用户名: 密码: 验证码:
网壳储罐静力性能与地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有“工业血液”之称的石油对世界经济的影响举足轻重,目前人类对石油的依赖是其它能源无法替代的,因此,各国加大了石油的战略储备。从储罐的设计、建造和使用情况看,采用大容量储罐储油具有节省钢材、减少占地面积、方便操作管理和节省投资等优点,储罐的大型化成为发展的必然趋势。但已建成的储罐都是从提高钢材性能入手,使储罐向大型化发展,并未改变其结构形式。2009年,张文福提出一种新的储罐结构形式——网壳储罐,此结构可以充分利用网壳的抗拉、抗弯性能好的特点,有效地减少底板和罐壁的板材厚度,降低造价,且具有外观独特、优美,视觉效果好等优点。
     本文将采用有限元软件ADINA,对网壳储罐的静力性能及地震响应进行研究,主要工作如下:
     1.验证本文所采用的全罐模型、1/4模型的合理性;
     2.改变网壳储罐的各种参数,进行盛水条件下的静力分析,研究各参数对其静力性能的影响;
     3.优化设计15×10~4m~3和30×10~4m~3网壳储罐,分析其静力特性;
     4.采用变点法设计30×10~4m~3普通储罐,并将15×10~4m~3和30×10~4m~3网壳储罐分别与15×10~4m~3和30×10~4m~3普通储罐进行经济性对比;
     5.对各状态下的普通储罐和网壳储罐进行固有振动特性分析,对比分析普通储罐与网壳储罐振动特性的差异,并研究各参数对网壳储罐振动特性的影响;
     6.对经优化设计的15×10~4m~3网壳储罐,分别输入4种地震波,进行地震响应分析。
As the industrial blood, oil has great influence on the world economy. At present, humanity’s reliance on oil is unable to be substituted by any other energy sources, all countries therefore increased strategic petroleum reserves. From the perspective of tank design, construction and usage, building large capacity storage tank can save steel, reduce floor space, easy operation and management and decrease investments, to build large capacity storage tank is the inevitable trend of development. But tanks have been built are all starting from improving the performance of steel to make tank to the large-scale development, the structure form hasn’t been changed. In 2009, Wenfu Zhang put forward a new tank structure——storage tank with latticed shell (STLS), it can make full use of latticed shell tensile strength and its good flexural performance, effectively reduce thickness of bottom plate and tank shell, and reduce cost, have the unique and beautiful appearance, good visual effect, etc.
     This paper will study on the static behavior and earthquake response of STLS by using ADINA finite element software, and the main work is as follows:
     1.To verify total tank model and 1/4 tank model’s rationality.
     2.To change parameter of STLS, and research influence of parameter on its static behavior.
     3.To optimize the 15×10~4m~3 and 30×10~4m~3 STLS, and analyze their static behavior.
     4.To design 30×10~4m~3 common storage tank by the variable point method, and compromise the 15×10~4m~3 and 30×10~4m~3 common storage tank respectively with the 15×104 m3 and 30×10~4m~3 STLS on economic.
     5.To study on natural vibration characteristic of common storage tank and STLS under different conditions, comparative analyze the difference of the two type of tanks, and study the influences of the parameters on natural vibration.
     6.To study on the earthquake response of the optimized 15×10~4m~3 STLS under 4 kinds of earthquake waves.
引文
[1]武铜柱.大型立式储罐发展概述[J].石油化工设备技术,2004,25(3):56~59.
    [2]陈德志.中国大型储罐建设现状及发展趋势[J].石油化工建设,2009,(01):28~32.
    [3]张文福.一种大型网壳立式储罐[P].中国专利:ZL200820091311.3,2009-12-23.
    [4] Denham J B, Russeu J, Wills M R. How to design a 600,000Bbl tank[J]. Hydrocarbon Processing, 1968, 47(5):137~142.
    [5]李国琛.大型变截面圆柱罐壁和罐底应力分析[J].力学与实践,1978(10):38~41.
    [6] Wu Tianyun. More accurate method devised for tank-bottom annular plate design[J]. Journal of oil &Gas, 1996, 94(21):81~83.
    [7] Wu Tianyun, Liu Guorong. Comparison of design methods for a tank-bottom annular plate and concrete ringwall[J]. International Journal of Pressere Vessels and Piping, 2000, 77(9):511~517.
    [8]陈志平,蒋伟华,沈建民等.大型油罐大脚焊缝处峰值应力分析[J].压力容器,2005,22(5):12~15.
    [9]吴天云.油罐应力分析的新方法及其计算验证[J].石油化工设备,1997,26(5):15~19.
    [10]潘家华.圆柱形金属油罐设计[M].北京:轻工业出版社,1986.
    [11]傅强,陈志平,郑津洋.弹性地基上大型石油储罐应力分析[J].化工机械,2002,29(4):210~213.
    [12]陈志平,沈建民,葛颂等.基于组合圆柱壳理论的大型油罐应力分析[J].浙江大学学报,2006,40(9):1633~1637.
    [13]陈志平,曾明,余雏麟等.大型油罐应力分析与屈曲稳定性研究[J].油气储运,2008,27(12):7~12.
    [14]盛选禹,张宏志.15万m3原油储罐方案优化设计[J].科技导报,2007,25(11):39~44.
    [15]赵晓磊.15万立方米浮放储罐静动力数值分析[D].大庆:大庆石油学院,2009.
    [16]陈志平.大型非锚固储油罐应力分析与抗震研究[D].杭州:浙江大学,2006.
    [17]沈建民.大型油罐的静强度及动力响应分析[D].杭州:浙江大学,2006.
    [18]吕英华.大型石油储罐应力与基础沉降分析[D].大庆:大庆石油学院,2008.
    [19]恵虎,宋虎堂,吴云龙等.大型原油储罐的有限元强度分析[J].油气储运,2004,23(12):12~25.
    [20]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨:哈尔滨工程大学,2006.
    [21] L M Hoskins, L S Jacobsn. Water pressure in a tank caused by a simulated earthquake. Seismic logical Society of America, 1934(1):1~32.
    [22] G W Housner. Dynamic pressure on accelerated fluid containers. Seismic logical Societyof America, 1957(1):15~35.
    [23] API Standard 650. Welded steel tanks for oil storage. American petroleum Institute, Washington DC, 1979.
    [24] Edwadrs N W. A Procedure for dynamic analysis of thin walled liquid storage tanks subjected to lateral ground motions. [Ph.D dissertation], Univesrity of Miehigan, 1969.
    [25] Haroun M A. Hounser G W. Earthquake response of deformable liquid storage tanks. Journal of Applied Mechanics, Transactions ASME, 1981, 48(2):411~418.
    [26] Haroun M A. Vibration studies and tests of liquid storage tanks. Eahrtquake Engineering & Structural Dynamics, 1983, 11(2):179~206.
    [27] Hwang I T, Ting K. Boundary element method for fluid-structure interaction problems in liquid storage tanks, Journal of Pressure Vessel Technology, Transactions of the ASME, 1989, 111(4):435~440.
    [28] Lay Khai Seong. Seismic coupled modeling of axisymmetric tanks containing liquid. Journal of Engineering Mechanics, 1993, 119(9):1747~1761.
    [29] Balendar T, Nash WA. Earthquake analysis of a cylindrical liquid storage tank with a dome by finite element method. University of Massachusetts, Report to National Science Foundation, May 1978.
    [30]中国石油化工总公司(行业)标准,常压立式储罐抗震鉴定标准,1991,2.
    [31]项忠权,周建明.储液罐梁式基本周期的近似计算.立式储罐抗震,北京:地震出版社,1990.
    [32]曹志远,翟桐.结构-内部流体耦合振动的半解析元法.圆柱形储液罐抗震论文集.北京:地震出版社,1986.
    [33] Clough D P. Experimental evaluation of seismic design methods for broad cylindrical tanks. Univ. of Calif., Berkeley, Calif., UCB/EERC-77/10, 1977.
    [34] R W Clough and A Niwa. Static tilt tests of a tall cylindrical liquid storage tank. University of California, Berkeley, Report No.UCB/EERC-78/04, 1978.
    [35] Sakai F, Isoe A, Hirakawa H, and Montani Y. Experimental Study on Uplift Behavior of Large-sized Cylindrical Liquid Storage Tanks, Pressure Vessels and Piping Conference, ASME, PVP-Vol.127, San Diego, June 1987:349~355.
    [36] F J Cambra. Earthquake Response Considerations of Broad Liquid Storage Tanks. University of California, Berkeley, Report NO.UCB/EERC-82/25, 1982:2.
    [37]温德超.模型储液罐提离非线性振动的频率与阻尼研究[J].实验力学,1997,12(4):564~561.
    [38]温德超.铝制储罐罐模型的提离和基础特性的影响[J].石油化工设备技术,1991,12(4):41~47.
    [39]温德超.在激励下储液罐提离的非线性耦联振动的实验研究[J].实验力学,1990,5(4):407~412.
    [40]陈厚群,王森云,胡晓等.外浮顶储液罐抗震试验研究立式储罐抗震.北京:地震出版社,1990.
    [41]陈厚群.五千立方米浮顶储液罐抗震研究报告[C].北京水利水电科学研究院,天津石油部施工研究所,1989,(8):10~20.
    [42]项忠权,李清林.立式储罐抗震.北京:地震出版社,1990.
    [43] Butler T A, Bennett G J, Babcock C D, and Natsiavas S. Response of seismic category I tank to earthquake excitation. NUREG/CR-4776, LA-20871-MS, LOS ALamos National Lab, NM Nuclear Regulatory commission, Washington D C (Feb.,1987).
    [44] Clough D P. Experimental evaluation of seismic design methods for broad cylindrical tanks. Earthquake Engineering Research Center, University of California, Berkeley, report No.UCB/EERC-77/10(May 1977).
    [45] Wozniak R S and Mitchell W W. Basis of seismic response provisions for welded oil storage tanks. API Convention, Toronto, Canada(May 1978).
    [46]中国石油化工总公司抗震办公室编.石油化工设备抗震资料译文集,(一)~(六).地震出版社(1986年5月).
    [47] Hanson R D. Behavior of liquid-storage tanks. The Great Alaska Earthquake of 1964(Engin, section). National Academy of Sciences, Washington D C(1964):45~354.
    [48] Moore T A and Wong E K. The response of cylindrical liquid storage tanks to earthquakes. Proc. 8th World Conf. Earthquake Eng., San Francisco, California, 5(July 1984):239~246.
    [49] Manos G C. Earthquake tank-wall stability of unanchored tanks. J. of Str. Eng.112,8(Aug.1986):1863~1880.
    [50] Rinne J E. Oil storage tanks. The Prince Wulliam Sound, Alaska Earthquake of 1964 and Aftershocks, U.S.Dept. of Commerce, E.S.S.A., Coast and Geodetic Survey, Washington D C,Ⅱ, Part A(1967):245~252.
    [51] S.Yamada and A.Takeuchi. A simple estimation of free vibration behaviour of latticed cylindrical panel structures[A], Proceeding of International IASS Conference, Beijing, 1996.
    [52] S Kato, M Shomura. Dynamic response and collapse acceleration of single layer reticular domes under earthquake motions[A], Proceeding of International IASS Conference, Beijing, 1996.
    [53] R Malla and B Wang. A method to determine dynamic response of truss structures[J]. 1993.
    [54] S L Chen and P P T Chui. Non-linear dynamic analysis of roof trusses connected by rigid[A], pinned and semi-rigid joints[J], Space Swctures, Vo1.4, 1993.
    [55]邸龙.复杂条件下大跨度空间柱面网壳结构的抗震研究[D].上海:同济大学,2006.
    [56]王策.单层球面网壳动力稳定性[D].哈尔滨:哈尔滨建筑大学,1997.
    [57]范峰.网壳结构抗震性能、振动控制的理论与试验研究[D].哈尔滨:哈尔滨建筑大学,1999.
    [58]崔航宇.单层球面网壳弹塑性抗震性能分析[D].哈尔滨:哈尔滨建筑大学,2000.
    [59]邢估慧.单层柱面网壳弹塑性抗震性能分析[D].哈尔滨:哈尔滨建筑大学,2000.
    [60]薛素铎,王健宁,曹资,张毅刚.钢网壳弹塑性地震反应分析[J].北京工业大学学报,2001(1):52~56.
    [61]陈军明,陈应波,吴代华.单层球面网壳结构的动力特性研究[J].武汉工业大学学报,1999(5):53~55.
    [62]王健宁,薛素铎,曹资,张毅刚.双层柱面网壳在地震作用下的弹塑性性能[A].第九届空间结构学术会议论文集.浙江:萧山,2000(9):193~200.
    [63]薛素铎,曹资,王健宁.单层柱面网壳弹塑性地震反应特征[J].地震工程与工程震动.2002(1):56~60
    [64]薛素铎,曹资,王健宁.地震作用下单层柱面网壳结构的弹塑性性能研究.西安:全国管结构技术交流会:2001(11).
    [65] Yigang Zhang and Tient Lan. Research on the dynamic characteristics and seismic response of space frames. International Journal of Space Structures, 2000(3&4):239~242.
    [66] Zi Cao and Yigang Zhang. A study on the seismic response of lattice shells. International Journal of Space structures, 2000(3&4):243~248.
    [67]陈军明,陈应波,吴代华.单层球面网壳结构地震响应的动力时程分析[J].空间结构,1999(4):15~20.
    [68]陈军明,陈应波,吴代华.单层球面网壳结构抗震性能研究[J].空间结构,2001(4):30~36.
    [69]徐英,杨一凡,朱萍等.球罐和大型储罐[M].北京:化学工业出版社,2005.
    [70] GB50011-2010[S].北京:中国建筑工业出版社,2010.
    [71]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究[D].哈尔滨:哈尔滨工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700