用户名: 密码: 验证码:
高放废物深地质处置库缓冲材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核科学的发展,核技术广泛应用于国防、工业、农业、医学等各个领域。核工业发展的同时也产生了大量的核废物,或称放射性废物。其中,高放废物的放射性水平高、毒性大、发热量大,若不加以安全处置,会对自然环境和人类社会产生巨大的破坏作用。因此,高放废物的处置是核废物管理中最为重要的课题,已引起国际社会的广泛关注。目前,深地质处置被国际上公认为处置高放废物最有效可行的方法。中国深地质处置的概念模型采用多重工程屏障系统(包括废物固化体、废物容器、外包装、缓冲材料)和适宜的地质体共同作用来确保高放废物与生物圈的安全隔离。膨润土由于具有极低的渗透性和优良的核素吸附等性能,被国际上多个国家选作缓冲材料。根据矿床位置、矿区地质特征、矿床成因、矿床储量、矿区自然地理、开采技术条件与交通等因素的综合对比研究,内蒙古兴和县高庙子膨润土矿床被确定为我国高放废物地质处置库缓冲材料供给基地的首选矿床。本文以非饱和土理论为依据,利用先进的非饱和土试验方法,对高庙子钠基膨润土的基础特性进行研究,为深地质处置库的设计提供理论依据。
     本文的主要研究内容及取得的研究成果包括:
     1.综述了高放废物深地质和缓冲材料的研究进展。阐述了非饱和土的水力一力学行为的相关概念,包括:吸力的定义和组成;持水曲线的概念和特点,以及各种拟合公式;非饱和渗透性函数的特点及公式;非饱和土中的有效应力和净应力;膨润土的微观结构研究及膨胀力等。介绍了与本论文有关的试验方法,试验技术和试验装置,包括吸力的量测方法、持水曲线的确定、微结构试验方法、非饱和渗透系数的测定、和膨胀力的测量方法等。
     2.分析归纳了高庙子钠基膨润土的一些基本性质特征:蒙脱石含量较高,阳离子交换容量和比表面积较大,液限较高,具有很好的不渗透性、高膨胀性和良好的导热性能;含水量相同时,无侧限抗压强度和弹性模量随初始干密度的增加而增大;干密度相同时,导热系数随着膨润土含水量的增加而增加;饱和渗透系数随温度的增加而增加,也随干密度的增加而增加。标准试样和膨胀试样的压汞试验结果表明,膨胀引起了孔隙量的增加,土中存在小孔和大孔两种孔隙,膨胀使膨润土中的大孔隙减少,小孔隙增加,膨润土的微结构趋于均匀化;膨胀力和干密度之间存在指数关系,干密度是影响膨胀力的一项重要外部因素。
     3.采用汽相法和渗析法,首次获取了自由和侧限条件下高庙子膨润土的持水曲线。结果表明:高吸力范围内,自由和侧限条件下的持水特征无明显不同,含水量随吸力的变化不大;在低吸力范围内,自由条件下含水量随吸力的降低产生突变,侧限条件下含水量随吸力降低的变化较为平缓。压汞试验和环境扫描电镜试验结果表明:自由状态下,膨润土集合体内吸收的水量非常有限,大量的水进入了集合体间的孔隙中。侧限条件下,随着吸力的降低,内部膨胀力不断发展,集合体间的孔隙被大量压缩,转变成了较小的孔隙,膨润土的孔隙出现了均质分布。考虑到压汞仪自身的限制,提出了一种计算残余孔隙量的新方法。采用双电层理论对干密度为1.7g/cm~3的高压实高庙子膨润土在自由条件下的体变特征进行计算,结果与实验数据吻合较好。
     4.采用瞬时截面法,完成了侧限条件下高压实高庙子膨润土的非饱和渗透试验。结果表明:干密度为1.7g/cm~3的高庙子膨润土在侧限条件下的水力渗透系数介于1.13×10~(-13)m/s和8.41×10~(-15)m/s之间。水力渗透系数并不是随着吸力一直减小,当吸力为65MPa左右,渗透系数最小;当吸力大于65MPa时,渗透系数随着吸力的增加而增加;当吸力小于65MPa时,渗透系数随着吸力的增加而减小。
     5.采用CODE_BRIGHT(考虑温度和吸力的剑桥模型有限元程序)软件,模拟分析了侧限条件下高庙子膨润土的非饱和渗透特性。结果表明:吸力的数值解与实测值吻合较好,吸力值从试样的顶部到底部逐渐减小,并随着水化时间的增加而减小;试样底部的饱和度明显高于试样顶部的饱和度,底部试样刚注水0.5个月就基本饱和,而整个试样在注水4个月后基本饱和。
     综上所述,本文首次对我国高放废物处置库首选缓冲材料——高庙子膨润土的基本特性进行了系统研究,获取了自由和侧限条件下高压实高庙子膨润土的持水曲线并分析了曲线特征;研究了高压实高庙子膨润土水化后的微结构变化特征,提出了计算残余孔隙量的新方法;采用瞬时截面法试验获取了侧限条件下高压实高庙子膨润土非饱和渗透系数,并完成了数值模拟,数值模拟结果与试验实测值吻合较好。本文所取得的研究成果,对于我国高放废物处置库工程屏障材料选用与工程设计具有重要的理论与工程实践意义。
With the development of nuclear science, nuclear technique has been widely used in many fields, such as national defense, industry, agriculture and medicine. Large amount of high-level radioactive waste (HLW) has been produced, which can make great harm to natural environment and human society. Attentions have been devoted in recent years to the challenge of how to safely store nuclear waste. The deep geological disposal is regarded as the most reasonable and effective way to safely dispose HLW in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system including the vitrified HLW, canister, and backfill and buffer material. The bentonite is selected as base material of the buffer material in HLW repositories, due to its very low permeability and excellent retardation of nuclides from migration, etc. According to the ore deposit position, traffic, genesis, reserve, geological feature of ore district and physic-geography etc, GMZ bentonite ore deposit located in Xinghe county, the Inner Mongolia Autonomous Region, is considered as the first choice of Chinese buffer materials providing base for HLW geological repository. In this paper, based on soil mechanics for unsaturated soils, advanced lab tests were conducted to study the fundamental properties of GMZ bentonite.
     The main contents in this paper are as follows:
     1. The research and development of deep geological disposal of HLW and buffer material are summarized. Theories relevant to the hydro-mechanical behavior of unsaturated soils are described, including the concept of suction, soil water retention curves (SWRC) and their equations, hydraulic conductivity, effective stress, microstructures and swelling pressure. A literature review on experimental techniques that are relevant to this study is presented, including measurement of suction and SWRC, microstructure technique (MIP and ESEM),measurement of hydraulic conductivity and measurement of swelling pressure.
     2. Some basic properties of GMZ bentonite are described: GMZ bentonite is characterized by high content of montmorillonite (about 75%), high exchangeable cation content, specific surface area and liquid limit, low permeability, high swelling, and good heat conductivity. With the same water content, a larger initial dry density leads to a higher unconfined compressive strength and a larger elastic modulus. The heat conductivity of GMZ increases with the rising of water content in bentonite under the same compact density. Saturated hydraulic conductivity of GMZ increases with temperature and dry density. The results of MIP test indicate that swelling induces an increase in pore volume. There are two levels of pores (micro- and macro-pores). Swelling of GMZ leads to the homogenization of the microstructure. There is exponential relationship between dry density and swelling pressure.
     3. The SWRC of GMZ are obtained using vapor equilibrium technique and osmotic technique. The results indicate: in high suction range, whether under confined or unconfined condition, the water content of compacted GMZ changes little with suction, and the data under two conditions are almost the same. However, in low suction range, the water content change with suction of the two curves indicates different behavior. Under unconfined condition, water content increases quickly with suction decreasing. MIP and ESEM test results show that, under unconfined condition, the amount of water absorbed by aggregates is very limit, and much water enters the inter-aggregate pores. Under confined condition, with the decrease of suction, the generation of swelling pressure compresses the macro-pores; the amount of micro-pores increases. Considering the limitation of MIP machine, a new method which can calculate the residual pore volume is put forward. Using double layer theory, the calculated volume change of GMZ under unconfined condition has good fit to the experiment data.
     4. Unsaturated hydraulic conductivity test is conducted on GMZ with 1.7g/cm~3 dry density under unconfined condition. Results show that the hydraulic conductivity of GMZ is between 1.13×10~(-13)m/s and 8.41×10~(-15)m/s. The hydraulic conductivity is lowest at the suction point of 65MPa. When suction is higher than 65MPa, the hydraulic conductivity increase with suction increase; it is reverse when suction is below 65MPa.
     5. CODE_BRIGHT (a finite element program of Cambridge model considering temperature and suction) is applied to perform numerical analysis for unsaturated hydraulic conductivity of GMZ under confined condition. Conclusions: the calculated suction is basically fit to experiment data. The saturation degree of the bottom specimen is obviously bigger than that of the top specimen. The whole specimen is almost saturated after 4 months.
引文
[1]闵茂中.放射性废物处置原理.北京:原子能出版社,1998.
    [2]Alain Lajudie et al.Clay-based materials for engineered barriers:a review.Scientific Basis for Nuclear Waste Management(part 1).Materials Research Society symposium proceedings volume 353.Kyoto,Japan.1994.New Mexico,USA:Materials research Society,1994.221-229.
    [3]刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性.矿物学报,2001,Vol.21(3):541-543.
    [4]周抗寒.高压实缓冲材料渗透、膨胀特性及核素迁移规律[博士学位论文].北京:清华大学,1995.
    [5]沈珍瑶,程金茹.高放射性核废物深地质处置的环境问题.地质通报,2002,Vol.21(3):163~165.
    [6]SKB.RD & D-Program 98:Treatment and final disposal of nuclear waste,1999.
    [7]SKB.Integrated account of method,site selection and program prior to the site investigation phase.SKBTR-01-03,2001.
    [8]Brookins D.G.The Geological Disposal of High Level Radioactive Waste.Athens:Theophratus Publications,1987.
    [9]Ringwood A.E.Uniaxial hot-pressing in bellows containers.Nuclear and Chemical Waste Management,1983,(4):135-140.
    [10]Roy R.Radioactive Waste Disposal,Volume 1:The Waste Package.New York:Pergamon Press,1982.
    [11]Mcmenamin T.欧共体废物处置研究项目中废物特性评价和质量保证与控制.见:周文斌,刘晓东,吴彬译.乏燃料和高放及α废物地质处置.北京:原子能出版社,1999,23-31.
    [12]Iseghem P V,Lemmens K.高放废物玻璃固化体与Boom粘土间相互作用研究.见:周文斌,刘晓东,吴彬译.乏燃料和高放及α废物地质处置.北京:原子能出版社,1999,112-122.
    [13]Harrison D J,Stahl D.美国内华达州尤卡山潜在处置场乏燃料直接处置废物包装和工程屏障系统的设计原理.见:周文斌,刘晓东,吴彬译.乏燃料和高放及α废物地质处置.北京:原子能出版社,1999,32-38.
    [14]Borje T,Bert A.Migration of fission products and actinides in compacted bentonite(SKB Technical Report 86-140).Sweden:SKB,1986.
    [15]Boric T.Radionuclide diffusion and mobilities in compacted bentonite(SKB Technical Report 83-84).Sweden:SKB,1983.
    [16]Pusch R.Required physical and mechanical properties of buffer masses(KBS-TR-33). Sweden:SKB,1977.
    [17]Radhokrishra H S,Chan H T.Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault.Can.Geotech.J,1989,26(6):629-639.
    [18]Laverov N P,Omelianenko B T,Velichkin V T.Geological aspects of the nuclear waste disposal problem.Berkeley:Lawrence Berkeley Laboratory,1994.
    [19]IAEA.Site investigations for repositories for solid radioactive wastes in deep continental geological formations(Technical Reports Series No.215).Vienna:IAEA,1982.
    [20]NWTS Program Office,U.S.Department of Energy.NWTS program criteria for mined geological disposal of nuclear waste,site performance criteria(DOE/NWTS-33(2)).Washington:DOE,1981.
    [21]NP,C.Geoscience data base handbook for modeling a nuclear waste repository (NUREG/CR-0912-2).Washington:NRC,1979.
    [22]庄慧娥.放射性核素迁移的试验研究.原子能科学技术,1987,21(3):309-313.
    [23]王驹,陈伟明,苏锐,郭永海,金远新.高放废物地质处置及其若干关键科学问题.岩石力学与工程学报,2006,vol.25(4):801-812.
    [24]王显德,李学群.放射性废物管理.北京:原子能出版社,1995.
    [25]刘月妙等.高放废物地质处置库缓冲材料性能测定.辐射防护,1998,(7):25-27.
    [26]刘月妙等.我国高放废物地质处置库缓冲回填材料压实膨胀特性研究.铀矿地质,1999,(2):1-3.
    [27]沈珍瑶,李国鼎等.高压实膨润土热湿耦合效应试验室模拟.水文地质工程地质,1999,(1):11-12.
    [28]杨天笑.高放废物处置库系统性能评价和岩石裂隙系统计算机模拟.国外铀金地质,1999,Vol.16(3):287-288.
    [29]杨天笑,郭永海,王驹.高放废物处置库系统性能评价内容及方法.辐射防护,1999,19(3):235-240
    [30]杨天笑.国外高放废物处置库性能评价现状调研.高放废物地质处置研究年会报告,1999.
    [31]夏红辉,刘新河等.高放废物处置库性能评价中源项模式的调研.高放废物地质处置研究年会报告,1996.
    [32]夏红辉,夏益华,曹世凯等.高放废物剂量场模拟计算机程序的开发研究.高放废物地质处置研究年会报告,1996.
    [33]范智文,谷存礼,崔安熙.高放废物地质处置性能评价中生物圈和剂量评价模式.高放废物地质处置研究年会报告,1996.
    [34]陈伟明,王驹,金远新,徐国庆.甘肃北山及其邻区地壳稳定性模糊综合评价.铀矿地质,2000,Vol.16(3):157-163.
    [35]陈伟明,王驹.中国高放废物处置库选址中灵敏地质特征的初步确认.铀矿地质,2001,vol.17(2):65-69.
    [36]陈伟明,王驹.高放废物地质处置性能评价.世界核地质科学,2005,Vol.22(1):17-23.
    [37]陈璋如,郭起凤,赵云龙.铀矿床的天然类似物研究.铀矿地质,2000,16(2):102-109.
    [38]罗兴章,闵茂中.两花岗岩体接触带铀系核素迁移的初步模拟.地质评论,2001,Vol.47(6):658-664.
    [39]陈璋如等.青铜文物的腐蚀研究—高放废物处置系统的人为类似物研究实例.原子能科学技术,2004,Vol.38 Suppl:1 63-167.
    [40]Power Reactor and Nuclear Fuel Development Corporation.First Report on Research and Development for the Geological Disposal of High-level Radioactive Waste.1992,PNC TN 1410 93-059.
    [41]The Disposal of Canada's Nuclear Fuel Waste:Engineered Barriers Alternatives.1994,AECL-1078COG-93-8.
    [42]Japan Nuclear Cycle Development Institute.Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan Support Report 2 Repository Desing and Engineering Technology.2000,JNC TN 1410 2000-003.
    [43]Japan Nuclear Cycle Development Institute.Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology.2000,JNC TN 1410 2000-001.
    [44]International Workshop on Research & Development of Geological Disposal.1993,PNC TN 1100 94-003.
    [45]Scientific Basis for Nuclear Waste Management ⅩⅧ(Part Ⅰ).Materials Research Society Symposium Proceedings,1994.
    [46]Cho W-J,et al.Influence of Temperature Elevation on the Sealing Performance of a Potential Buffer Material for a High-level Radioactive Waste Repository.Annals of Nuclear Energy,2000.27:1271-1284.
    [47]王驹,张铁岭等编译.世界放射性废物地质处置.北京:原子能出版社,1999.
    [48]周文斌,刘晓东等译.乏燃料和高放及a废物的地质处置.北京:原子能出版社,1999.
    [49]朱训.中国矿情(第三卷非金属矿产).北京:科学出版社,1999,662-684.
    [50]Pusch R.Permeability of highly compacted bentonite,SKBF KBS Teknisk rapport,Stockholm,Sweden,1980,16-80.
    [51]Pusch R.Unsaturated and saturated flow in swelling clay.Proc.the 10th Internal Conf.SM & FE,1981,369.
    [52]Hodges F N.Development of a backfill for confinement of high level nuclear waste,Scientific basis for nuclear waste management 5,Material Research Society,1982,641.
    [53]Westsik J H.Permeability,swelling and radionuclide retardation properties of candidate backfill materials,Scientific basis for nuclear waste management 5,Material Research,1982,329.
    [54]Pusch R.Ion/water migration phenomenon in dense bentonite,Scientific basis for nuclear waste management 5,Material Research Society,1982,649.
    [55]Radhakrishna H S.Thermal properties of buffer/backfill materials and their effects on near-field thermal in a nuclear fuel waste disposal vault.Proceedings of OECD/NEA Workshop on Near-field Phenomena in Geologic Repositories for Radioactive Waste,1984, 246.
    [56]Moss M.Thermal conductivity of bentonite/qqatz high level waste package backfill,Scientific basis for nuclear waste management 6,Materials Research Society,1983,719.
    [57]董威.高放废物处置库高压实缓冲材料研究与近场处置模拟.清华大学博士学位论文,1994.
    [58]宋乾武.高放废物深地质处置库缓冲材料湿、热诱导效应研究.清华大学博士学位论文,1990.
    [59]Pusch R.Use of clay as buffer in radioactive repositories.SKSF KBS Teknisk rapport,Stockholm,Sweden,1983,47-83.
    [60]Pusch R.Water uptake migration and swelling characteristics of unsaturated and satutatcd high compacted bentonite,SKBF KBS Teknisk rapport,Stockholm,Sweden,1980,11-80.
    [61]Borgesson L.Water flow and swelling pressure in non-saturated bentonite based clay barriers.Engineering Geology 21 Elsevier Science Publishers B.V.Amsterdam,1985,229.
    [62]Yong R N.The swelling of a montmorillonitic clay at elevated temperatures,Proceedings of the 3rd Asian Regional Conf.SM &FE,1967,1,124.
    [63]Pusch R.Stability of bentonite Gels in crystalline rock—physical aspects,SKBF KBS Tcknisk Rapport,Stockholm,Sweden,1983,46-83.
    [64]Gray M N.Swelling pressure of compacted bentonite/sand mixture.Scientific Basis for Nuclear.Waste Management 8,Material Research Society,1985,523.
    [65]Westsik J.Scientific basis for nuclear waste management,1982,6,329.
    [66]夏德迎.放射性锝在活性炭上的吸附行为.放射性废物管理(3),1992,134.
    [67]Walton F B.Nuclear chem.Waste management,1986,6,121.
    [68]庄慧娥.锕系及裂片核素的吸附行为研究.1993年高放废物处置年会资料汇编,1993.
    [69]庄慧娥.放射性核素锝和碘在矿物上的吸附.高放废物地质处置研究论文集(1985-1991),1992,64.
    [70]Horseman S T.,Harrington,J.F.,Scllin,P.Gas migration in clay barriers.Engineering Geology,1999,54:139-149.
    [71]Galle C.Gas breakthrough pressure in copacted Fo-Ca clay an dinterfacial gas overpressure in waste disposal context.Applied Clay Science,2000,17:85-97.
    [72]Oscarson D W,Dixon D A,Hume H B.Mass transport through defected bentonite plugs.Applied Clay Science,1996,11:127-142.
    [73]Cho W J,Lee J O,Chun K S.Influence of temperature on hydraulic conductivity in compacted bentonite.McKinley I G,McCombie C,eds.Scientific Basis for Nuclear Waste Management ⅩⅪ,Materials Research Society Symposium Proceedings.Pennsylvania:1998,506:305-311.
    [74]Martin M,Cuevas J,Leguey S.Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite.Applied Clay Science,2000,17:55-70.
    [75]Aldullah W S,Alshibli K A,Al-Zou'bi M S.Influence of pore water chemistry ohn the swelling behavior of compacted clays.Applied Clay Science,1999,15:447-462.
    [76] Hokmark H, Karnland O, Pusch R. A technique for modeling transport/conversion process applied to smectite to illite conversion in HLW buffers. Engineering Geology, 1997, 47: 367-378.
    [77] Adeleye S A. Rautiu R, White D A. Clay minerals as sorbents for nuclear reactor activation products. Journal of Materials Science, 1995,30: 583-586.
    [78] Choi J W, Oscarson D W. Diffusive transport through compacted Na-and Ca-bentonite. Journal of Contaminant Hydrology, 1996,22: 189-202.
    [79] Cheung S C H. Methods to measure apparent diffusion coefficients in compacted bentonite clays and data interpretation. Canadian Journal of Civil Engineering, 1989,16:434-443.
    [80] Cheung S C H. A new interpretation of measured ionic diffusion coefficient in compacted bentonite-based materials. Engineering Geology, 1990,28: 369-378.
    [81] Nagy N M, Konya J. The interfacial processes between calcium-bentonite and zinc ion. Colloids and Surfaces, 1988,223-235.
    [82] Ochs M, Lothenbach B, Yui M. Appliction of thermodynamic sorption models to distribution coefficients of radionuclides in bentonite. McKinley I G, McCombie C, eds. Scientific Basis for Nuclear Waste Management XXI. Materials Research Society Symposium Proceedings. Pennsylvania: 1998, 506: 765-772.
    [83] Idemitsu K, Tachi Y, Furuya H. Diffusion of Cs and Sr in comnpacted bentonites under reducing conditions and in the presence of corrosion products of iron. McKinley I G, McCombie C, eds. Scientific Basis for Nuclear Waste Management XXI. Materials Research Society Symposium Proceedings. Pennsylvania: 1998, 506: 351-358.
    [84] Inagaki Y, Sakata H, Furuya H. Effects of water redox conditions and presence of magnetite on leaching of Pu and Np from HLW glass. McKinley I G, McCombie C, eds. Scientific Basis for Nuclear Waste Management XXI. Materials Research Society Symposium Proceedings. Pennsylvania: 1998,506: 177-184.
    [85] Gungor N, et al. Interactions of Polyacrylamide Polymer with Bentonite in Aqueous Systems. Materials Letters, 2001,48(3-4): 168-175.
    [86] Rutqvist J,et al. Coupled Thermo-hydro-mechanical Analysis of a Heater Test in Fractured Rock and Bentonite at Kamaishi Mine-comparison of Field Results to Predictions of four Finite Element Codes. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(1): 129-142.
    [87] Pedersen K., et al. Cultivability of Microorganisms Inrtoduced into a compacted Bentonite Clay Buffer Under High-lever Radioactive Waste Repository Conditions. Engineering Geology, 2000, 58: 149-161.
    [88] Pedersen K, et al. Mixing and Sulphate-reducing Activity of Bacteria in Swelling, Compacted Bentonite Clay under High-Level Radioactive Waste Repository Conditions. Journal of Applied Microbiology, 2000, 89(6): 1038-1047.
    [89] Tachi Y, et al.Experimental and Modeling Studies on Sorption and Diffusion of Radium in Bentonite. Journal of Contaminant Hydrology, 2001,47(2-4): 171-186.
    [90]Guevs J,et al.Hydrothermal Alteration of a Saponitie Bentonitic Mineral Reactivity and Evolution of Surface Properties.Clay Minerals,2001,36(1):61-74.
    [91]Rassineuex F,et al.Expandability-layer Stacking Relationship During Experimental Attetation of a Wyoming Bentonite in PH13.5 Solution at 35 and 60(omicron)C.Clay Minerals,2001,36(2):197-210.
    [92]Kawatra S K,et al.Developing and Understanding the Bentonite Fiber Bonding Mechanism.Minerals Engineering,2001,14(6):647-659.
    [93]Li L,et al.Heavy Metal Sorption and Hydraulic Conductivity Studies Using Three Types of Bentonite Admixes.Journal of Environmental Engineering-Asce,2001,127(5):420-429.
    [94]Buckingham E.Stidies of the movement of soil moisture.U.S.D.A.Bur.Of Soils,Bulletin No.38,1907.
    [95]Gardner W,Widtsoe J A.The movement of soil moisture.Soil Sci,1921,vol.11:215-232.
    [96]Richards L A.The usefulness of capillary potential to soil moisture and plant investigators.J.Agric.Res,1928,vol.37:719-742.
    [97]Scofield R.The pF of the water in soil.Trans,3rd Int.Congress Soil Sci,1935,vol.2:37-48.
    [98]Edlefsen N E,Anderson A B C.Thermodynamics of soil moisture.Hilgardia,1943,vol.15:31-298.
    [99]Childs E C,Collis-George N.The permeability of porous materials.Proceedings of the R oyal Society of London.Series A,1948,201:392-405.
    [100]Bolt G H,Miller R D.Calculation of total and component potentials of water in soil.Amer.Geophys.Union Transportation,1958,vol.39:917-928.
    [101]Corey A T,Kemper W D.Concept of total potential in water and its limitations.Soil Sci,1961,vol.91,No.5:299-305.
    [102]Croney D,Coleman J D.Soil thermodynamics applied to the movement of moisture in road foundations,in Proc.7th Int.Cong.Appl.Mech,1948,vol.3:163-177.
    [103]Croney D,Coleman J D,Lewis W A.Calculation of the moisture distribution beneath structures.Cov.Eng.L.,1950,vol.45:524.
    [104]Aitchison G D.Ed.Moisture equilibrium and moisture changes in soils beneath covered areas.A Symp.in Print,Aitchison,G.D.Ed.Australia:Butterworths,1965,278.
    [105]Krahn J,Fredlund D G.On total matric and osmotic suction.J.Soil.Sci,1972,vol.114,No.5,339-348.
    [106]Wray W K.The principle of soil suction and its geotechnical engineering applications,in Proc.5th Int.Conf.Expansive Soils(Adelaide,South Australia),May 1984,114-119.
    [107]Fredlund D G,Rahardjo H.State of development in the measurement of soil suction,in Proc.Int.Conf.Eng.Problems on Regional Soils(Beijing,China),Aug 1988,582-588.
    [108]Richards B G.Measurement of the free energy of soil moisture by the psychrometric technique using thermistors,in Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas,A Symp.in Print.Australia,Butterworths,1965,39-46.
    [109] Likos W J, Lu N. Automated humidity system for measuring total suction, characteristics of clay. Geotechnical Testing Journal, 2003,26(2): 179-190.
    [110] Hilf J W. An investigation of pore-water pressure in compacted cohesive soils. Ph.D dissertation, Tech. Memo. No.654, U.S. Dep. of the Interior, Bureau of Reclamation, Design and Construction Div., Denver, CO, 654pp., 1956.
    [111] Bishop A W, Donald. I. B. The experimental study of partly saturated soil in the triaxial apparatus. Proc. 5th Int. Conf. Soil Mech. Found. Eng. (Paris, France), vol.1: 13-21,1961.
    [112] Gibbs H J, Coffey C T. Techniques for pore pressure measurements and shear testing of soil. Proc. 7-(th) Int. Conf. Soil Mech. Found. Eng. (Mexico), vol.1: 151-157,1969.
    [113] Fredlund D G. Volume change behavior of unsaturated soils. Ph.D. dissertation, Univ. of Alberta, Edmonton, Alta., Canada, 490pp, 1973
    [114] Ho D Y F, Fredlund D G. Increase in shear strength due to soil suction for two Hong Kong soils, in Proc. ASCE Geotech. Conf. Eng. and Construction in Tropical and Residual Soils (Honolulu, HI): 263-295, Jan, 1982
    [115] Gan J K M. Fredlund D G. Multistage direct shear testing of unsaturated soils. ASTM, Geotech, Testing J., vol. 11(2): 132-138,1988
    [116] Feng M, Fredlund D G, Shuai F. A laboratory study of hysteresis of a thermal conductivity soil suction sensor. Geotechnical Testing Journal, 2002,25(3): 1-9.
    [117] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 1980, 6(3): 574-582.
    [118] Dalton F N, Herkelrath W N, Rawlins D S, Rhoades J D. Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science, 1984,224(4652): 989-990.
    [119] Kalinski R J, Kelly W E. Estimating water content of soils from electrical resistivity. Geotechnical Testing Journal, 1993,16(3): 323-329.
    [120] Benson C H, Bosscher P J. Time-domain reflectometry (TDR) in geotechnics: a review, nondestructive and automated testing for soil and rock properties. ASTM SPT 1350 (Eds. W.A. Marr and C.E. Fairhurst), ASTM, West Conshohochen, PA, 1999
    [121] Amente G, Baker J M, Reece F C. Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Science Society of America Journal, 2000, 64(6): 1931-1939.
    [122] Yu X, Drnevich V P. Soil water content and dry density by time domain reflectometry. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 922-934.
    [123] White I, Zegelin S J, Topp G C, Fish A. Effect of bulk electrical conductivity on TDR measurement of water content in porous media. In Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, Illinois, 1994, U.S. Bureau of Mines, Special Publication SP 19-94: 294-308.
    [124] Leong E C, Tripathy S, Rahardjo R. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique.Getechnique,2003,53(2):173-182.
    [125]Krahn J.Fredlund D G.On total matric and osmotic suction.J.Soil.Sci,1972,vol.114(5):339-348.
    [126]Gardner R.A method of measuring the capillary tension of soil moisture over a wide moisture range.Soil Science,1937,vol.43(4):277-283.
    [127]Fawcett R G,Collis-George N.A filter paper method for determining the moisture characteristics of soil.Australian Journal of Experimental Agriculture and Animal Husbandry,1967,7:162-167.
    [128]McQueen I S,Miller R F.Calibration and evaluation of a wide range method of measuring moisture stress.J.Soil Sci,1968,vol.106(3):225-231.
    [129]Ho D Y F.Measurement of soil suction using the filter paper technique.Internal Report,IR-Ⅱ,Transportation and Geotech.Group,Dep.Of Civil Eng.,Univ.of Saskatch ewan,Saskatoon,Sask.,Canada,pp,90,1979.
    [130]Tang R K W.Measurement of soil suction by filter paper method,phases Ⅰ-Ⅴ.Laboratory Reports,Dep.of Civil Eng.,Univ.of Saskatchewan,Saskatoon,Sask.,Canada,1978.
    [131]McKeen R G.Suction studies:filter paper method.Design of airport pavements for expansive soils,final report(No.DOT/FAA/RD-81/25),U.S.Dep.of Transportation,Federal Aviation Administration,Systems Research and Development Service,Washington,DC,1981.
    [132]Khan A H.Evaluation of laboratory suction tests by filter paper technique for prediction of heave in expansive soils.Report No.GM-81-001,Dep.of Civil Eng.,Univ.of Western Australia,1981.
    [133]Ching R K H,Fredlund D G.A small Saskatchewan town copes with swelling clay problems.Proc.5~(th)Int.Conf.Expansive Soils,May 1984,306-310.
    [134]Gallen P M.Measurement of soil suction using the filter paper methods:a literature review;final report.Internal Report,Transportation and Geotech.Group,Dep.of Civil Eng.,Univ.of Saskatchenwan,Saskatoon,Sask.,Canada,pp,32,1985.
    [135]McKeen R G.Validation of procedures for pavement design on expansive soils.Final Report.U.S.Dep.Of Transportation,Washington,DC,1985.
    [136]Chandler R J,Gutierrez C I.The filter-paper method of suction measurement.Geotechnique,1986,vol.36:265-268.
    [137]Leong E C,He L,Rahardjo H.Factors affecting the filter paper method for total and matric suction measurements.J Geotechnical Testing,Sept 2002,25(3):322-333.
    [138]Fredlund D G,Morgenstern N R,Widger R A.The shear strength of unsaturated soils.Canadian Geotechnical Journal,1978,15(3):313-321.
    [139]Vanapalli S K,Fredlund D G,Pufahl D E.The influence of soil structure and stress history on the soil-water characteristics of a comoact till.Geotechnique,1999,49(2):143-159.
    [140]俞培基,陈愈炯.非饱和土的水—气形态及其与力学性质的关系.水利学报,1965,(1):16-23.
    [141]包承纲.非饱和压实土的多相形态及孔压消散问题.第三届全国土力学和基础工程会议论文集,1979.
    [142]包承纲.非饱和土的性状及膨胀土边坡稳定问题.岩土工程学报.2004年1月,1-14
    [143]Brooks R H,Corey A T.Hydraulic properties of porous media Colorado State Univ.,Hydrol.Paper,no.3,1964.
    [144]van Genuchten M T A.Closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci.Soc.Am.J.1980,44:892-898.
    [145]Lebedeff A F.The movement of ground and soil waters.Proc.1st Cong.Soil,1927,1:459-494.
    [146]Sillers W S,Fredlund D G Statistical assessment of soil-water characteristic curve models for geotechnical engineering,Canadian Geotechnical Journal,2001,vol.38:1297-1313.
    [147]龚壁卫,刘艳华,詹良通.非饱和膨胀土残余含水量与缩限的关系.南水北调膨胀土渠坡稳定和滑动早期预报研究论文集,长江科学院,1981.
    [148]Russell M B.Soil moisture sorption curves for four Iowa soils.Soil Science of America Proceedings,1939,4:51-54.
    [149]Rogowski A S.Watershed physics:Model of the soil moisture characteristic.Water Resources Research,1971,7:1575-1582.
    [150]Sudnitsin I I.Soil moisture pressure in some climate zones.Proceedings of Wagneningen Symposium,1968,vol.1:323-329.
    [151]McQueen I S,Miller R F.Calibration and evaluation of a wide-range gravimetric method for measuring moisture stress.Soil Science,1968,106:225-231.
    [152]Williams J,Preeble R E,Williams W T,Hignent C T.The influence of texture,structure and clay mineralogy on the soil moisture characteristics.Australian Journal of Soil Research,1983,21:15-32.
    [153]Gardner W R.Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water-table.Soil Sci.vol.85(4),1958.
    [154]Mckee C R,Bumb A C.The important of unsaturated flow parameters in designing a monitoring system for hazardous waters and environmental emergencies,in Proceedings,Haazardous Materials Control Research Institute National Conference,Houston,Tex.March 1984,50-58.
    [155]Mckee C R,Bumb A C.Flow-testing coalbed methane production wells in presence of water and gas.SPE Formation Evaluation,1987,599-608.
    [156]Fredlund D G,Xing A Q.Equations for the soil-water characteristic curve.Canadian Geotechnical Journal,1994,vol.31:521-532.
    [157]Mualem Y.Hydraulic conductivity of unsaturated soils:prediction and formulas.No.9.Part Ⅰ.Edited by Klute,A.American Society of Agronomy.Madison.Wis.1986.21:799-823.
    [158]Christensen H R.Permeability-capillary potential curves for three prairie soils.Journal Paper N o.J-1167 of Proj.504 of Iowa Agricultural Experiment Station.1943:381-390.
    [159]Philip J R.Linearized unsteady multi dimensional infiltration.Water Resources Res.22, 1986:17 17-1727.
    [160]Arbhabhirama A,Kridakom C.Steady downward flow to a water table.Water Resources Res.Vol.4,1968.
    [161]Richards L A.Capillary conduction of liquids through porous medium.J.Physics,vol.1:318-333,1931.
    [162]Moore R E.Water conduction from shallow water tables.Hilgardia,vol.12(6):383-426,1939.
    [163]Gardner W R.Calculation of capillary conductivity from pressure plate outflow data.Soil Sci.S oc.Am.Proc.20,1956:317-320.
    [164]Campbell G S.A simple method for determining unsaturated conductivity from moisture retention data.Soil Sci.117,1974:311-31.
    [165]Davidson J M,Stone L R,Nielsen D R,Larne M E.Field measurement and use of soil-w ater properties.Water Resources Res.5,1969:1312-1321.
    [166]Averjanov S F.A bout permeability of subsurfaces oils in case of incomplete saturation.In Eng.Collect.,vol.7,1950:19-21.
    [167]Yuster S T.Theoretical considerations of multiphase flow in idealized capillary systems.Proc.W orld Pet.Congr.,3~(rd),2,1951:437-445.
    [168]Irmay S.On the hydraulic conductivity of unsaturated soils.Trans.Am.Geophys.Union,vol.35,1954.
    [169]Corey A T.The interrelation between gas and oil relative permeability.Producer's Monthly,19,1954:7-10.
    [170]Mualem Y.A new model for prediction the hydraulic conductivity of unsaturated porous media.Water Resources Res.12,1976:513-522.
    [171]Burdine N T.Relative permeability calculations from pore size distribution data.Journal of Petroleum Technology.1953.5:71-79.
    [172]Childs E C,Collis-George N.The permeability of porous materials.Proc.Royal Sot.,vol.20 1A,1950:392-405.
    [173]Huang S Y,Barbour S L,Fredlund D G.Development and verification of a coefficient of permeability function for a deformable,unsaturated soils.Canadian Geotechnical Journal.1998.35:411-425.
    [174]Mitchell J K,Hooper D R,Campanella R G.Permeability of compacted clay.Soil Mechanics and Foundations Division,ASCE.91:SM4,1965:41-65.
    [175]Lloret A,Alonso E E.Consolidation of unsaturated soils including swelling and collapse b ehavior.Geotechnique,vol.30(4),1980:449-477.
    [176]Chang C S,Duncan J M.Consolidation analysis for partly saturated clay by using an elastic-plastic effective stress-strain model.International Journal for Numerical and Analytical Methods Geomechanics.7,1983:35-55.
    [177]Huang S Y.Evaluation and laboratory meastremet of the coefficient of permeability in deformable unsattuated soils.Ph.D.dissertation,Univ.of Saskatchewan,Saskatoon,Sask., Canada,1994.
    [178]Klute A.The determination of the hydraulic conductivity and diffusivity of unsaturated soils.Soil Sci.,vol.113,264-276,1972.
    [179]Olson R E,Daniel D E Measurement of the hydraulic conductivity of fine-grained soils.Permeability and Groundwater Contaminant Transport,ASTM Special Tech.Publ.746,T.F.Zimmie and C.O.Riggs,1981,18-64.
    [180]Ostashev N A.The law of distribution of moisture in soils and methods for the study of same.Proc 1~(st)Int Conf.Soil Mech Found Engrg,1,182,1936.
    [181]Boulichev V.Apparature for testing compressibility and capillary properties of soils.Proc 1~(st)In t.Conf.on Soil Mech & Found Engrg.2 37-38,1936.
    [182]Bishop A W,Morgensterm N R.Stability coefficients for earth slopes.Geotechnique,10,129-147,1960.
    [183]Bishop A W,Blight G E.Some aspects of effective stress in saturated and unsaturated soils.Geotechnique,13,177-197,1963.
    [184]Black D K,Croney,D.Pore water pressure and moisture content studies under experimental pavements.Proc.4~(th)Int.Conf.Soil Mech & Found.Engrg.2,94-103,1957.
    [185]Willams A B.Studies of shear strength and bearing capacity of some partially saturated sands.Pr oc 4~(th)Int.Conf.Soil Mech & Found Engrg.2,453-456,1957.
    [186]Aitchison G D.Separate rote of site investigation quantification of soil properties and selection of operational environment in the determination of foundation design of expansive soils.Proc 3rd Asian Regional Conf.Soil Mech & Found Engrg.3,72-77,1967.
    [187]Fredlund D G,Rahardjo H.Soil mechanics for unsaturated soils.John Wiley Sons,Inc.New york,1993.
    [188]Terzaghi K.Theoretical soil mechanics.New York,Wiley,1932.
    [189]Skempton A W.Efective stress in soils.Concerte and rocks.Proc Conf.on Pore Pressure and S ucfion in Soils.Butterworths,4-16,1960.
    [190]Jennings J E,Burland J B.Limitations to the use of effective stresses in partly saturated soils.Geotechnique,12,125-144,1962.
    [191]Tayor A.Ashcroft GL.Physicy Edaphology.San Francisco CA.1972.
    [192]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报,16,63-69,1994.
    [193]Jiang M J,Leroueil S,Konrad J M.Insight into shear strength functions of unsaturated granulates by DEM analyses.Computers and Geotechnics,2004,vol.31(6):473-489.
    [194]姚道坤等.中国膨润土矿床及其开发应用,1994,地质出版社
    [195]Mitchell J K.Fundamentals of Soil Behavior.2nd Edition.John Wiley & Sons Inc.,NY,1993.
    [196]Pusch R.Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite.Canadian Geotechnical Journal,1982,19:381-387.
    [197]Gouy G.Sur la constitution de la charge electrique a la surface d'un electrolyte.Anniue Physique,Paris,1910,vol.9:457-468.
    [198]Chapman D L.A contribution to the theory of electrocapillarity.Philosophical Magazine,1913,vol.25,n°6,pp.475-481.
    [199]Griffiths F J,Joshi R C.Change in pore-size distribution due to consolidation of clays.Geotechnique,1989,39(1):159-167.
    [200]Al-Mukhtar M.Macroscopic behavior and microstructural properties of a kaolinite clay under controlled mechanical and hydraulic state.In Proceedings of the 1st International Conference on Unsaturated Soils(UNSAT 95),Paris,France(Eds.E.E.Alonso and P.Delage),Balkema,Rotterdam:3-9.1995.
    [201]Garcia-Begochea I,Lovell C W,Altschaeffl A G.Pore distribution and permeability of silty clay.Journal of Geotechnical Engineering,1979,105(7):839-856.
    [202]Romero E,Gens A,Lloret A.Water permeability,water retention and microstructure of unsaturated compacted Boom clay.Engineering Geology,1999,54:117-127.
    [203]Delage P,Graham J.Mechanical behaviour of unsaturated soils:Understanding the behaviour of unsaturated soils requires reliable conceptual models.In Proceedings of the 1st International Conference on Unsaturated Soils(UNSAT 95),Paris,France(Eds.E.E.Alonso and P.Delage),Balkema,Rotterdam:1223-1256,1996.
    [204]Washburn E W.A method of determining the distribution of pore sizes in a porous material.Proceedings of the National Academy of Sciences,7:115.1921.
    [205]Sridharan A,Sreepada R A,Sivapullaiah P V.Swelling pressure of clays.Geotechnical Testing Journal,GTJODJ,1986,9(1):24-33.
    [206]Muller-Vonmoos M,Kahr G.Bereitstellung der Bentonite fur die Labornntersuchung.Technischer Bericht 82-04,The Swiss National Cooperative for the Storage of Radioactive Waste(NAGRA),Wettingen,Switzerland,1982.
    [207]Gray M N,Cheung S C,Dixon D A.Influence of Sand Content on Swelling Pressures and Structure Developed in Statically Compacted Na-Bentonite(Atomic Energy of Canada Ltd.,Pinawa(Manitoba).Whiteshell Nuclear Research Establishment.)Report:AECL-7825,1984,31p.
    [208]Kanno T,Wakamatsu H.Moisture adsorption and volume change of partially saturated bentonite buffer materials.Scientific Basis for Nuclear Waste Management ⅩⅥSymposium,1992,425-30.
    [209]Komine H,Ogata N.Prediction for swelling characteristics of compacted bentonite.Canadian Geotechnical Journal,1996,vol.33(1):11-22.
    [210]ENRESA FEBEX project—full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock.Final Report,Publication Tecnica 1/2000,Empresa Nacional de Residuos Radiactivos SA(ENRESA),Madrid,Spain,2000
    [211]Herbert H J,Moog H C.Untersuchungen zur Quellung yon Bentoniten in hochsalinaren Losungen.Abschlussbericht GRS-179,Forderkennzeichen 02 E 8986 5(BMBF).Gesellschaft fur Anlagen und Reaktorsicherheit(GRS)mbH,Germany,2002
    [212]谢云,陈正汉,李刚,孙树国,方祥位.南阳膨胀土三向膨胀力规律研究.后勤工程学院学报,2006,1:11-14.
    [213]李献民,王永和.膨胀黏土胀缩变形规律的回归分析.湘潭矿业学院学报,2003,vol.18(2):30-33.
    [214]刘月妙等.我国高放废物处置库缓冲/回填材料压实膨胀特性研究.铀矿地质,2001,17(1):44-47.
    [215]徐国庆,李永利,顾绮芳等.膨润土矿床筛选.核工业北京地质研究院内部报告,1996.
    [216]温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能.岩石矿物学杂志,2005,vol.24(6):583-586.
    [217]刘月妙,温志坚.用于高放射性废物深地质处置的粘土材料研究.矿物岩石,2003,vol.23(4):42-45.
    [218]Pusch R.Ismontmorillonite-rich clay of MX280 type the ideal buffer for isolation of HLW.Stockholm.Swedish Nuclear Fuel and Waste Management Co.1999,6-58.
    [219]Tokai.Research and development on geological disposal of high-level radioactive waste (first progress report).Power Reactor and Nuclear Fuel Development Corporation,1992,9
    [220]温志坚,神德敬.高庙子钠基膨润土静力学性能初析,世界核地质科学,Vol.22(4):211-214.2005.
    [221]Takaji K,Suzuki S.Static mechanical properties of buffer material(JNC TN8400 99-041).Ibaraki:Japan Nuclear Cycle Development Institute,1999.
    [222]朱国平,刘晓东,罗太安.内蒙古高庙子膨润土热学性能研究.资源环境与工程,vol.19(3):2005,220-222.
    [223]国家质量技术监督局等著.土工试验方法标准(教材).北京:中国计划出版社,1999,138-139.
    [224]沈珍瑶,李国鼎.高压实膨润土的导热性能.大坝观测与土工测试,1998,(3):13-16.
    [225]朱明.硅酸盐热工基础试验.武汉:武汉工业大学出版社,1996,69-72.
    [226]温志坚.中国高放废物处置库缓冲材料物理性能.岩石力学与工程学报,2006,vol.25(4):794-800.
    [227]PNC.Research and development on geological disposal of high-level radioactive waste:the first progress report(H3).PNC:TN 1410,1992.
    [228]李国鼎,宋乾武.高放废物处置库缓冲材料膨胀势研究.高放废物地质处置研究论文集(第一集),中国核工业总公司科技局,1992,38-44.
    [229]刘月妙,蔡美峰,王驹,温志坚.高放废物地质处置库预选缓冲材料压缩性能研究.铀矿地质,2007,vol.23(2):91-95.
    [230]Cerato A B,Lutenegger A J.Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether(EGME)method.Geotechnical Testing Journal,2002,25(3):315-321.
    [231]Grim R E.Clay Mineralogy.2nd ed.McGraw-Hill,NY,1968.
    [232]Mitchell J K.Fundamentals of Soil Behavior.2nd Edition.John Wiley & Sons Inc.,NY.1993.
    [233]Delage P,Graham J.Mechanical behaviour of unsaturated soils:Understanding the behaviour of unsaturated soils requires reliable conceptual models.In Proceedings of the 1st International Conference on Unsaturated Soils(UNSAT 95),Paris,France(Eds.E.E.Alonso and P.Delage),Balkema,Rotterdam:1223-1256,1996.
    [234]Delage P,Audiguier M,Cui Y J,Howat M.The microstructure of a compacted silt.Canadian Geotechnical Journal,1996,33:150-158.
    [235]Cui Y J,Loiseau C,Delage P.Microstructure changes of a confined swelling soil due to suction controlled hydration.In Proceedings of the 3rd International Conference on Unsaturated Soils(UNSAT 2002),Recife,Brazil(Eds.J.F.T.Jucá,T.M.P.de Campos,and F.A.M.Marinho),Swets & Zeitlinger,Lisse:593-598,2002.
    [236]Sridharan A,Altschaeffl A G,Diamond S.Pore size distribution studies.Journal of Soil Mechanics and Foundation Engineering,1971,97,(SM 5):771-787.
    [237]Al-Mukhtar M.Macroscopic behavior and microstructural properties of a kaolinite clay under controlled mechanical and hydraulic state.In Proceedings of the 1st International Conference on Unsaturated Soils(UNSAT 95),Paris,France(Eds.E.E.Alonso and P.Delage),Balkema,Rotterdam:3-9,1995.
    [238]Dakshinamurthy V.A new method to predict swelling using hyperbola equation.Geotechnical Engineering,Journal of South East Asian Society of Soil Engineering,1978,9,29-38.
    [239]Rao N S,Kodandaramaswamy K.The prediction of settlements and heave in clays.Canadian Geotechnical Journal,1981,17,623-631.
    [240]Cui Y J,Delage P.Yielding and plastic behavior of an unsaturated compacted silt.Geotechnique,1996,46(2):291-311.
    [241]Lagerwerff J V,Ogata G,Eagle H E.Control of osmotic pressure of culture solutions with polyethylene glycol.Science,1961,133:1486-1487.
    [242]Zur B.Osmotic control the matric soil water potential.Soil Science,1966,102:394-398.
    [243]Kassif G,Shalom A.Experimental relationship between swell pressure and suction.Geotechnique,1971,21(3):245-255.
    [244]Komornik A,Livneh M,Smucha S.Shear strength and swelling pressure and suction.Geotechnique,1980,21(3):245-255.
    [245]Delage P,Suraj de Silva,G.P.R.De Laure,E.Un nouvel appareil triaxial pour les sols nonsatures.Proceedings of the 9~(th)European Conference on soil mechanics and foundation Engineering,Dublin,1987,Vol.1:25-28.
    [246]Delage P,Suraj de Silva,G.P.R.,Vicol,T.Suction controlled testing of non saturated soils with an osmotic consolidometer.Proceedings 7th International Conference on Expansive Soils,Dallas,1992,206-211.
    [247]Dineen K,Burland J,A new approach to osmotically controlled oedometer testing.In:Alonso E E,Delage P.Proceedings of the Ist International Conference on Unsaturated soils.Balkema/Pressed des Ponts et Chaussees,Paris,1995,vol.2:459-465.
    [248]Delage P,Howat M,Cui Y J.The relationship between suction and swelling properties in a heavily compacted unsaturated clay.Engineering Geology,1998,vol.50(1-2):34-48.
    [249]Williams J,Shaykewich C F.An evalution of polyethylene glycol(PEG)6000 and PEG 20000 in the osmotic control of soil water matric potential.Canadian Journal of Soil Science,1969,102(6):394-398.
    [250]Gens A,Alonso E E.A framework for the behavior of unsaturated expansive clays.Canadian Geotechnical Journal,1992,29:1013-1032.
    [251]Delage P,Guy Lefebvre.Study of the structure of a sensitive Champlain clay and of its evolution during consolidation.Can.Geotech,1984,21:21-35.
    [252]Agus S S,Schanz T.Effect of Shrinking and Swelling on Microstructuresand Fabric of a Compacted Bentonite-Sand Mixture.Proceedings of International Conference on Problematic Soils,May 2005,25-27.
    [253]谭罗荣.岩土材料孔径分布测试结果的修正.岩土力学,2002,vol.23(3):263-267.
    [254]Saiyouri N,Hicher P Y,Tessier D.Microstructural approach and transfer water modeling in highly compacted unsaturated swelling ckays.Mechanics of Cohesive-Frictional Materials,2000,vol.5(1):41-60.
    [255]Bolt G H.Physico-chemical analysis of the compressibility of pure clays.Geotechnique,1956,6(2):86-93.
    [256]Van Olphen,H.An introduction to clay colloid chemistry:for clay technologists,geologists and soil scientists.Interscience,New York,1963.
    [257]Sridharan A.Double layer theory and compressibility of clays Geotechnique,1982,32(2):133-144.
    [258]Marcial D,Delage P,Cui Y J.On the high stress compression of bentonites.Canadian Geotechnical Journal,2002,39:812-820.
    [259]Tripathy S,Schanz T,Sridharan,A.Swelling pressures of compacted bentonites from diffuse double layer theory.Canadian Geotechnical Journal,2004,41:437-450.
    [260]Bear J.Dynamics of fluids in porous media.American Elsevier Publishing Company,Inc.New York,1972.
    [261]Dixon D A,Cheung S C H,Gray M N,Davidson B C.The hydraulic conductivity of dense clay soils.Proceedings of the 40th Canadian Geotechnical Conference,Regina,Saskachewan-Canada,1987,pp.389-396.
    [262]Haug M D,Wong L C.Impact of molding water content on hydraulic conductivity of compacted sand-Bentonite.Canadian Geotechnical Journal,1992,29:253-262.
    [263]Corey A T,Klute A.Application of the Potential Concept to Soil Water Equilibrium and Transport.Soil Science Society of America Journal,1985,49:3-11.
    [264]Richards S J,Weeks L V.Capillary Conductivity Values from moisture Yield and Tension Measurements in Soil Columns.Soil Science Society of America Proceedings,1953,Vol.17,n°3,pp.206-209.
    [265]Weeks L V,Richards S J.Soil-Water Properties Computed from Transient Flow Data.Soil Science Society of America Proceedings,1967,Vol.31,n°6,pp.721-725.
    [266]Welleling J,Wit K E.An infiltration method for detennination of the capillary conductivity of undisturbed soil cores.IASH/AIHS-UNESCO,publication,1966,n°82 AIHS,pp.223-234.
    [267]Vachaud G.Analyse des profils hydriques et détermination de K(θ).Bulletin du B.R.G.M.(deuxième série),Section Ⅲ,1969,n°4,pp.101-105.
    [268]Vauclin M.Etude expérimentale et numérique du drainage de nappes àsurface libre.Influence de la zone non saturée.Thèse de doctorat,Université scientifique et médicale de Grenoble,196 p,1975.
    [269]Hamilton J M,Daniel D E,Olson R E.Measurement of hydraulic conductivity of partially saturated soils.American Society for Testing and Materials,Spec.Tech.Pub.746,Philadelphia,pp.182-196,1981.
    [270]Daniel D E.Measurement of Hydraulic Conductivity of Unsaturated Soils with Thermocouple Psychrometers.Soil Science Society of America Journal,Vol.46,n°6,pp.1125-1129,1982.
    [271]Daniel D E.Permeability Test for Unsaturated Soil.Geotechnical Testing Journal,Vol.6,n°2,1983,pp.81-86,1983.
    [272]Vicol T.Comportement hydraulique et m6canique d'un limon non saturé.Thèse de doctorat,Ecole Nationale des Ponts et Chaussées,Pads,257 p,1990.
    [273]Corey A T.Measurement of air and water permeability in unsaturated soil.Proceedings of the Soil Science Society of America,1957,Vol.21,pp.7-11.
    [274]Nielsen D R,Biggar J W.Measuring capillary conductivity.Soil Science Society,1961,Vol.92,pp.192-193.
    [275]Klute A.Laboratory measurement of hydraulic conductivity of unsaturated soil.In C.A.Black et al.(Ed)Methods of soil analysis,part I.American Society of Agronomy,Madison,1965,Vol.9,pp.253-261.
    [276]Fleureau J M,Taibi S.Water-air permeabilities for unsaturated soils.Proceedings of the 1st International Conference on Unsaturated Soils UNSAT'95,Paris,1995,Vol.2,pp.479-484.
    [277]Gardner W R.Calculation of capillary conductivity from pressure plate outflow data.Soil Science Society of America Journal,Proc.20,pp.317-320,1956.
    [278]Miller E E,E1rick D E.Dynamic determination of capillary conductivity extended for non-negligible membrane impedance.Soil Science Society of America Proceedings 22,pp.483-486,1958.
    [279]Kunze R J,Kirkham D.Simplified accounting for membrane impedance in capillary conductivity determinations.Soil Science Society of America Proceedings n°26,pp.421-426,1962.
    [280]Peck A J.Diffusivity determination by a new outflow method.IASH/AIHS-UNESCO,publication n~82 AIHS,pp.191-202,1966.
    [281]Wind G P.Capillary conductivity data estimated by a simple method.Symposium of water in unsaturated zone,Wageningen,IASH/AISH,UNESCO,Vol.1,pp.181-191,1966.
    [282] Ed Diny S, Masrouri F, Tisot J P. Determination de la conductivité hydraulique d'un limon non saturé. Revue Francaise de Géotechnique, n°62, pp. 67-74,1993.
    [283] Meerdink J S, Benson C H, Khire M V. Unsaturated Hydraulic Conductivity of Two Compacted Barrier Soils. Journal of Geotechnical Engineering, 1996, Vol. 122, n°7, pp. 565-576.
    [284] Yong R N, Mohamed A M O. A study of particle interaction energies in wetting of unsaturated expansive clays. Canadian Geotechnical Journal, 1992,29, pp. 1060-1070.
    [285] Loiseau C. Transferts d'eau et couplages hydromécaniques dans les barrières ouvragées. 博士学位论文, 2001.
    
    [286] Biot M A. General theory of three dimensional consolidation. J. Appl. Phys.12, 155-164, 1941.
    [287] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. J. Acoust Soc. of America, 1956,28: 168-191.
    [288] Biot M A. Generalized theory of acoustic propagation in porous dissipation media J. Acoust. Soc of America, 1962, 34: 1254-1264.
    [289] Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics. 1984, 8:71-96.
    [290] Li X K, Zienkiewicz O C, Xie Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. International Journal of Numerical Methods, 1990,6:125-135.
    [291] Li X K, Thomas H R., Fan Y Q. Finite element method and constitutive modelling and computation for unsaturated soils. Computer Methods in Applied Mechanics and Engineering, 1999,169: 135-159.
    [292] Li X K, Zienkiewicz O C. Multiphase flow in deforming porous media and finite element so lutions. Computers and Structures, 1992, vol.45(2): 211-22.
    [293] Schrefler B A, Scotta R. A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3223-3246.
    [294] Simoni L, Schrefler B A. A staggered finite-element solutions for water and gas flow in def orming porous media, Communications in Applied Numerical Methods, 1991, 7: 213-223.
    [295] Thomas H R, He Y, Sansom M R, Li C L W. On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils. Engineering Geology, 1996, 41: 197-218.
    [296] Thomas H R, Ferguson W J. A fully coupled heat and mass transfer model incorporating c ontaminated gas transfer in an unsaturated porous medium. Computersan and Geotechinics, 1999,24: 65-87.
    [297] Olivella S, Carrera J, Gens A, Alonso E E. Non-isothermal Multiphase Flow of Brine and Gas through Saline media. Transport in Porous Media, 1994, 15: 271-293.
    [298]Fredlund D G,Rahardjo H.Soil mechanics for unsaturated soils.John Wiley Sons,Inc.New York,1993.
    [299]Schroeder C,et al.PASACHALK:Mechanical behavior of partially and multiphase saturated chalks fluid-skeleton International:main factor of chalk oil reservoirs compaction and related subsidence.Final Report.Universite de Liege-LGIH,Universite de Leige-DIG,Ecol Nationale des Ponts et Chaussees-CERMES,TotalFinaELF Exploration Norge AS.2000.
    [300]Alonso E E,Gens A,Josa A.A constitutive model for partially saturated soils.Ceotechnique,1990,40(3):405-430.
    [301]Huyakom P S,Pinder G.E Computational Methods in Subsurface Flow,Academic Press,Inc.ISBN 0-12-363480-6.1983.
    [302]Olivella S,Gens A,Carrem J,Alonso E E.Numerical Formulation for a Simulator (CODE_BRIGHT)for the Coupled Analysis of Saline Medial Engineering Computations,1996,Vo1.13(7):87-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700