用户名: 密码: 验证码:
海洋深水试验池在地震作用下的反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国属于地震多发的国家,含液容器在地震作用下可能受到损坏,并且随之发生严重的次生灾害,给国家的财产带来巨大损失。所以对其进行地震动力响应分析和抗震性能评价,以采取必要的工程措施减轻直接和次生灾害具有重要的意义。
     在含液容器的抗震分析中,目前一般采用简化方法进行分析计算,虽然有限元数值分析也得到了一定程度的应用,但是由于自编计算程序在功能或规模上的限制而无法在工程设计中得到普遍的应用。本文结合上海交通大学海洋深水试验池的工程实例,采用大型通用有限元分析软件ANSYS对其进行了数值模拟和地震动力响应计算分析。
     目前国内外对于大型钢筋混凝土深水池的研究较为罕见,研究中水池材料多采用线性的本构关系,本文通过对混凝土和钢筋的本构关系进行等效处理以考虑材料非线性影响,采用ANSYS中的SHELL63和FLUID80单元,综合考虑水和水池池壁之间的相互作用。论文首先模拟了三个模型在水平惯性荷载、El-Centro地震波和正弦波下的反应来验证分析方法的可靠性;然后对深水池进行模态分析,得出水和池壁在不同液深条件下各自的自振频率及对应的振型。研究发现液深和池壁厚度的增加使池体自振频率降低,扶壁厚度和池体弹性模量的增加使池体自振频率升高;论文最后对深水池在不同地震波和液深下水体的晃动情况和
Our country is a nation with high-frequency earthquakes, many liquid filled vessels may be damaged during earthquake. This will bring serious secondary disasters and economic loss, so it is meaningful to analyze its seismic dynamic response and seismic behavior to adopt necessary engineering measures to reduce its direct and secondary disasters.
     At present, the seismic analysis of liquid filled vessels is based on some simplified methods. Though some finite element numerical analysis has been performed before, it is hard to be widely applied in engineering because of the limitation of its functions and scales. In this thesis, the large-scale general finite element analysis software ANSYS is applied in numerical simulation and seismic response of the deepwater tank in Shanghai Jiaotong University.
     Researches in huge reinforced concrete deepwater tanks are rare, in which the constitutive relationship of materials of tanks is considered as linear. In the thesis, a combination between the strain-stress curve of steel bar and concrete is applied to take the non-linearity of materials into consideration. Considering the interaction between water and tank, the FLUID80 and SHELL63 elements in ANSYS are used. Firstly, analysis of
引文
[1] Hoskin S M, Jacobsn L S. Water pressure in a tank caused by a simulated earthquake. Bulletin of the Seismological Society of America. 1934, 24(1): 1-32.
    [2] Housner G W. Earthquake pressures on fluid containers. Eighth Technical Report under Office of naval Research. 1954, 40.
    [3] Moiseev N N. Introduction to the theory of oscillation of liquid-containing bodies. Journal of Fluids and Structures. 1988: 263-283.
    [4] Moiseev N N, Petrov A A. The calculation of free oscillation of a liquid in a motionless container. Advances in Applied Mechanics. 1964: 91-154.
    [5] 郭术义, 陈举华. 流固耦合应用研究进展. 济南大学学报(自然科学版). 2004, 18(2): 123-126.
    [6] Edwards N W. A procedure for dynamic analysis of thin walled liquid storage tanks subjected to lateral ground motions. Ph. D Dissertation, University of Michigan. 1969.
    [7] Lakshman W, Nash W A. Influence of initial geometric imperfections on vibrations of thin circular cylindrical shells. Computers & Structures. 1983, 16(1-4): 125-130.
    [8] Haroun M A, Abdel-Hafiz E A. A simplified seismic analysis of rigid base liquid storage tanks under vertical excitation with soil-structure interaction. Soil Dynamics and Earthquake Engineering. 1986, 5(4): 219-225.
    [9] Veletsos A S. Seismic effects in flexible liquid storage tanks. Proc. 5th World Conf. Earthquake Eng. 1974, Rome Italy, 1.
    [10] Veletsos A S, Yang J Y. Dynamics of fixed-base liquid storage tanks. Proc., U.S.–Japan Seminar on Earthquake Engineering Research with Emphasis on Lifeline Systems, Japan Society for Promotion of Earthquake Engineering, Tokyo, Japan, 1976: 317-341.
    [11] Haroun M A, Housner G W. Dynamic interaction of liquid storage tanks and foundation soil. Proc. 2nd. ASCE/EMD Spec. Conf. Dyn. Resp. Struc. 1981, 30(8): 346-360.
    [12] Hwang I T, Ting K. Boundary element method for fluid-structure interaction problems in liquid storage tanks. Journal of Pressure Vessels Technology. 1989, 3(4): 435-440.
    [13] Lay K S. Seismic coupled modeling of axisymmetric tanks containing liquid. American Society of Civil Engineers. 1993, 119(9): 1747-1761.
    [14] 蔡国琰, 曲乃泗, 赖国璋. 贮液罐结构水弹性抗震分析. 大连工学院学报. 1979, 3: 86-100.
    [15] 仇伟德, 蔡强康. 地震作用下刚性旋转壳贮液罐液体的动力响应. 地震工程与工程振动. 1983, 3(1): 72-87.
    [16] 周敏. 储液容器非线性动力分析. 清华大学博士学位论文. 1989.
    [17] 王永学. 任意容器液体晃动问题的数值模拟. 大连理工大学博士学位论文(详细摘要). 1989.
    [18] 陈世一. 圆柱形储液罐的液-罐-土动态相互作用分析. 石油大学. 1992.
    [19] 王翎羽. 考虑与液体、土体的相互作用下锚固与非锚固储液罐壳体结构的地震反应及稳定性研究. 天津大学博士学位论文. 1991.
    [20] Shang C Y, Zhao J C. Study on period and energy dissipation of a novel TLD rectangular tank with angle-adjustable baffles. Journal of Shanghai Jiaotong University (accepted).
    [21] 石油工业部抗震办公室, 中国石油化工总公司抗震办公室. 圆柱形储液罐抗震论文集. 地震出版社. 1986.
    [22] 项忠权, 孔家孔, 周建明. 立式储液罐的地震作用及抗震分析. 地震出版社. 1990.
    [23] 王建军, 李其汉, 朱梓根等. 自由液面大晃动的流固耦合的数值分析方法研究进展. 力学季刊. 2001, 22(4): 447-454.
    [24] Veletsos A S. Seismic response and design of liquid storage tanks. Guidelines for the seismic design of oil and gas pipeline systems. Tech. Council on Lifeline Earthquake Engrg., ASCE, New York, N.Y. 1984: 255-370.
    [25] Veletsos A S, Tang Y. Soil-structure interaction effects for laterally excited liquid storage tanks. Earthquake Engrg. and Struct. Dyn. 1990, 19(4): 473-496.
    [26] Ingolf N, Norbert G, José L U-G. On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base. Engineering Structures. 2003, 25(22): 201-213.
    [27] 李彦民, 徐刚, 任文敏等. 储液容器流固耦合动力响应分析计算. 工程力学. 2002, 19(4): 29-32.
    [28] Housner G W. Dynamic pressures on accelerated fluid containers. Bull. Seismological Soc. Of Am. 1957, 47(1): 15-35.
    [29] Housner G W. The dynamic behavior of water tanks. Bull. Seismological Soc. Of Am. 1963, 53(2): 381-389.
    [30] Haroun M A. Stress analysis of rectangular walls under seismically induced hydrodynamic loads. Bull. Seismological Soc. Of Am. 1984, 74(3): 1031-1041.
    [31] Luft R W. Vertical accelerations in prestressed concrete tanks. J. Struct. Engrg., ASCE. 1987, 113(3): 638-340.
    [32] Kim J K, Koh H M, Kwahk I J. Dynamic response of rectangular flexible fluid containers. Journal of Engineering Mechanics. 1996, 122(9): 807-817.
    [33] Chen J Z, Kianoush M. Seismic response of concrete rectangular tanks for liquid containing structures. Canadian Journal of Civil Engineering. 2005, 32(4): 739-752.
    [34] Chen J Z, Kianoush M. Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Engineering Structures. 2006, 28(55): 704-715.
    [35] Courant R. Variational method for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 1943, 49(3): 1-23.
    [36] Turner M J, Clough R W, Martin H C, etc. Stiffness and deflection analysis of complex structures. J. Aero. Sci. 1956, 23(9): 805-823.
    [37] Clough R W. The finite element method in plane stress analysis. Proceeding of 2nd ASME conference on electronic computation, Pittsburgh, Pa. 1960.
    [38] Besseling J F. The complete analogy between the matrix equations and the continuous field equations of structural analysis. International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Leige, Belgium. 1963.
    [39] Melosh R J. Basis for derivation of matrices for the direct stiffness method[J]. AIAA Journal. 1963, 1(7): 1631-1637.
    [40] Jones R E. A generalization of the direct stiffness method of structural analysis. AIAA Journal. 1964.2, 5: 821-826.
    [41] 土木学会新泻震害调查委员会. 编新泻地震震害调查报告. 1966.
    [42] 刘云贺. 流体-固体动力耦合理论及水利工程应用. 西安交通大学. 2001.
    [43] Nomura T. ALE finite element computations of fluid-structure interaction problems [J]. Comput. Meths. Appl. Mech. Engrg. 1994, 112(1/4): 291-308.
    [44] 林均岐, 李山有, 李谊瑞等. 立式储液罐地震反应数值分析. 地震工程与工程振动. 2006, 26(4): 152-155.
    [45] 刘焕忠, 李青, 庄茁等. 发展附加质量模型应用于储液罐的动力分析. 工程力学. 2005, 22: 161-171.
    [46] 吴轶, 莫海鸿, 杨春. 排架-渡槽-水三维耦合体系地震响应分析. 水利学报. 2005, 36(3): 280-285.
    [47] 吴轶, 莫海鸿, 杨春. 大型 U 形渡槽动力性能分析. 建筑技术开发. 2005, 32(3): 35-37.
    [48] Koh H M, Kim J K, Park J H. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results[J]. Earthquake Engineering And Structural Dynamics. 1998, 27: 109-124.
    [49] Kobayashi N, Mieda T, Shibata H, etc. A study of the liquid slosh response in horizontal cylindrical tanks. ASME Journal of Pressure Vessel Technology. 1989, 111(1): 32-37.
    [50] 王华, 曹刚. 基于 Ansys 的含液容器流固耦合模态分析. 重庆科技学院学报(自然科学版). 2006, 8(2): 67-69.
    [51] 孙建刚, 郝进锋, 张云峰. 储液罐液-固耦联振动固有特性有限元分析. 大庆石油学院学报. 1989.9, 22(3): 96-112.
    [52] 谭建国. ANSYS6.0 进行有限元分析[M]. 北京大学出版社. 2002.
    [53] 沈国光, 李德筠, 林欣. 柱形容器内储液的驻留运动和地震响应. 水动力学研究与进展 A 辑. 1990, 5(4): 68-75.
    [54] 吴灵宇. 考虑液体晃动和罐底提离的立式储液罐地震反应分析. 哈尔滨工业大学硕士学位论文. 2005.
    [55] 邵岩. 考虑水体作用的渡槽动力响应计算. 河海大学硕士学位论文. 2006.
    [56] Tani J, Ohtomo K, Sakai T, etc. Hydroelastic vibration of partially liquid-filled coaxial cylindrical shells. Pressure Vessels and Piping Division. 1989, 157: 29-34.
    [57] 汪勇. 圆柱形储液容器自振频率的计算. 重庆交通学院学报. 1996, 15(4): 42-47.
    [58] 汪勇, 兰波. 液体静水压力对圆柱形储液容器自振频率的影响. 重庆交通学院学报. 1997, 16(2): 75-79.
    [59] 甘文水, 邬瑞锋, 曲乃泗. 地震作用下储液罐的动力和稳定分析. 地震工程与工程振动. 1985, 5(4): 73-79.
    [60] Lamb H. Hydrodynamics. Cambridge University Press. 1916.
    [61] 莫依舍夫, 鲁苗采夫. 充液刚体动力学. 韩子鹏译. 宇航出版社. 1991: 216-217.
    [62] 混凝土结构设计规范. GB50010-2002. 北京: 中国建筑工业出版社. 2002.
    [63] 靳欣华, 郑凯锋, 陈艾荣. 斜拉与 T 构协作体系桥梁全桥结构仿真分析. 桥梁建设. 2002, 2: 19-22.
    [64] 高层建筑混凝土结构技术规程. JGJ3-2002. 北京: 中国建筑工业出版社. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700