa, K. Okuyama, K. Nagai[J]. Appl. Phys. Lett.,1994,64: 815.
    [160]汤顺青,色度学[M],北京理工大学出版社,1990,1.
    [161]荆其诚,焦书兰,喻柏林,胡维生,色度学[M],科学出版社,1979,1。
    [162]谭力,刘玉玲,余飞鸿,光源显色指数的计算方法研究[J],光学仪器,2004,26:41。
    [163]刘义成,光源的显色性与显色指数[J],电子器件.,2000,23:43。
    [164]熊利民,霍超,陈为群,光源颜色特性的测量及计算方法[J],计量技术.2005, 4:23。
    [165]J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent devices[J]. Science.,1995,267:1332.
    [166]Sun Y, Forrest S R, High-efficiency white organic light emitting devices with three separate phosphorescent emission layers[J]. Appl. Phys. Lett.,2007,91:263503.
    [167]J. Kido, H. Shionoya, K. Nagai, Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)[J]. Appl. Phys. Lett,1995,67:2281.
    [168]M. Mazzeo, D. Pisignano, F. D. Salla, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu, G. Barbarella, Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules[J]. Appl. Phys. Lett. (2003) 82,334.
    [169]W. Xie, S. Liu, Y. Zhao, A nondoped-type small molecule white organic light-emitting device[J]. J. Phys. D:Appl. Phys. (2003) 36,1246.
    [170]Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, K. Shibata,White-light-emitting material for organic electroluminescent devices[J]. Jpn. J. Appl.Phys. (1996) 35 L1339.
    [171]Tsai M L, Liu C Y, Hsu M A and Chaw T J,White light emission from single component polymers fabricated by spin coating[J]. Appl. Phys.Lett. (2003) 82550
    [172]Bai S J, Wu C C, Dang T D, Arnold F E and Sakaran B Tunable and white light-emitting diodes of monolayer fluorinated benzoxazole graft copolymers[J]. Appl. Phys. Lett. (2004) 84 1656
    [173]A. Dodabalapur, L. Rothberg, T. Miller, Color variation with electroluminescent organic semiconductors in multimode resonant cavities[J]. Appl. Phys. Lett. (1994)65,2308.
    [174]Shiga T, Fujikawa H and Taga Y, Design of multiwavelength resonant cavities for white organic light-emitting diodes[J]. J. Appl. Phys. (2003) 93 19
    [175]Duggal A R, Shiang J J, Heller C M and Foust D F, Organic light-emitting devices for illumination quality white light[J]. Appl.Phys. Lett. (2002) 80 3470
    [176]Benjamin C. Krummacher,Vi-En Choong, Mathew K. Mathai, Stelios A. Choulis,Franky So, Frank Jermann, Tim Fiedler, and M. Zachau, Highly efficient white organic light-emitting diode[J]. Appl. Phys. Lett (2006) 88,113506.
    [177]J.X. Sun, X.L. Zhu, H.J. Peng, M. Wong, H.S. Kwok, Bright and efficient white stacked organic light-emitting diodes[J]. Organic Electronics (2007) 8305.
    [178]F. Guo and D. Ma, White organic light-emitting diodes based on tandem structures[J]. Appl. Phys. Lett. (2005) 87,173510.
    [179]Jinsong Huang, Wei-Jen Hou, Juo-Hao Li, Gang Li, and Yang Yang, Improving the power efficiency of white light-emitting diode by doping electron transport material[J]. Appl. Phys. Lett. (2006) 89,133509.
    [180]Jwo-Huei Jou, Ming-Hsuan Wu, Chung-Pei Wang, Yung-Sheng Chiu, Po-Hsuan Chiang, Huei-Ching Hu, Ren-Yang Wang, Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed di(triphenyl-amine)-1,4-divinyl-naphthalene[J]. Organic Electronics (2007) 8,735.
    [181]Kim, S. H.; Jang, J.; Lee, J. Y., High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer[J]. Appl. Phys. Lett.2007,90,223505.
    [182]Neetu Chopra, James S. Swensen, Evgueni Polikarpov, Lelia Cosimbescu,Franky So, and Asanga B. Padmaperuma, High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture[J], Appl. Phys. Lett. (2010) 97,033304.
    [183]Gufeng He, Martin Pfeiffer, Karl Leo, Michael Hofmann, Jan Birnstock, Robert Pudzich and Josef Salbeck, High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers, Appl. Phys. Lett. (2004) 85,17.
    [184]Qi Wang, Cheuk-Lam Ho, Yongbiao Zhao, Dongge Ma, Wai-Yeung Wong, Lixiang Wang, Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs:The influence of triplet transfer and charge-transport behavior on enhancing device performance[J], Organic Electronics (2010) 11,238-246.
    [185]Xiao Li, Dongyu Zhang, Haijun Chi, Guoyong Xiao, Yan Dong, Shuanghong Wu, Zisheng Su, Zhiqiang Zhang, Peng Lei, Zhizhi Hu,and Wenlian Li, Reduced efficiency roll-off in electrophosphorescent devices by a short-living rhenium emitter with well-matched energy levels[J], Appl. Phys. Lett., (2010) 97,263303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700