用户名: 密码: 验证码:
超大型浮顶储罐多体力学分析与结构强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油储备库建设是国家能源保障和经济发展的重要组成部分,大型非锚固储罐是石油储备库的先进设备之一,其安全方面研究倍受关注。为此,本文以国内15×104m3超大型浮顶储罐为研究对象,采用理论分析、有限元数值模拟、现场实验测试方法,对15×104m3大型浮顶储罐的多体结构进行力学分析,建立了超大型储罐结构设计理论方法,完成了15×104m3储罐在设计和运行工况下的强度评价,所建造的2座15×104m3储罐已在大庆油田安全运行。
     本文根据超大型浮顶储罐设计理论不完善现状,首先采用API650标准中的变点法和弹性地基梁与刚性地基梁耦合法,对15×104m3储罐进行了壁板和底板的设计、应力计算和强度评价。然后,将储罐简化成轴对称结构,考虑地基材料拉压特性,建立了储罐与地基的接触和材料非线性轴对称有限元模型,求得罐壁板环向应力与组合圆柱壳法求解结果误差低于3.73%,底板应力与弹性地基梁和刚性地基梁耦合法求解结果误差低于36.71%,这说明组合圆柱壳法适用于超大型储罐的壁板应力分析和强度评价,而弹性地基梁与刚性地基梁耦合法不适用于底板应力计算,误差较大;有限元轴对称模型能够合理计算壁板、底板应力,特别是能够描述焊缝处应力分布,为该类超大型储罐的壁板、底板、焊缝结构应力分析提供了理论方法。其次,考虑储罐开孔结构,建立了储罐与地基的接触和材料非线性空间有限元模型,计算得到了开孔区罐壁和底板的应力分布,通过储罐开孔参数的优化计算,得到加强筋、补强板和接管厚度,并对储罐地基材料、大角焊缝结构进行了分析评价,为该类超大型储罐的开孔结构设计和应力分析提供了计算模型和方法。为了监测超大型储罐的实际应力状态,验证理论分析的正确性,采用电阻应变测量技术对新建成的2座浮顶储罐进行充水工况下的应力测试,解决了大罐内测点密封、测量仪器长期野外工作的漂移问题,获得了大量稳定可靠的实测数据,其壁板、底板和搅拌孔的实测应力与数值模拟得到的轴向(径向)应力值,平均误差低于10%的比例分别为90%、75%、71.4%;环向应力值平均误差低于10%的比例分别为90%、62.5%、85.7%,表明储罐与地基的接触和材料非线性轴对称和空间有限元模型具有可靠的计算结果。最后,基于CSCW理论,将分布式系统设计原理与力学分析软件相结合,建立了分布式PC机协同求解超大型储罐多体动力学方法,解决了超大型储罐多体耦合动力学分析时,由于离散单元多、动载荷分步加载、耦合界面和非线性等迭代运算所面临的求解规模大、计算时间长等问题,使有限元法在PC机上进行超大型储罐多体动力学计算得以实现,通过储罐在塔夫特波地震载荷作用下的多体动力学分析,得到罐壁最大瞬间应力500 MPa、罐壁与底板连接处最大瞬间应力200 MPa、罐底与地基提离距离瞬间最大值9.5 mm,依据JB4732-2005标准评价了储罐在该地震波下处于安全状态。
The construction of oil reserve base is an important component of national energy security and economic development, and large-sized non-anchored storage tank, as one of the advanced equipments of oil reserve base, its safety research has attracted more attention. This article took the new-builded large-sized float roof tank as the research object, used theoretical analysis, finite element numerical simulation, field experiment testing to carry out the mechanical analysis on the multiple hull construction of large-sized float roof tank, established theoretical method for the large-sized storage tanks’structural design, and completed strength evaluation of storage tank of 150 thousand cubic meters in design and operating conditions. The two tanks of 150 thousand cubic meters that have been constructed are being in operation safely in Daqing Oilfield.
     (1) According to the design specification with API650 to the structure of large-sized storage tanks of 150 thousand cubic meters, this article analyzed with combination of cylindrical shell law and settlement act to define the basic structure of the large-sized storage tanks of 150 thousand cubic meters.
     (2) An anaylsis of the deviation that includes compare between theoretical analysis and finite element numerical simulation of the value of the calculated value and measured values of stress and finite element numerical simulation of the calculated value, indicates that calculation accuracy of using finite element numerical simulation is greater than the theoretical analysis with a simple calculation, to be suitable for engineering applications.
     (3) Calculated axisymmetric tank structure and spatial structure through simplifying the storage tank, we know the tanks wall, bottom and openings at the stress distribution, so that the stress distribution tank is more rational and more economical use of materials with optimizationing the ground material of storage tanks, welding type, wall alignment and openings.
     (4) With the newly built 150,000 cubic meters of water-filled tank floating roof test, it has carried out scene test to the wall and bottom of the tank. In this test, we took a variety of technical measures of protection, got a number of real datas. It proves that it is possible to use the resistance contingency measure technology to large oil tank stress testing in the scene.
     (5) It analyzed tank forces between the fluid and tanks when tanks are by earthquake loads with the solid-liquid coupling analysis method. we proposed more than one PC, a new method of calculation to the common solutions on the basis of CSCW, in order to solve the problems of 3D of large tanks and three parts-shells of tanks, fluid and ground dynamic dynamicsto response to questions.
     Above all, the results that we researched provide a theoretical basis and calculation method for design of large-sized storage tanks, stress assessment of tanks and solid-liquid coupling analysis.
引文
[1]王丽娟.我国石油战略储备体系的构建[J].中国金融,2004,(23):10~13.
    [2]时铭显.我国石油装备技术的发展与展望[J].当代石油化工,2005,13(12):3~7.
    [3]李宏斌.大型化是储罐发展的必然趋势[J].炼油设计,2000,6(6):26~29.
    [4]于清,王一军,许跃新等.大型储罐设计技术的发展[J].新疆石油天然气,2006,5(4):16~18.
    [5]雷毅,袁晓波,孙晓娜.面向压力容器焊接自动化技术的应用现状与展望[J].压力容器,2004,8(10):4~7.
    [6] J.Bdenham, J.Russell, Cmr Wills. How to Design a 600,000 - Bbl.Tank [J]. Hydorcabron Proeessing, 1968, 47(5):137-142.
    [7] Donald Lucas, David, Littlejohn. The Heavy Oil Storage Tank Project [J]. SPE37886, 2003.
    [8] Donald Lucas, David, Littlejohn. How to design Large-scale storage tank [J]. The Heavy Oil Storage Tank Project, 1997, 12 (2): 6-8.
    [9]武铜柱.大型立式储罐发展综述[J].石油化工设备技术,2004,25(3):56~58.
    [10]史玉芹,周红梅.大型储罐设计的现状与进展[J].石油机械,2006,7(1):41~42.
    [11]斯新中.国内储罐罐顶的形式和发展趋势[J].石油化工设备技术,2000,12(05):32~35.
    [12]袁榕,姚佐权,陈学东.浮顶储罐的建造技术及其发展趋势[J].压力容器,2000,20(1):8~10.
    [13]韦振光,罗星环,贺金.大庆南三油库15×104m3储罐设计[J].油气田地面工程,2008,27(3):1~2.
    [14] Lu, Zhi, Swenson, Daniel. "User's Manual for SafeRoof: A Program for the Analysis of Storage Tanks with Frangible Roof Joints" Manual Release 1.0, Mechanical Engineering Dept, Kansas State University, Manhattan, KS, 66506.
    [15] Swenson, Daniel, Fenton, Don, Lu, Zhi, Ghori, Asif, Baalman, Joe,“Evaluation of Design Criteria for Storage Tanks with Frangible Roof Joints,”Welding Research Council Bulletin 410, ISSN 0043-2326, Welding Research Council, United Engineering Center, 345 East 47th Street, New York, NY, 10017, April, 1996.
    [16] Morgenegg, E. E. "Frangible Roof Tanks" Proceedings Am. Pet. Inst. Refin. Dep, Midyear Meet, 43rd, Toronto, Ont, May 8-11, 1978, Pub. By API (v57), Washington, DC, p. 509-514.
    [17]斯新中.国内储罐罐顶的形式和发展趋势[J].石油化工设备技术,1998,19(5):4~8.
    [18]李宏斌.我国超大型浮顶储罐的发展[J].压力容器,2006,24(5):3~5.
    [19]李宏斌.超大型浮顶储罐的发展趋势[J].压力容器,2006,21(5):6~8.
    [20]高威,黄开佳.大型原油储罐技术综述[J].石油化工设备,2000,20(5):13~15.
    [21] HT60S steel for high weld heat inputs: WEL-TEN60S and 62S [Z], Nippon Steel Corp, QT215, 1974, 1-32.
    [22] Kaleal etal. steel Research [J]. 1986, 57(5):102-106.
    [23] Jye.Long LEE, etc. The Formation of Intragranular Acicular Ferrite in Simulated Heat. affected Zone [J]. ISIJ Internationa1, 1995, 35(8):1027-1033.
    [24] R.A.Ricks, etc. The Nature of Acicular Ferrite in HSLA Steel Weld Metals [J]. Journal of Material Science, 1982(17):732-740.
    [25] Sabapathy P N, Wahab M A, PainterM J. The Prediction of Burn-through During In-service Weldging of Gas Pipelines [J]. Internation Journal of Pressure Vessels and Piping, 2000, 20(17):669-67.
    [26] F.J.Barbaro, etc. Formation of Acicular Ferrite at Oxide Particles in steels [J]. Material Science and Technology, 1989, 12(5):1057-1068.
    [27]陈学东,王冰,关卫和等.我国石化企业在用压力容器与管道使用现状和缺陷状祝分析及失效预防对策[J].压力容器,2001,18(5):43~53.
    [28]王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社,2001.
    [29]陈晓.低焊接裂纹敏感性WDL系列钢的力学性能及组织结构[J].钢铁.1996,17(12):39~44.
    [30]中国石油天然气集团公司.立式圆筒形钢制焊接油罐设计规范[D].2003.
    [31]中国石油化工总公司北京设计院.石油化工立式圆筒形钢制焊接储罐设计规范[D].1992.
    [32]方全利.大型不锈钢储罐设计标准探讨[J].化工设计,2008,18(1):48~49.
    [33]湛卢炳,孙晋坡,陈再康.大型储罐设计[M].上海科学技术出版社,1986.
    [34]朱萍,石建明.大型立式圆筒形储罐设计中几个问题的探讨[J].化工装备术,2006,20(4):8~11.
    [35]李宏斌.超大型储罐抗风结构的合理设计[J].石油化工设备技术,2002,23(6):23~26.
    [36] Lay Khai Seong. Seismic coupled modeling of axisymmetric tanks containing liquid. Journal of Engnieering Mechanies, 1993, 119(9):1747-1761.
    [37]尹晔昕,薛明德.拱顶储罐承压圈型式与承载能力的关系[J].压力容器,2002,19(10):25~29.
    [38] Geo.Fronfiers. Performance of oil tank foundation [J]. Geotcchnical Spccial Publication. 2005, 9(3), 871-880.4-8.
    [39] C.J.F.Clausen.Observed Behavior of the Ekofisk Oil Storage-Tank Foundation[J]. Journal of Petroleum Technology 2002, 5(8):329-336.
    [40]周利剑.立式金属储罐基础选型及应用范围[J].低温建筑技术,2004,10(2):6~8.
    [41] HousnerG W. Dyna Perssure on accelearated fluid contaniers. Bull. Seism. Soe. Alll, 1957, 47(1):15-35.
    [42] Petela, Richard. Generation of oil emumsion for stirred tank processes [J]. Publ by Buttcrworth-Heincmann Ltd, London, Engl. 1994, 9(4):557-562.
    [43] Nelson O.Rocha, Carlos N. Khalil, Lúcia C.F.Leite, Andre M.Goja, Petrobras. Thermo Chemical Process To Remove Sludge From Storage Tanks [J]. SPE95445, 2007.
    [44] Slone A K. Pericleous K.Bailey C. Dynamic fluid-structure interaction using finite volume unstructured mesh procedures [J]. Computers and Structures, 2002, 80(5): 371-390.
    [45]李宏斌.储罐常用设计规范计算方法比较[J].炼油设计,2002,32 (11):13~17.
    [46]李建国.钢制压力容器分析设计基础(一)[J].石油化工技术,2002,19(3):74~76.
    [47]李建国.钢制压力容器分析设计基础(二)[J].石油化工技术,2002,19(6):66~73.
    [48]李建国.钢制压力容器分析设计基础(三)[J].石油化工技术,2003,20(1):60~64.
    [49]陈志平,段媛媛,蒋家羚.大型石油储罐安全可靠性研究[J].浙江大学学报(工学版),2006,36(9):25~278.
    [50] Jonathan J Wylde. Successful Field Application Of Novel, Non-Silicone Antifoam Chemistries For High Oil Storage Tanks In North Alberta [J]. SPE117176,2008.
    [51] B.S.Al Ameri, Abu Dhabi Oil Refining Co. Safe Practice in Tank Bottom Repair [J]. SPE74885, 2006.
    [52] Column Research Committee of Japan.Handbook of structural stability [J], 1995:35-36.
    [53] S.Timoshekno,S.Woinowsky.Krieger. Theory of Plates and Shells. MeGrwa-Hlll Book Company Inc. NewYork.1959, 10(3):466-487.
    [54]周羽,包士毅,董建令等.压力容器分析设计方法进展[J].清华大学学报,2006,46(6):36~37.
    [55]朱磊.应力分析设计方法中若干问题的讨论[J].压力容器,2006,23(8):25~28.
    [56]赵福军,孙建刚,赵晓磊等.大型浮顶原油储罐的静力有限元分析[J].油气田地面工程,2008,27(8):15~16.
    [57]李新亮.钢制球形储罐有限元疲劳分析设计[J].中国科学技术大学学报,2008,38(2):220~224.
    [58]赵继成.基于罐底接触模拟的大型立式原油储罐的有限元分析[J].石油化工设备,2008,29(2):35~39.
    [59]张卫义,田海晏.内压圆柱形压力容器大开孔率开孔补强结构及其应力集中系数规律的研究[J].石油化工设备,2003,32(4):24~25.
    [60]王磊.压力容器大开孔接管有限元分析及强度设计的研究[J].南京理工大学学报,2006,38(5):25~29.
    [61]曹庆帅.大型钢储罐的沉降与结构性能的关系[J].工业建筑,2007,37(4):65~68.
    [62]葛颂.大型立式储液罐抗震分析的数值模拟研究[J].浙江大学学报,2006,40(6):977~981.
    [63]周利剑.立式储罐与地基相互作用地震反应分析[J].世界地震工程,2005,21(3):152~158.
    [64] HaorunMA, HounserGW. Earhtquake response of deformable liquid storage tanks. Jounral of Applied Mechanics, Transactions ASME, 1981, 48(2):411-418.
    [65] Zheng, Jingzhe. Evaluatiofi of sheet pile-ring countermeasure against liquefaction for oil tank site [J]. Soil Dyllalnics and Earthquake Engineering, 1996, 11(9):369-379.
    [66] J.Kim Vandiver. The Effect of Liquid Storage Tanks On The Dynamic Response Of Offshore Platforms. Journal of Pereoleumtechnology, 2003, 8(5): 1231-1240.
    [67] Robert J.Stomp, ConocoPhillips Company, Graham J. Fraser, The Expro Group, Stephen C.Actis, Luke F.Eaton, Kerry C.Freedman, ConocoPhillips Company. Deepwater DST Planning and Operations From a DP Vessel [J]. SPE96822, 2007.
    [68] Robert J.Stomp, Conoco Phillips Company, Graham J.Fraser, The Expro Group, Stephen C.Actis, Luke F.Eaton, Kerry.C.Freedman, ConocoPhillips Company. Deepwater DST Planning and Operations From A DP Vessel [J]. SPE87910, 2004.
    [69]郑天心,王伟,吴灵宇.考虑液体晃动和罐底提离储液罐的研究[J].哈尔滨工业大学学报,2007,39(2):173~176.
    [70] Edwadrs N W. A Procedure for dynamic analysis of thin walled liquid storage tanks subjected to lateral ground motions, [Ph.Ddisseriation], University of Miehigan, 1969.
    [71]孙建刚,周丽.立式钢制圆柱储罐的动提离控制[J].大庆石油学院学报,2001,25(3):102~105.
    [72]戴鸿哲,王伟,吴灵宇.立式储液罐提离机理及“象足”变形产生原因[J].哈尔滨工业大学学报,2008,40(8):1191~1195.
    [73] Hamdan.F H. Seismic behaviorof cylindrical steel liquid storage tanks [J]. Journal of Constructional steel research, 2000, 553(12):307-333.
    [74] Bathe.KJ. Zhangh.J I S. Finite element analysis of fluid flows coupled by structuralinteraction [J]. Computers and Structures, 1999, 72(3):1-16.
    [75] Aghajari S.Abedi K.Showkatih. Buckling and post-buckling behavior of thin Thin -Walled Structures, 2006, 44(8):904-909.
    [76] Chojr, Songjm, Lee J K. Finite element techniques for the free vibration and seismic analysis of liquid storage tank [J]. Finite Elements in Analysis and Design, 2001, 37(6): 467-483.
    [77] Malhotra P K, Veletsos A S. Uplifting response of unanchored liquid storage tanks [J]. Journal of Structural Engineering, 1994, 120(12):3525-3546.
    [78]刘巨保,张学鸿,王树东.10000m3拱顶储罐顶板应力与腐蚀的分析[J].油气储运,1995,14(6):24~27.
    [79]陈志平,沈建民,葛颂.基于组合圆柱壳理论的大型储罐应力分析[J].浙江大学学报(工学版),2006,40(9):13~16.
    [80] Hiroyuki Haga. Asahi, Engineering Co.Ltd. (AEC), Masahide Ohta, Japan Oil Development Co.Ltd. (JODCO), Ihab O.Tarmoom, Abu Dhabi National Oil Co.(ADNOC). Development of High Speed Inspection System for COS Tank BottomPlate [J]. SPE74675, 2002.
    [81]陈志平,王飞,沈建民.大型非锚固原油储罐应力分析[J].机械工程学报,2006,44(10):27~30.
    [82]陈志平,葛颂,沈建民.大型原油储罐有限元分析建模的新方法[J].浙江大学学报(工学版) [J].2006,42(11):43~47.
    [83]陈志平.大型非锚固储储罐应力分析与抗震研究[J].浙江大学,2006,23(1):29~33.
    [84]傅强,陈志平,郑津洋.弹性基础上大型石油储罐的应力分析[J].华南理工大学学报,2006,24(9):11~13.
    [85] Kroenke.WC. Classification of Finite Element Stresses According to ASME Section III [J]. Analysis and Computers, 1974, 4(3):5-9.
    [86] Kroenke.WC, Addicott. Interpretationof Finite Element Stresses According to ASME SectionⅢ[J].ASME, 1975, 63:75-76.
    [87] Kroenke.WC. Component EvaluationUsingthe Finite Element Method [J]. Pressure Vessels and Piping Technology, 1985, 33(11):11-14.
    [88] M W Lu,Y. Chen.J G Li. Two step Approach of Stress Classification and Primary Structure Method [J]. PressurVessel Technology, 2000, 122(1):2-8.
    [89] Motohiko,Yamada. Kazuo U chiyama. Seishi Yamada. Koichiro Heki Shell, Membranes and Space FramesVolume3 AM Sterdam, 1995, 33(11):61-68.
    [90] Crooker J, Buchert k.“Reticulate Space Structuers”ASCEAnn. meet. nat. Meet. Struct. Eng. Pennsylvania. Meeting Preprint 731.
    [91]金龙波,黄文霞.渣储罐拱顶失稳分析[J].管道技术与设备,2005(5):19~20.
    [92]黄文霞.渣储罐拱顶失稳分析及修复探讨[J].石油化工设备技术,2008,29(1):25~28.
    [93]黄文霞,黄大伟,王永勇.渣储罐拱顶失稳的有限元分析[J].化工机械,2007,34(4):193~196.
    [94]尹晔昕,王瑜.大型拱顶储罐的有限元计算[J].油气储运,2003,22(1):23~26.
    [95] Hoarun MedhatA. Vlbration studies and tests of liquid storage tanks. Eahrtquake Engnieering&Surtcutral Dnyamies, 1983, 11(2):179-206.
    [96]郭金龙.大型油罐地基加固应力测试技术研究[J].广州建筑,2003,19(5):33~35.
    [97]李书华.大型储罐地基充水预压监测分析与研究[J].山东科技大学学报,2008,27(3):66~71.
    [98]吴如元.3500m3天然气球罐应力测试[J].压力容器,2001,18(增刊):125~130.
    [99]刘育明.10×104m3原油储罐的应力测试与分析[J].石油机械,2001,29(3):26~29.
    [100]李多民.12.5×104m3原油储罐的应力测试与分析[J].压力容器,2005,22(3):15~18.
    [101]吴天云.油罐应力分析的新方法及其计算验证[J].石油化工设备,1997,26(5):15~19.
    [102]高健.机械优化设计基础[M].北京:科学出版社,2000:2-4.
    [103]方世杰,綦耀光.机械优化设计[M].北京:机械工业出版社,2001:6.
    [104]马玉娥,王振海,孙秦.结构系统的优化理论与设计方法探究[J].机械设计与制造,2004,02:122-123.
    [105] Han, Dianli, Wiggins, Michael L, Menzie, Donald E. An Approach to the Optimum Design of Sucker-Rod Pumping Systems. Society of Petroleum Engineers, Inc, The University of Oklahoma.1995.
    [106]陈健云.基于复模态的有限元模型修正算法[J].世界地震工程,2004,20(2):12~16.
    [107]赵晓磊,张荣花,张亮.15×104m3浮顶储罐的模态分析[J].大连民族学院学报,11(1):71~73.
    [108]郝静,何涛,李士才,唐卫清.基于CSCW的协同式工厂设计系统的研究[J].工程图学学报,2004,25(4):41~45.
    [109]汪大勇,金炜东.协同设计中的并行冲突检测算法[J].计算机应用,2007,27(3):650~652.
    [110]朱丹,徐向阳,梁燕,吴晓峰.结构化P2P中覆盖网络拓扑匹配的研究[J].微计算机应用,2008,29(6):17~22.
    [111]刘亚姝.基于CSCW的油田开发方案设计平台的研究与实现[D].大庆石油学院学报,2003.
    [112]史美林.计算机支持的协同工作—理论与应用[M].北京:电子工业出版社,2001,1~2,12~16,32~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700