用户名: 密码: 验证码:
基于E_(v2)的港区陆域高填方工后沉降预测方法研究及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西南地区内河港口工程的建设中,经常会遇到大面积陆域高填方工程,高填方的不均匀工后沉降将直接影响到陆域工程的稳定性,并对结构物的安全及正常运营构成威胁。因此如何有效地预测陆域高填方的工后沉降并准确评价其稳定性是当前港区陆域高填方工程中亟待解决的关键技术问题之一。目前在德国等其他欧洲国家已经广泛应用二次变形模量Ev2作为控制工后沉降的检测指标,我国仅仅初步应用于铁路地基上,在公路、港区陆域填方、库岸等工程的设计规范中还没有相关规定,为此本文提出基于Ev2的港区陆域高填方工后沉降预测方法研究及稳定性评价。为了达到对陆域高填方工后沉降的有效预测和准确评价其稳定性,本文采用试验研究、理论分析和数值模拟等手段,在对二次变形模量Ev2进行深入系统的理论和试验研究的基础上,提出了基于指标Ev2的港区陆域高填方地基工后沉降的预测方法,进而对陆域高填方的稳定性进行评价。本文所做的研究工作和得出的主要成果如下:
     (1)依据Ev2的现场测试技术原理,采用击实筒制作室内测试试件研究有侧限条件下的Ev2室内测试方法,并通过对试验装置的有限元数值模拟分析验证室内试验方法的可行性。研究结果表明,室内测试试验与有限元分析结果具有良好的一致性,且室内试验装置的边界限制对测试结果可以忽略不计。
     (2)在Ev2室内测试方法研究的基础上,对不同工况下的大量试件的Ev2值进行了测试,并分析含水率、孔隙比、压实度等因素对Ev2的影响规律。研究结果表明,含水率、孔隙比、以及土体级配对Ev2都有不同程度的影响,当土体处于最优含水率时,土体的Ev2值达到峰值;在级配良好时,土体的Ev2值较大;试验研究还发现土体的Ev2值随着土体孔隙比的增大而呈现减小的趋势;在相同含水率情况下,土体的Ev2值随着土体压实度的增大而呈现增大的趋势。
     (3)依据二次变形模量Ev2的现场测试原理,建立填方地基模型进行了二次变形模量模型测试试验和数值模拟研究,并采用体积法制作与填方地基模型压实度一致的击实试件,进行室内测试。研究结果表明,模型试验结构槽的边界效应可以忽略不计,同时模型试验与有侧限条件下的Ev2室内测试试验结果吻合良好。基于上述大量试验结果,本文提出了一种室内测试二次变形模量Ev2的方法,该方法具有测试方便、快捷、成本低廉的特点,可为高填方地基回填料的选取提供依据,并对设计和施工提供一定的指导作用。
     (4)在Ev2室内试验研究的基础上,基于弹塑性理论,对二次变形模量Ev2进行了理论推导,获得了二次变形模量Ev2的理论计算公式。通过理论计算值与室内试验测试值的对比分析表明,理论计算值与试验测试值吻合良好。因此本文提出的二次变形模量的Ev2值的理论计算公式是可行的。
     (5)在Ev2的理论和试验研究的基础上,通过理论分析发现,对高填方地基沉降起主要作用的是填方土体的高度以及填方土体的变形模量,据此本文基于弹塑性理论建立了二次变形模量Ev2与工后沉降的经验关系式,并提出了基于指标Ev2的港区陆域高填方地基工后沉降评价方法。同时考虑到目前国内在港区陆域高填方地基中常用K30指标,为此本文进一步通过数值模拟的方法研究了二次变形模量Ev2与地基系数K30的相关关系,结果表明二者的相关性良好。
     (6)运用本文提出的基于指标Ev2的港区陆域高填方地基工后沉降评价方法,对于已建好的高填方工程,可通过现场测试填方地基Ev2值,计算其工后沉降值,与实际观测的工后沉降值进行对比,从而初步判断填方工程是否处于稳定状态;对于拟建的陆域填方工程,可根据设计的要求中允许的高填方工程的最大工后沉降值,进而求出其最小的二次变形模量值Ev2,同时可通过室内试验来选取合适的回填料,使其二次变形模量达到要求值。在施工完成后,可通过现场测试其二次变形模量值Ev2,计算其最大工后沉降,与设计值进行对比,从而判定是否满足设计要求。
     (7)通过纳溪沟码头高填方工程,元山子沟高填方工程以及重庆垫江某高填方工程的应用表明,基于指标Ev2的港区陆域高填方地基工后沉降评价方法效果良好,对设计和施工具有一定的指导意义。
     本文的主要创新点如下:
     (1)本文以二次变形模量Ev2的现场测试原理为基础,通过大量的试验研究后,首次提出了一种室内测试二次变形模量Ev2的方法,并与地基模型测试对比,效果良好。(该方法已申请国家专利,专利号:201210075208.0)
     (2)本文深入系统的研究了土体含水量、孔隙比、压实度对二次变形模量Ev2的影响,建立了二次变形模量与各影响因素之间的变化规律。
     (3)本文运用弹塑性力学理论并在室内试验的基础上,建立了二次变形模量Ev2的理论计算模型,该模型与试验测试的结果吻合良好。
     (4)本文基于弹塑性力学理论,推导分析得到工后沉降的主要影响因素,并建立了基于二次变形模量Ev2的港区陆域高填方工后沉降的预测模型,通过工程应用表明该预测模型效果良好。
The land area project with high fill in the southwest of our country is existed in theconstruction of inland ports. While the stability of land area project is affectedimmediately by unequal settlement of post-construction of high fills, and the safety andnormal operation of structures are also threaten with that. So how to predict the unequalsettlement of post-construction on continent high fill effectively and evaluate whosestability correctly is one of key technical problem that continent high fill of ports urgentwants to solve. At present, as the detection index of controlling post-construction,second deformation modulus is widely used in Europe country, such as Germany,however, which is only applied on railway embankment in China, and there has norelevant rules in design standards of highway engineering, continent high fill of portsengineering and slop engineering, and so on, to this end, we propose a settlement ofpost-construction prediction method of continent high fill of ports and evaluate whosestability, based on the second deformation modulus. For predicting the settlement ofpost-construction effective and evaluating the stability correctly, we use experimentalresearch, theoretical analysis and numerical simulation to study the second deformationmodulus deeply, and then, based on that, the settlement of post-construction predictionmethod in high fill of harbor is proposed and the stability is also evaluated. In this paper,the main achievements are summarized as follows:
     (1) According to the field test principle of second deformation modulus, makespecimens with compaction canister, which are used to test in the laboratory under thecondition of lateral confinement, and then through the analysis of numerical simulationon test equipment, the feasibility of laboratory test method is verified. The researchresult shows that the results of laboratory test and numerical simulation have a goodconsistency, and the border restriction of laboratory test equipment has no effects onexperimental results.
     (2) Based on the laboratory testing method of second deformation modulus, a largeamount of specimen was tested with that method, and the influence rule of seconddeformation modulus on the factors which are water content, porosity, compactiondegree and saturation are studied. The research result shows that all of the factors havedifferent effects on the second deformation modulus. When the soil is in the optimummoisture, its second deformation modulus will reach peak. When the non-uniformity coefficient is biggest, the second deformation modulus is also biggest. We also foundthat the second deformation modulus is decreased with the decreasing of porosity of soil,and increased with the increasing of compaction degree, Meanwhile, the seconddeformation modulus of weathered sandstone soil is less than weathered mudstone soil.
     (3) According to the field test principle of second deformation modulus, large scalefill foundation model is built which is tested second deformation modulus and studiedwith numerical simulation, the compaction degree of specimen is consistent with the fillfoundation model and made by volumetric method which is tested in laboratory. Theresearch result shows that boundary effect of model test would be negligible, thelaboratory test result agrees well with the model experiment. Based on the large numberof test result above, a laboratory test method of second deformation modulus isproposed which has characteristics with convenient, fast, cheap.
     (4) Based on the study of laboratory test and elastic-plastic theory, the seconddeformation modulus is derived, and then the theory formula is obtained. Through thecomparative analysis of theory calculation and laboratory test, it shows that thelaboratory result is agree with theory result well, Even though there has some certainerrors, because the Poisson’s ratio is adopted as0.21directly according to regulations,which is between0.2and0.3in spot filed test. So the theory calculation formula isfeasible.
     (5) Based on research of theory and experiment, it found that the height anddeformation modulus play an important role in settlement of high fill foundation. Soempirical relation between second deformation modulus and post-constructionsettlement is built on the basis of elastic-plastic theory, and an evaluation method ofpost-construction of high fill foundation on port area is proposed. Meanwhile,foundation coefficient is a common index on high fill foundation at present, so therelevant relationship between second deformation modulus and foundation coefficient isfurther studied with numerical simulation method, and then the result shows that both ofthem has good correlation.
     (6) For high fill project which has been built, whose second deformation modulus canbe obtained with field test, and then be calculated post-construction settlement, finally,compare the value of calculation to actual observation, thus, the stability of high fillproject can be judged preliminary. For high fill project which will be proposed, whosesmallest second deformation modulus can be obtained according to the largest post-construction settlement which is allowed in the design requirements, meanwhile, backfill can be chose through laboratory test, which can make the second deformationmodulus to meet the design requirements. Therefore, after construction finished, thesecond deformation modulus can be obtained through field test, and then the post-construction settlement also can be obtained, which is compared to the design value,thus, it can judge that whether or not meet the design requirement.
     (7) The practical application shows that, include high fill projects of Naxigou wharf,Yuanshanzi and Changan test track, based on the second deformation modulus, thevaluation method of post-construction settlement of high fill foundation on port areasbrings about good results, and it also has certain significance for design andconstruction.
引文
[1] J.N.Mandal,V.R.Manjunath.Bearing capacity of strip footing resting on reinforced sandsubgrades,Construction and Building Materials.1995,9(1):35-38.
    [2] Hsin Yushan,Ray Hochen.Effect of gravel subgrade on hydraulic performance of geosyntheticclay liner, Geotextiles&Geromembranes.2003,(21):339-354.
    [3] Zhanyuan Zhu,Xianzhang Ling.Experimental investigation of the dynamic behavior of frozenclay from the Beiluhe Subgrade along the QTR.2011,(69):91-97.
    [4] S.Y.Mhaiskar,J.N.Mandalt.Investigations on soft clay subgrade strengthening using geocells.Construction and Building Materials.1996,10(4):281-286.
    [5] Toyoaki Nogami.Simplified subgrade model for three-dimensional soil-foundation interactionanalysis.Soil and Earthquake Engineering.1996,(15):419-429.
    [6]华南理工大学等四校.地基基础[M].北京:中国建筑工业出版社,1998.
    [7]赵明阶.土力学与地基基础[M].北京:人民交通出版社,2010.
    [8]庞继忠,朱彬.地基承载力国内外研究综述[J].广西大学学报(自然科学版),2009,34:325-327.
    [9]韩长玉,夏小和,王建华.底面为曲面基础地基极限承载力上限解[J].岩土工程学报,2012,34(2):230-236.
    [10]陈祖煜.土力学经典问题的极限分析上、下解[J].岩土工程学报,2002,24(1):1-11.
    [11] LESHCHISKY D,MARCOZZI G F.Bearing Capacity of Shallow Foundation: Rigid VersusFlexible Models[J].Journal of Geotechnical Engineering,ASCE,1990,166(11):1750-1756.
    [12] Karl Teriaghi,M.I.C.E.,Hon.M.ASCE.Evaluation of coefficients of subgradereaction[J].Bridge&structure Engineering,1950,297-326.
    [13] Lysandros Pantelidis.Determining of the soil strength charactersics through the plate bearingtest[J]. ASCE J Geotech Eng.1990,116(4):1052-1065.
    [14] Sowers G F,Willams R C,Wallace T S.Compressilibity of broken rock and the settlement ofrockfills [C]//Proc6th Int Confon on Soil Mech and Foundathion Eng Montreal.1965,2:561-565.
    [15] Lawton E C,Fragaszy R J,Hardcastle J H.Collapse of a compacted clayed sand [J].ASCE JGeotech Eng.1989,115(9):1252-1267.
    [16] Cheng Y P,White D J,Bowman E T,et al.The observation of soil microstructure under load
    [C]//Proc4th Int Conf on Micromechanics of Granular Media,Powders andGrains.Rotterdam:Taylor&Francis,2011:69-72.
    [17] Goodw in A K,O’Neill M A,Anderson W F,The use of X-ray computer tomography toinvestigate particulate interactions within opencast coal mine backfills [J].EngGeology,2003,70:331-341.
    [18] Pakin A K.Rockfill modeling [C]//Advances in Rockfill Structures(ed EM aranha dasNeves),Proc of NATO Advanced Science.London:Kluwer,1990:35-52.
    [19] Oldecop L A,Alonson E E.Theoretical investigation of the time-dependent behaviour of rockfill[J].Geotechnique2007,57(3),289-301.
    [20] McDowell G R.Micromechanics of creep of granular materials [J].Gertechnique,2003,53(10):915-916.
    [21] E.W.Brand&R.P.Brenner. Soft clay engineering[M]. Elserier Scientific Publishing Company,Amsterdam.1981.
    [22]曾国熙,朱向荣,刘世明.软粘土次固结的研究[C].海峡两岸土力学及基础工程学术研讨会论文集,1994.10.
    [23] Simons.N.E.The stress path method of settlement analysis applied to London clay. Stress-strainbehavior of soils [M].G.T.Foulis&Co.ltd,1971.
    [24] D’Appo;onia, D.J., T.W. lambe and H.G.poulos. Evaluation of pore pressure beneath anembankment[M]. Proc, SSCE,NO.SM6,1971.
    [25] Lambe,T..W..Stress path method[M]. Proc,ASCE,No.SM6,1967.
    [26]徐少曼.对称荷载下饱和粘性土地基不排水沉降量的计算[J].岩土工程学报,1983,5(1):122-133.
    [27]王引生.高速公路软土地基的沉降问题[J].中国公路学报,1993,6(1):63-68.
    [28] Biot,M.A., General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,(12):155-166.
    [29] Cryer,C.W..A comparison of the three-dimentional theories of Biot andTerzaghi[J].J.Mech.Appl.Math.,1963,(16):401-411.
    [30] Gibson,R.E.et.al, Critical expetiment to examine therories of three-dimensionalconsolidation[M]. Proc. European conf. on SMFE,1963
    [31] Schiffman,R.L.,Chen.A.T-F and Jordan,J.C..An analysis of consolidationtheories[J],Proc,ASCE,JSMFD,1969,95:SM.1.
    [32] Mikasa,M. The consolidation of soft clay. A new consolidation theory and its application[J].Lananean Soc Civil Eng,1965,(5):89-97.
    [33] Gibson,R.E.,G.L.England&M.J.L.Hussey.The theory of one-dimensional consolidation ofsaturated clay(1)[J].Geotechnique,1967,(17):167-185.
    [34] Gibson, R.E,Schiffman,Carrgill K.W. The theory of one-dimensional consolidation of saturatedclays (2)[J].Geotechnique,1981,18:175-186.
    [35]窦宜,蔡正银,盛树馨.自重应力作用下饱和粘土的固结变形特性[J].岩土工程学报,1992,14(6):29-37.
    [36] Egerov,K.e.et al..The observed settlements of buildings as compared with preliminarycalculation[C]. Proc.4thICSMFE,Vol,1,p291,1957.
    [37]黄文熙,张文正,俞仲泉.水工建筑物土壤地基的沉降量与地基中的应力分布[J].水利学报,1957,(3):1-10.
    [38] Davis,E.H. and Poulos,H.G. The use of elastic theory for settlement prediction under three-dimensionnal conditions[J].Geotechnique,18(1):56-68.
    [39]魏汝龙.我国沿海软粘土特性及其工程问题[J].水利水运科学研究,1985,(3):56-60.
    [40] Skempton,A.W and L.Bjerrum. A contribution to the settlement analysis of foundations onclay[J]. Geotechnique,1957,7(4):168-179.
    [41]龚晓南.高等土力学[M].浙江:浙江大学出版社,1996.
    [42] Loganathan N, Balasubramaniam A S, Bergado D T. Deformation analyses ofembankments.Journal of Geotechnical Engineering,1993,119(8):1185-1206.
    [43] Zhu G,Yin J H,Graham J. Consolidation modeling of soil under the test embankment at ChekLap Kok International Airport in Hong Kong using a simplified finite elementmethod[J].Canadian Geotechnical Jouranl,2001,38(2):349-363.
    [44] Akira Asaoka. Observational Procedure of settlement Predietion. Soil and Foundations[J].Japanese Society of Soil Mechanics and Foundation Engineering,1978,18(4):156-164.
    [45]王志亮,黄景忠,李永池.沉降预测中的Asaoka法应用研究[J].岩土力学,2006,(11):167-170.
    [46]林青,曹新文.软土地基工后沉降预测方法的探讨[J].路基工程.2006,(2):78-80
    [47]吴晓伟.高速公路工后沉降预测新方法[J].山西建筑.2007,33(8):339-340.
    [48]刘成宇.土力学[M].北京:中国铁道出版社,2002
    [49]陈希哲.土力学地基基础[M].北京:清华大学出版社,2002.
    [50]何秉顺,刘建坤,房建宏.使用人工神经网络预测冻土区公路路基沉降[J].公路交通科技.2005,(11):42-44.
    [51]胡伍生,方磊.动态预测软土路基沉降的神经网络模型研究[J].测绘科学.2008(6):111-113.
    [52]张留俊,黄晓明,冯炜等.人工神经网络在路堤沉降预测中的应用[J].公路交通科技.2006(5):11-14.
    [53]唐利民,陈志良,贺春宁.高填路基沉降灰色预测模型的新方法与应用[J].中外公路.2010(1):67-72.
    [54]张耀锋.动态灰色理论模型在路基沉降预测中的应用[J].公路.2010(4):45-47.
    [55]唐玮靖,伍星星.基于加权灰色系统模型在变形分析中的预测[J].城市勘测.2010(2):113-115.
    [56]肖金凤,李怒放,李树峰.路基施工质量动态检测方法研究[J].铁道建筑技术,2002,(2):33-34.
    [57]中华人民共和国铁道部. TB10001-99.铁路路基设计规范[S].北京:中国铁道出版社,1999.
    [58]中华人民共和国铁道部. TB10202-2002.铁路路基施工规范[S].北京:中国铁道出版社,2002.
    [59]刘萍.论高速铁路路基施工技术及质量控制[J].集团经济研究,2005,(7):161-162.
    [60]中华人民共和国行业标准,高速铁路设计规范(试行)(TB10621-2009,J971-2009)[S].中华人民共和国铁道部,2009.
    [61][2007]85号,客运专线无砟轨道铁路工程施工质量验收暂行标准.
    [62]铁道第一勘察设计院.郑州至西安客运专线施工图(路基部分),2005.
    [63]铁道第四勘察设计院.武汉至广州客运专线施工图(路基部分),2005.
    [64]铁道第二勘察设计院.遂渝无碴轨道综合试验段施工图(路基部分),2005.
    [65]客运专线无碴轨道铁路设计指南编制组.客运专线无碴轨道铁路设计指南(报批稿),2005.
    [66] Ambarish Ghosh,Utpal Dey. Bearing ration of reinforced fly ash overlying soft oil anddeformation modulusof fly ash. Geotextiles and Geomembranes, Volume27, Issue4, August2009, Pages313-320.
    [67] Rainer Wenty,Ing.c/o Plasser,Theurer. Rehabilitation of the Railroad Subgrade A fundamentrequirement for stable track.84th Annual Meeting of the Transportation Research Board.2005(1)9-13.
    [68]龙卫.肖金凤.变形模量Ev2与K30平板载荷试验的对比分析[J].铁道建筑技术,2006(05):36-39.
    [69]李庆民.客运专线路基填筑质量变形模量Ev2检测方法研究.[C].第四届中国国际轨道交通技术峰会,2008.
    [70]马宗磊.地基系数、变形模量和动态变形模量的测试与对比[J].中国铁路,2009(7):41-43.
    [71]戴玉,赖国泉.铁路路基压实指标K30、Ev2、Evd对比分析[J].铁道勘察,2011(3),52-54.
    [72] Ismail Dincer. Models to predict the deformation modulus and the coefficient of subgradereaction for earth filling structures[J].Advance in Engineering software,2011,(42)160-171.
    [73]李庆民.高速铁路路基压实力学控制指标试验研究.[J].铁道/道路,2012,(04):93-96.
    [74]李庆民.变形模量Ev2测试仪器及测试方法研究[D].北京:中国地质大学,2006.
    [75]黄大维,杨有海.赖国泉等.高速铁路路基动态变形模量分析[J].岩土力学.2012(05),1402-1408.
    [76]孙笑.长安综合试车场(垫江)高填方路基沉降变形和稳定性研究[D].重庆:重庆交通大学,2011.
    [77]李庆民,肖金凤,李树峰.变形模量Ev2检测方法及检测中应注意的问题[J].铁路标准设计,2006(03),32-35.
    [78]变形模量Ev2检测规程(试行)[S].中华人民共和国行业标准,2005.
    [79]郭大智,冯德成.层状弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [80]刘士光.弹塑性力学基本理论及应用[M].武汉:华中科技大学出版社,2008.
    [81]黄文彬,曾国平.应用双剪应力屈服准则求解某些塑性力学问题[J].力学学报,1989,2(2):123-130.
    [82]刘晓明,熊力,赵明华.基于岩土强度变异性的重复荷载下土体塑性累积变形计算方法研究[C].第三届全国岩土与工程学术大会论文集,2009.
    [83]沈广军.基于沈珠江双屈服面模型理论的土体弹塑性模型[J].探矿工程.2010,37(1):50-54.
    [84]夏志皋.塑性力学[M].上海:同济大学出版社,1991.
    [85]刘祥志.变形模量Ev2与地基系数K30的试验对比研究[J].科技情报开发与经济,2009,(20):144-146.
    [86]薄会申,李铂.地基系数K30与变形模量Ev2及动态变形模量Evd的对比试验研究[J].中国铁道学会工程地质与路基专业委员会第21届年会暨学术交流会论文集,2007.
    [87]孙嘉良.大粒径填料地基系数K30平板载荷试验研究.[J].铁道/道路.2010,(08):74-76.
    [88]孙勇.利用胖压试验确定抗滑桩地基系数的研究[J].岩土力学.2009,30(03):699-702.
    [89]周飞.高速铁路压实标准仿真与基床动力响应分析[D].西南交通大学硕士学位论文,2007.
    [90]陈震.高速铁路路基动力响应研究[D].中国科学院武汉岩土力学研究所硕士学位论文,2006
    [91]姚保新,宋新娥.京石客运专线K30与EV2的对比试验研究铁路建筑,2010
    [92] Athanasiu C,Simonsen A S,Soereide O K,et al.Elastic and creep settlements of rock fills[C]//Proc16th Int Conf Soil Mech Geotech Eng.Osaka:Balkema,2005:1837-1843.
    [93][] Soriano A, Sanchez F J.Settlements of railroad high embankments [C]//Geotech Eng forTransportation Infrastructure.Amsterdam;Balkema,1999:1885-1890.
    [94] Charles J A,Skinner H D.Compressibility of foundation fills [J]. Proc of Instit of CivilEng,Geotech Eng,2001,149(3):145-157.
    [95] Charles J A, Laboratory compression tests and the deformation of rock fill structures[C]//Advances in Rockfill Structures(ed EM aranha das Neves),Proc of VATO Advanced J A,Watts K S.The assessment of the collapse potential of fills and it’s significance for building onfill [J].Proc of Instit of Civil Eng,1996,119(1):15-28.
    [96] Burford D,Charles J A.Long term performance of houses built on opencast ironstone miningbackfill at Corby [C]//Proc of4th Int Conf on Ground Movements and Struc(ed J DGedds).Londom:Pentech,1991:54-67.
    [97] Brandon T L,Duncan J M,Gardner W S.Hydrocom pression settlement of deep fills [J].ASCEJournal of Geotech Eng,1990,116(10):1536-1548.
    [98] Blanchfield R,Anderson W F.Wetting collapse in opencast coalmine backfill [J].Proc of Instit ofCivil Eng,Geotech Eng,2000,143(3):139-149.
    [99] McDowell C R,Khan J J.Creep of granular materials [J].Granular Matter,2004,5:115-120.
    [100]朱百里,沈珠江.计算土力学[M].上海:上海科学技术出版社,1990.
    [101]谢春庆.山区机场高填方块碎石夯实地基性状及变形研究[D].成都:成都理工大学,2001.
    [102]沈珠江.理论力学[M].北京:中国水利水电出版社,2000.
    [103]钱家欢,殷宗泽.土工原理计算[M].北京:水利水电出版社,1994.
    [104] Coleman JD,Russamk.Some Use of Stress and Strain Invariants in the Thermodynamic Studyof Soils[J]. Geotech.1961,11(1):377-386.
    [105]陈仲颐.Fredlund D G,Rahardio H.Soil Mechanics for Unsaturated Soils (非饱和土力学,中译本)[M].北京:中国建筑工业出版社,1997.
    [106]杨代泉,沈珠江.Study on the Generalized Consolidation Theory of UnsaturatedSoils[J].Int.Conf.Expansive soils.Dallas,1992
    [107]杨代泉,沈珠江.非饱和土一维固结简化计算[J].岩土工程学报,1991,13(5):71-77.
    [108]沈珠江.鲁布革心墙堆石坝变形的反馈分析[J].岩土工程学报,1994,16(3):1-3.
    [109]陈国荣,姜泓道,高谦等.高速公路路基性态反分析及沉降预报[J].工程地质学报,1998,6(4):340-341.
    [110]周虎鑫.陈荣生.机场高填方填筑体变形有限元分析[J].地基处理,1997,8(1):32-33.
    [111] Baecher G B, Ingra T.Stochastic FEM in Settlement Predictions[J].GeotechEng,ASCE.1981,107(4):449-463.
    [112] Righetti G, Williams K H. Finite Element Analysis of Random Soil Media[J]. EngMech,ASCE,1988,114(1):59-75.
    [113] Phoon K K,Quek S T,Chow Y K. Reliability Analysis of Pile Settlement[J]. GeotechEng.ASCE,1990,(11):1717-1735.
    [114] Quek ST, Chow Y K,Phoon K K. Futher Contribution to Reliability-based Pile SettlementAnalysis[J]. Geotech Eng.1992,118(7):449-463
    [115] Brzakala W. Pula W. A Probabilistic Analysis of Foundation Settlement. Computer andGeotechnics,1996,18(4):291-309
    [116]王其昌.高速铁路土木工程[J].成都:西南交通大学出版社,2000
    [117]刘宏,张倬元.四川九寨黄龙机场高填方地基变形与稳定性系统研究[M].成都:西南交通大学出版社,2006
    [118]娄炎,何宁,娄斌.高速公路深厚软基工后沉降控制成套技术[M].北京:人民交通出版社,2011.
    [119] DL/T5355-2006,水利水电工程土工试验规程[S].
    [120] GB50007-2002,建筑地基基础设计规范[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700