用户名: 密码: 验证码:
新型掺杂二氧化钛纳米管光催化材料的制备及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术在废水处理、气体净化、杀菌、防污、自洁材料、染料敏化太阳能电池、化妆品、气体传感器等许多领域有着广泛的应用。目前,用于光催化剂的多为N型半导体材料,如TiO2、ZnO、CdS、WO3、SnO2和Fe2O3等,其中TiO2因其活性高、稳定性好、价廉易得、对人体无害等优点而成为最受重视的一种光催化剂。与TiO2纳米颗粒相比,TiO2纳米管具有更大的比表面积、更高的光催化活性和更强的吸附能力,制备和开发TiO2纳米管已成为国内外的一个研究热点。但是,TiO2纳米管作为光催化剂也有自身的缺点。由于TiO2的带隙较宽(锐钛矿3.2 eV),所以只能吸收紫外光。而紫外光只占太阳光能量的4%左右,因此,TiO2对太阳光的利用率很低,如何吸收利用更多的太阳光,提高其在太阳光下的光催化活性,一直是众多科研工作者的研究课题。另外,纳米TiO2回收困难,无形中加大了使用成本,因而限制了它在许多领域中的应用。
     本研究针对克服TiO2的上述缺点而展开,其目的是制备在紫外和可见光区具有高催化活性的掺杂TiO2纳米管光催化材料,同时将自制的光催化材料用于难降解有机污染物的降解。本研究采用离子交换和电化学掺杂的新方法分别对水热法制备的钛酸纳米管和阳极氧化制备的TiO2纳米管阵列进行金属和非金属掺杂,制备了具有可见光活性的新型光催化剂——钆、氮共掺杂钛酸纳米管和锆、氮共掺杂TiO2纳米管阵列,并利用自制的TiO2纳米管阵列对4, 4’-对二溴联苯进行了光电催化降解的研究工作。主要研究内容包括:
     (1)用水热法制备钛酸纳米管,然后通过阳离子交换制备了钆掺杂、氮掺杂以及钆、氮共掺杂钛酸纳米管,并以罗丹明B为目标降解物研究了其光催化性能。结果表明,在紫外光照射下,晶型是决定光催化活性的主要因素,600°C煅烧的钆掺杂钛酸纳米管其光催化活性是同样条件下未掺杂纳米管的1.22倍。而在可见光下,晶型、粒径大小、比表面积和纳米管形貌等因素都对光催化活性有一定的作用,400°C煅烧的钆掺杂钛酸纳米管其光催化活性是同样条件下未掺杂纳米管的2.78倍;通过和NH4+的交换制备了氮掺杂钛酸纳米管,在可见区产生了新的吸收带;钆、氮共掺杂钛酸纳米管在紫外区的光催化活性与单独钆掺杂纳米管没有明显的区别,但在可见区,钆、氮共掺杂产生了协同作用。在钆、氮共掺杂钛酸纳米管的作用下,罗丹明B光照2小时的降解率可达78.3%,而在单独掺钆和掺氮的钛酸纳米管作用下,罗丹明B光照2小时的降解率只有61.6%和57.8%,钆、氮共掺杂钛酸纳米管的光催化活性比单独掺钆和单独掺氮的纳米管都有了进一步的提高。
     (2)用阳极氧化法制备了固定在纯钛片上的TiO2纳米管阵列,通过电化学方法对其进行了锆掺杂和锆、氮共掺杂以提高光催化活性并吸收利用可见光,同样以罗丹明B为目标降解物考察了它们的光催化活性。结果表明,锆掺杂纳米管阵列在紫外区的光催化活性较未掺杂纳米管阵列有了明显的提高,600°C煅烧的纳米管阵列表现出较高的光催化活性。600°C煅烧的锆掺杂纳米管阵列的光催化活性是未掺杂的1.55倍,但其对可见光没有明显的吸收。锆、氮的共掺杂产生了协同效应,不仅提高了紫外区的光催化活性,而且将光响应范围扩展到可见区,其在紫外和可见区的光催化活性分别比未掺杂纳米管阵列提高了42.6%和62.0%。该方法简单、方便、费时少且不需要昂贵的仪器,为中、小实验室进行氮掺杂提供了新的途径,同时为光催化、电极、传感器等新型材料的制备开拓了思路。
     (3)用自制的纳米管阵列对二溴联苯进行光电催化降解并探讨了其降解机理。结果表明,只有外加电压的条件下,4, 4’-对二溴联苯不会降解;直接光照2小时,4, 4’-对二溴联苯的降解率为42.4%,而在Zr, N/TiO2催化下,其对应的降解率为55.6%,系统再施加1 V的电压时,其降解率为88.7%;光电催化对4, 4’-对二溴联苯的降解效果明显高于单独的光催化和电化学过程。其反应机理是4, 4’-对二溴联苯在光催化剂作用下,首先脱去一个溴生成一溴联苯,然后继续脱溴生成联苯,最后被完全矿化。通过对多溴联苯降解的研究为其它难降解有机污染物的降解提供了新的方法。
Photocatalysis has been widely used in wastewater treatment, air cleaning, sterilization, antifouling and self-cleaning materials, dye-sensitized solar cell, cosmetic, air sensor, etc. Most of the photocatalysts are semiconductors, such as TiO2、ZnO、CdS、WO3、SnO2 and Fe2O3. Among them, TiO2 has become the most important one because of its cheap, harmless, good stability and high photocatalytic activity. Comparing with TiO2 nanoparticles, TiO2 nanotubes have higher surface area, higher photocatalytic activity and stronger adsorption ability. Preparing and developing TiO2 nanotubes has become a new focus all over the world. However, TiO2 has some drawbacks. Due to the wide bandgap (3.2 eV for anatase), TiO2 can only absorb UV light. However, the UV light only accounts for 4% of solar energy, thus TiO2 can only utilize a very small part of sunlight. It has been a long-term issue for researchers how to absorb and utilize solar energy more efficiently. Furthermore, it is difficult to recycle nano TiO2, which restricts its application in many fields because of the high cost.
     This paper is to overcome the drawbacks of TiO2 mentioned above and prepare new efficient photocatalysts of doped TiO2 nanotubes and degrade persistent organic pollutants. New photocatalysts of Gd, N-codoped trititanate nanotubes were prepared by hydrothermal method and ion-exchanging, as well as Zr, N-codoped TiO2 nanotube arrays by two-step electrochemical method. It has mainly the following aspects:
     (1) Gd-doped, N-doped and Gd, N-codoped trititanate nanotubes were prepared by hydrothermal method and ion-exchanging, and their photocatalytic activities were investigated with Rhodamine B as the model pollutant. The results showed that crystallinity was the key factor for phtotcatalytic activity under UV light irradiation and the efficiency of Gd-doped trititanate nanotubes at 600℃was 1.22 times than that of the non-doped ones prepared under like conditions. However, all the factors such as crystallinity, particle size, surface area and nanotube morphology, etc. played their roles under visible light irradiation. The efficiency of Gd-doped trititanate nanotubes at 400℃was 2.78 times than that of non-doped ones under like conditions; N-doped trititanate nanotubes were prepared by ion-exchanging with NH4+ ion, which evoked a new absorption band in visible light regions; no obvious difference was found between the photocatalytic activities of Gd, N-codoped and Gd-doped nanotubes in UV regions. However, in visible light regions, synergetic action accured between Gd and N codoping, which resulted in a significant enhancement of photocatalytic activity than that with Gd-doping or N-doping nanotubes. In two hours, 78.3% Rhodamine B was degraded with Gd, N-codoped trititanate nanotubes, while 61.6% and 57.8% were degraded with Gd-doped and N-doped nanotubes, respectively.
     (2) TiO2 nanotube arrays were prepared on pure titanium sheet by anodization and then doped with Zr and N to improve their photocatalytic activities and to absorb solar lights, their photocatalytic activities were investigated with Rhodamine B as model pollutant. The results showed that Zr-doping enhanced the photocatalytic activity of TiO2 nanotube arrays in UV regions. Samples calcined at 600℃exhibited higher photocatalytic activities. The efficiency of Zr-doped TiO2 nanotube arrays at 600℃was 1.55 times than that of non-doped ones. However, Zr-doped TiO2 nanotube arrays couldn’t absorb visible lights. Synergetic reaction occurred between Zr and N codoping, which resulted in an enhancement of photocatalytic activity in UV regions and visible light absorption as well. The codoped nanotube arrays improved the photocatalytic efficiency by 42.6% and 62.0% in UV and visible regions, respectively. This is a simple, convenient, and less time-consuming path for preparing N-doped and N, metal-codoped TiO2 nanotube arrays. Furthermore, it opens a way to preparing new materials for photocatalysis, electrodes and sensors.
     (3) 4, 4’-dibromobiphenyl was degraded by TiO2、Zr/TiO2 and Zr, N/TiO2 nanotube arrays and its mechanism was investigated. The results showed that 4, 4’-dibromobiphenyl was not degraded in electrochemical process and 42.4% was photodegraded under UV light irradiation in two hours. 55.6% and 88.7% was degraded with Zr, N/TiO2 nanotube arrays in photocatalytic and photoelectrocatalysis process (under bias potential of 1 V), respectively. The degradation mechanism of 4, 4’-dibromobiphenyl was to debrominate step by step and further to mineralize in the end. In conclusion, photoelectrocatalysis process was far more efficient than photocatalysis or electrochemical process alone, which provided a new path for degradation of other persistent organic pollutants.
引文
[1] Linsebigler A. L., Lu G., Yates J. T. J., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chem. Rev., 1995, 95: 735-758.
    [2]李凤生,杨毅,马振叶,纳米功能材料与应用[M].北京:国防工业出版社, 2003: 34-35.
    [3] Jang H. D., Kim S. K., Controlled synthesis of titanium dioxide nanopartlcles in a modified difusion flame reactor [J]. Mater. Res. Bull., 2001, 36 (3): 627-637.
    [4]张玉龙,李长德,张银,纳米技术与纳米塑料[M].北京:中国轻工业出版, 2002: 44.
    [5]严子峰,纳米催化技术[M].北京:化学工业出版社, 2003: 316-317.
    [6]施利毅,李春忠,古宏晨,等.气态合成二氧化钛超细粒子的形态及其光催化性[J].环境科学学报, 2000, 20 (2): 134-138.
    [7]徐惠,王毅,苟国俊,等.纳米TiO2的制备表征及其光催化性能研究[J].兰州理工大学学报, 2005, 31 (4): 68-71.
    [8]尹艳红,许泽辉,杨书廷,等.均相沉淀法制备锐钛矿型TiO2纳米棒[J].河南师范大学学报(自然科学版), 2009, 37 (2): 161-164.
    [9] Yu J. G., Wang G. H., Cheng B., et al., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders [J]. Appl. Catal. B., 2007, 69 (3-4): 171-180.
    [10] Jiang B. P., Yin H. B., Jiang T. S., et al., Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group-containing organics as modifier [J]. mater. Chem. Phys., 2006, 98 (2-3): 231-235.
    [11]胡永茂,项金钟,李茂琼,等.纳米TiO2的制备与表征[J].中国陶瓷, 2002, 38 (5): 19-21.
    [12]王晓慧,王子枕,胶溶法合成二氧化钛超微粒子[J].材料科学进展, 1992, 6 (6): 533—537.
    [13] Saiwan C., Krathong S., Anukulprasert T., et al., Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with Salinity Scan [J]. Journal 0f Chemical Engineering of Japan, 2004, 37 (2): 279-285.
    [14] Wang J., Zhang Q. W., Yin S., et al., Raman spectroscopic analysis of sulphur-doped TiO2 by co-grinding with TiS2. [J]. J. Phys. Chem. Solids, 2007, 68 (2): 189–192.
    [15] Kim S., Park H., Kwak C., et al., Characterization of pore structure of mesoporous hydrogen titanium oxide hydrates [J]. J. Phys. Chem. Solids, 2008, 69 (5-6): 1139–1141.
    [16] Hodos M., Horváth E., Haspel H., et al., Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles [J]. Chem. Phys. Lett., 2004, 399 (4-6): 512-515.
    [17] Yoshida R., Suzuki Y., Yoshikawa S., Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes [J]. Mater. Chem. Phys., 2005, 91 (2-3):409-416.
    [18]李晓红,张校刚,力虎林, TiO2纳米管的模板法制备及表征[J].高等学校化学学报, 2001, 22 (1): 130-132.
    [19] Huang C. M., Lin X. Q., Liu Y. P., Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol–gel template synthesis [J]. Chem. Phys. Lett., 2006, 432: 468–472.
    [20]田玉明,徐明霞,刘祥志,等.糖葫芦状二氧化钛纳米线阵列的制备及其光催化性能[J].催化学报, 2006, 27 (8): 703-707.
    [21]刘海津,刘国光,有序排列二氧化钛纳米管的制备研究进展[J].河南师范大学学报(自然科学版), 2009, 37 (2): 153-156.
    [22] Zhao J. L., Wang X. H., Chen R. Z., et al., Fabrication of titanium oxide nanotube arrays by anodic oxidation [J]. Solid State Commun., 2005, 134 (10): 705–710.
    [23] Kaneco S., Chen Y. S., Westerhoff P., et al., Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. [J]. Scr. Mater., 2007, 56 (5): 373-376.
    [24] Prida V. M., Manova E., Vega V., Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays [J]. J. Magn. Magn. Mater., 2007, 316: 110–113.
    [25] Lee W.-J., Smyrl W. H., Oxide nanotube arrays fabricated by anodizing processes for advanced material application [J]. Curr. Appl. Phys., 2007, 8 (6): 818-821.
    [26] Chen X. B., Schriver M., Suen T., et al., Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization [J]. Thin Solid Films, 2007, 515: 8511–8514.
    [27] Fang D., Huang K. L., Liu S. Q., et al., Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material [J]. J. Alloys Compd., 2008, 464 (1-2): L5-L9.
    [28]王周成,黄龙门,唐毅,钛表面制备多孔氧化膜的研究[J].厦门大学学报(自然科学版), 2006, 45: 677-682
    [29]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报, 2004, 20 (9): 1063-1066
    [30] Wang J., Lin Z. Q., Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential [J]. J. Phys. Chem. C, 2009, 113 (10): 4026-4030.
    [31]刘素琴,方东,李朝建,等.阳极氧化法制备二氧化钛纳米管及其荧光性质[J].无机化学学报, 2007, 23 (5): 827-832.
    [32]徐璐璐,王玲,陶海军,等.不同电解液组成对TiO2纳米管形成的影响[J].材料科学与工程学报, 2007, 25 (3): 406-410.
    [33] Macak J. M., Taveira L. V., Tsuchiya H., et al., Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization [J]. Electroceram, 2006, 16 (1): 29–34.
    [34]王月勤,陶杰,何娉婷,二氧化钛纳米管上电沉积羟基磷灰石[J].材料科学与工程学报, 2007, 25 (2): 249-252.
    [35] Mohapatra S. K., Misra M., Mahajan V. K., et al., A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. [J]. J. Catal., 2007, 246 (2): 362-369.
    [36] Raja K. S., Gandhi T., Misra M., Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes [J]. Chem. Commun., 2007, 9: 1069–1076.
    [37] Nguyen Q. A., Bhargava Y. V., Devine T. M., Titania nanotube formation in chloride and bromide containing electrolytes [J]. Chem. Commun., 2008, 10: 471–475.
    [38] Hahn R., Macak J. M., Schmuki P., Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes [J]. Chem. Commun., 2007, 9: 947–952.
    [39] Miyauchi M., Tokudome H., Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction [J]. J. Mater. Chem., 2007, 17 (20): 2095-2100.
    [40] Bayoumi F. M., Ateya B. G., Formation of self-organized titania nano-tubes by dealloying and anodic oxidation [J]. Chem. Commun., 2006, 8: 38–44.
    [41] Mohapatra S. K., Raja K. S., Misra M., et al., Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy [J]. Electrochim. Acta, 2007, 53: 590–597.
    [42] Oliveira N. T. C., Biaggio S. R., Nascente P. A. P., et al., The effect of thickness on the composition of passive films on a Ti–50Zr at% alloy [J]. Electrochim. Acta, 2006, 51: 3506–3515.
    [43] Oliveira N. T. C., Biaggio S. R., Piazza S., et al., Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys [J]. Electrochim. Acta, 2004, 49: 4563–4576.
    [44] Tsuchiya H., Macak J. M., Ghicov A., et al., Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization [J]. Electrochim. Acta, 2006, 52: 94–101.
    [45] Feng X. J., Macak J. M., Schmuki P., Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy [J]. Electrochem. Commun., 2007, 9: 2403–2407.
    [46] Shao G. S., Zhang X. J., Yuan Z. Y., Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx [J]. Appl. Catal. B., 2008, 82: 208-218.
    [47] Diwald O., Thompson T. L., Goralski E. G., et al., The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals [J]. J. Phys. Chem. B, 2004, 108: 52-57.
    [48] Xu J. H., Dai W. L., Li J. X., et al., Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation [J]. Catal. Commun., 2008, 9 (1): 146–152.
    [49] Chen X. B., Burda C., Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles [J]. J. Phys. Chem. B., 2004, 108 (40): 15446-15449.
    [50] Nishijima K., Fukahori T., Murakami N., et al., Development of a titania nanotube (TNT) loaded site-selectively with Pt nanoparticles and their photocatalytic activities. [J]. Appl. Catal., A, 2008, 337 (1): 105–109.
    [51] Liang H. C., Li X. Z., Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films [J]. Appl. Catal., B, 2009, 86 (1-2): 8-17.
    [52] Byrne M. T., McCarthy J. E., Bent M., et al., Chemical functionalisation of titania nanotubes and theirutilisation for the fabrication of reinforced polystyrene composites [J]. J. Mater. Chem., 2007, 17: 2351–2358.
    [53] Livraghi S., Votta A., Paganini M. C., et al., The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis [J]. Chem. Commun., 2005: 498-500.
    [54] Di Valentin C., Pacchioni G., Selloni A., et al., Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations [J]. J. Phys. Chem. B 2005, 109 (23): 11414-11419.
    [55] Livraghi S., Czoska A. M., .Paganini M. C., et al., Preparation and spectroscopic characterization of visible light sensitized N dopedTiO2 (rutile) [J]. J. Solid State Chem., 2009, 182: 160–164.
    [56] Li L. S., Zhang P. Y., Zhu W. P., et al., Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents [J]. J. Photochem. Photobiol., A, 2005, 171: 145–151.
    [57] Liu T. X., Li F. B., Li X. Z., TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase [J]. J. Hazard. Mater., 2008, 152 (1): 347–355.
    [58]史载锋,包帆帆,晋茜,等. TiO2/陶瓷光催化自洁杀菌性能研究[J].环境科学与技术, 2008, 31 (8): 109-112.
    [59] Madaeni S. S., Ghaemi N., Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation [J]. J. Membr. Sci. , 2007, 303 (1-2): 221-233.
    [60] Xu Q. C., Wellia D. V., Sk M. A., et al., Transparent visible light activated C–N–F-codoped TiO2 films for self-cleaning applications [J]. J. Photochem. Photobiol., A, 2010, 210 (2-3): 181-187.
    [61] Lee K. M., Hsu C. Y., Chiu W. H., et al., Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction [J]. Sol. Energy Mater. Sol. Cells, 2009, 93 (11): 2003-2007.
    [62] Park H., Kim W. R., Jeong H. T., et al., Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays [J]. Sol. Energy Mater. Sol. Cells, 2010, Available online 2 March
    [63] Chung K. H., Jung H. Y., Lee Y. W., et al., Preparation of TiO2-loaded nanocapsules and their sun protection behaviors [J]. J. Ind. Eng. Chem. , 2010, 16 (2): 261-266.
    [64] Su W., Wei S. S., Hu S. Q., et al., Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol [J]. J. Hazard. Mater., 2009, 172 (2-3): 716-720
    [65] Varghese O. K., Gong D. W., Paulose M., et al., Hydrogen sensing using titania nanotubes [J]. Sens. Actuators, B, 2003, 93 (1-3): 338-344.
    [66] Ying J. R., Wan C. R., He P. J., Sol–gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors [J]. Sens. Actuators, B, 2000, 62: 165–170.
    [67] Zhang Y. Y., Fu W. Y., Yang H. B., et al., Synthesis and characterization of TiO2 nanotubes for humidity sensing [J]. Appl. Surf. Sci., 2008, 254: 5545–5547.
    [68] Liu S. Q., Chen A. C., Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes forBiosensing [J]. Langmuir, 2005, 21: 8409-8413.
    [69] Paulose M., Mor G. K., Varghese O. K., et al., Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays [J]. J. Photochem. Photobiol., A, 2006, 178 (1): 8-15.
    [70]王艳芹,张莉,程虎民,等.掺杂过渡金属离子的TiO2复合纳米粒子光催化剂——罗丹明B的光催化降解[J].高等学校化学学报, 2000, 21 (6): 958-960.
    [71] Xu A. W., Gao Y., Liu H. Q., The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles [J]. J. Catal., 2002, 207: 151-157.
    [72]彭绍琴,江风益,李越湘, N掺杂TiO2光催化剂的制备及其可见光降解甲醛[J].功能材料, 2005, 36 (8): 1207-1209.
    [73]卫义成,李竞先,掺氮TiO2的制备与进展[J].陶瓷, 2007, (4): 17-21.
    [74] Wang J. W., Zhu W., Zhang Y. Q., et al., An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue [J]. J. Phys. Chem. C 2007, 111 (2): 1010-1014.
    [75] Yin S., Ihara K., Komatsu M., et al., Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity [J]. Solid State Commun., 2006, 137: 132–137.
    [76] Lu M. D., Yang S. M., Syntheses of polythiophene and titania nanotube composites [J]. Synth. Met., 2005, 154: 73–76.
    [77] Zhang C. M., Jiang X. H., Tian B. L., et al., Modification and assembly of titanate sodium nanotubes [J]. Colloids Surf., A, 2005, 257: 521–524.
    [78] Xie Y. B., Zhou L. M., Huang H. T., Enhanced photoelectrocatalytic performance of polyoxometalate-titania nanocomposite photoanode [J]. Appl. Catal., B, 2007, 76: 15–23.
    [79] Zhao Q., Li M., Chu J. Y., et al., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange [J]. Appl. Surf. Sci., 2009, 255 (6): 3773–3778.
    [80] Kim J. C., Choi J., Lee Y. B., et al., Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles [J]. Chem. Commun., 2006, (48): 5024–5026.
    [81] Lo S.-C., Lin C.-F., Wu C.-H., et al., Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol [J]. J. Hazard. Mater., 2004, 114 (1-3): 183–190.
    [82] Yang X. L., Dai W. L., Guo C. W., et al., Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 [J]. J. Catal., 2005, 234: 438–450.
    [83] Jo S.-E., Kang B.-G., Heo S., et al., Gas sensing properties of WO3 doped rutile TiO2 thick film at high operating temperature [J]. Curr. Appl. Phys., 2009, 9: e235–e238.
    [84] Sun J. H., Wang Y. K., Sun R. X., et al., Photodegradation of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation [J]. Mater. Chem. Phys., 2009, 115: 303–308.
    [85] Zayim E. O., Optical and electrochromic properties of sol–gel made anti-reflective WO3–TiO2 films [J]. Sol. Energy Mater. Sol. Cells, 2005, 87: 695–703.
    [86] Pourabbas B., Jamshidi B., Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem. Eng. J. , 2008, 138: 55–62.
    [87] Jing D. W., Guo L. J., WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation [J]. Catal. Commun., 2007, 8: 795–799.
    [88]赵尹,李春忠,刘秀红,燃烧合成铁掺杂TiO2纳米晶的染料敏化光催化性能[J].无机材料学报, 2007, 22 (6): 1070-1074.
    [89] Miyauchi M., Tokudome H., Low-reflective and super-hydrophilic properties of titanate or titania nanotube thin films via layer-by-layer assembly [J]. Thin Solid Films, 2006, 515: 2091–2096.
    [90] Huang J. G., Kunitake T., Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion [J]. J. Mater. Chem., 2006, 16: 4257–4264.
    [91] Vetter W., von der Recke R., Herzke D., et al., Detailed analysis of polybrominated biphenyl congeners in bird eggs from Norway [J]. Environ. Pollut., 2008, 156 (3): 1204-1210.
    [92] Watanabe K., Senthilkumar K., Masunaga S., et al., Brominated Organic Contaminants in the Liver and Egg of the Common Cormorants (Phalacrocorax carbo) from Japan [J]. Environ. Sci. Technol., 2004, 38: 4071-4077.
    [93] Luross J. M., Alaee M., Sergeant D. B., et al., Spatial distribution of polybrominated diphenyl ethers and polybrominated biphenyls in lake trout from the Laurentian Great Lakes [J]. Chemosphere, 2002, 46: 665–672.
    [94] von der Recke R., Vetter W., Congener pattern of hexabromobiphenyls in marine biota from different proveniences [J]. Sci. Total Environ. , 2008, 393: 358-366.
    [95]Jansson B., Asplund L., Olsson M., Brominated flame retardants--Ubiquitous environmental pollutants? [J]. Chemosphere, 1987, 16 (10-12): 2343-2349.
    [96] Hesse J. L., Powers R. A., Polybrominated Biphenyl (PBB) Contamination of the Pine River, Gratiot, and Midland Counties, Michigan [J]. Environmental Health Perspectives, 1978, 23: 19-25.
    [97] Curran C. P., Miller K. A., Dalton T. P., et al., Genetic Differences in Lethality of Newborn Mice Treated In Utero with Coplanar versus Non-Coplanar Hexabromobiphenyl [J]. Toxicol. Sci., 2006, 89 (2): 454–464.
    [98] McCormack K. M., Lepper L. F., Wilson D. M., et al., Biochemical and physiological sequelae to perinatal exposure to polybrominated biphenyls: A multigeneration study in rats [J]. Toxicol. Appl. Pharmacol. , 1981, 59 (2): 300-313.
    [99] Gupta B. N., McConnell E. E., Moore J. A., et al., Effects of a polybrominated biphenyl mixture in the rat and mouse: II. Lifetime study [J]. Toxicol. Appl. Pharmacol., 1983, 68 (1): 19-35.
    [100]Johnston C. A., Demarest K. T., McCormack K. M., et al., Endocrinological, neurochemical, and anabolic effects of polybrominated biphenyls in male and female rats [J]. Toxicol. Appl. Pharmacol., 1980, 56 (2): 240-247.
    [101]Bekesi J. G., Holland J. F., Anderson H. A., et al., Lymphocyte function of Michigan dairy farmers exposed to polybrominated biphenyls [J]. Science, 1978, 199 (4334): 1207 - 1209.
    [102]Chanda J. J., Anderson H. A., Glamb R. W., et al., Cutaneous effects of exposure to polybrominated biphenyls (PBBs): The Michigan PBB incident [J]. Environ. Res. , 1982, 29 (1): 97-108.
    [103]Terrell M. L., Berzen A. K., Small C. M., et al., A cohort study of the association between secondary sex ratio and parental exposure to polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB) [J]. Environ. Health, 2009, 8: 35-46.
    [104]Hoque A., Sigurdson A. J., Burau K. D., et al., Cancer among a Michigan Cohort Exposed to Polybrominate Biphenyls in 1973 [J]. Epidemiology, 1998, 9 (4): 373-378.
    [105]Brown G. G., Preisman R. C., Anderson M. D., et al., Memory performance of chemical workers exposed to polybrominated biphenyls [J]. Science, 1981, 212 (4501): 1413-1415.
    [106]Sjodin A., Wong L. Y., Jones R. S., et al., Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polyhrominated biphenyl (PBB) in the united states population: 2003-2004 [J]. Environ. Sci. Technol., 2008, 42 (4): 1377-1384.
    [107]Kaiser R., Marcus M., Blanck H. M., et al., Polybrominated Biphenyl Exposure and Benign Breast Disease in a Cohort of US Women [J]. Annals of Epidemiology, 2003, 13 (1): 16-23.
    [108]Terrell M. L., Manatunga A. K., Small C. M., et al., A decay model for assessing polybrominated biphenyl exposure among women in the Michigan Long-Term PBB Study [J]. J. Expo. Sci. Environ. Epidemiol., 2008, 18 (4): 410-420.
    [109]Rosen D. H., Flanders W. D., Friede A., et al., Half-life of Polybrominated Biphenyl in Human Sera [J]. Environmental Health Perspectives, 1995, 103 (3): 272-274.
    [110]Field J. A., Sierra-Alvarez R., Microbial transformation and degradation of polychlorinated biphenyls [J]. Environ. Pollut., 2008, 155: 1-12.
    [111]Halu?ka L., Baran??kováG., Balá? ?., et al., Degradation of PCB in different soils by inoculated Alcaligenes xylosoxidans [J]. Sci. Total Environ. , 1995, 175: 275-285.
    [112]Luo W., D'Angelo E. M., Coyne M. S., Plant secondary metabolites, biphenyl, and hydroxypropyl-bcyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils [J]. Soil Biol. Biochem., 2007, 39: 735–743.
    [113]Xu L., Teng Y., Li Z. G., et al., Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum [J]. Sci. Total Environ., 2010, 408: 1007–1013.
    [114]Freeman P. K., Jang J.-S., Ramnath N., The Photochemistry of Polyhaloarenes. 10. The Photochemistry of 4-Bromobiphenyl [J]. J. Org. Chem., 1991, 56: 6072-6079.
    [115]Freeman P. K., Jang J.-S., Haugen C. M., The Photochemistry of Polyhaloarenes XIII: The Photohydrodehalogenation of 3,4-Dibromobiphenyl [J]. Tetrahedron, 1996, 52 (25): 8397-8406.
    [116]von der Recke R., Vetter W., Photolytic transformation of polybrominated biphenyls leading to the structures of unknown hexa- to nonabromo-congeners [J]. J. Chromatogr., A 2007, 1167: 184-194.
    [117]Ruzo L. O., Sundstrom G., Hutzinger O., et al., Photodegradation of Polybromobiphenyls (PBB) [J]. J.Agric. Food Chem, 1976, 24 (5): 1062-1065.
    [118]王立宁,方磊,黄俊,等.紫外光降解多溴联苯的动力学及降解途径研究[J].哈尔滨商业大学学报(自然科学版), 2008, 24 (528-531).
    [119]Lores M., Llompart M., González-García R., et al., Photolysis of polychlorinated biphenyls by solid-phase microextraction: "On-fibre" versus aqueous photodegradation [J]. J. Chromatogr., A, 2002, 963 (1-2): 37-47.
    [120]Occhiucci G., Patacchiola A., Sensitized photodegradation of adsorbed polychlorobiphenyls (PCB's) [J]. Chemosphere, 1982, 11 (3): 255-262.
    [121]季彩宏,张萍,韩萍芳,等. TiO2膜光催化降解4 , 4’-二溴联苯的研究[J].环境工程学报, 2009, 3 (1): 72-76.
    [122]Felip E. D., Ferri F., Lupi C., et al., Structure-dependent photocatalytic degradation of polychlorobiphenyls in TiO2 aqueous system [J]. Chemosphere, 1996, 33 (11): 2263-2271.
    [123]Huang Q. D., Hong C.-S., TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant [J]. Chemosphere, 2000, 41 (6): 871-879.
    [124]Venkatachalam K., Arzuaga X., Chopra N., et al., Reductive dechlorination of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells [J]. J. Hazard. Mater., 2008, 159 (2-3): 483-491.
    [125]DeVor R., Carvalho-Knighton K., Aitken B., et al., Mechanism of the degradation of individual PCB congeners using mechanically alloyed Mg/Pd in methanol [J]. Chemosphere, 2009, 76 (6): 761–766.
    [126]Magee K. D., Michael A., Ullah H., et al., Dechlorination of PCB in the presence of plant nitrate reductase [J]. Environ. Toxicol. Pharmacol., 2008, 25 (2): 144-147.
    [127]王磊,王海霞,吕效平, Fenton法处理水中4, 4'-二溴联苯及动力学研究[J].环境科学与技术, 2007, 30 (12): 69-72.
    [128]DercováK., Vrana B., Tandlich R., et al., Fenton's type reaction and chemical pretreatment of PCBs [J]. Chemosphere, 1999, 39 (15): 2621-2628.
    [129]王磊,朱勇军,吕效平,有机溶剂中4 , 4′-二溴联苯的超声降解[J].南京工业大学学报, 2007, 29 (2): 102-105.
    [130]Kim D., Chen J. R., Yen T. F., Reductive Dechlorination of PCB by Ultrasound Assisted Chemical Process [J]. J. Hazard. Mater., doi:10.1016/j.jhazmat.2009.10.085.
    [131]Mitoma Y., Egashira N., Simion C., Highly effective degradation of polychlorinated biphenyls in soil mediated by a Ca/Rh bicatalytic system [J]. Chemosphere, 2009, 74: 968-973.
    [132]Arienzo M., Chiarenzelli J., Scrudato R., et al., Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation process (ECP) [J]. Chemosphere, 2001, 44: 1339-1346.
    [133]Zwiernik M. J., Quensen I I I J. F., Boyd S. A., FeSO4 Amendments Stimulate Extensive Anaerobic PCB Dechlorination [J]. Environ. Sci. Technol., 1998, 32: 3360-3365.
    [134]Li L. S., Zhu W. P., Zhang P. Y., et al., TiO2/UV/O3-BAC processes for removing refractory andhazardous pollutants in raw water [J]. J. Hazard. Mater., 2006, B128: 145-149.
    [135]Yu H. G., Yu J. G., Cheng B., et al., Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites [J]. J. Hazard. Mater., 2007, 147 (1-2): 581-587.
    [136]Liu Y. B., Zhou B. X., Bai J., et al., Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays [J]. Appl. Catal., B, 2009, 89 (1-2): 142-148.
    [137]Ong K. G., Varghese O. K., Mor G. K., et al., Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption [J]. Sol. Energy Mater. Sol. Cells, 2007, 91 (4): 250–257.
    [138]Tsai C. C., Nian J. N., Teng H., Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. [J]. Appl. Surf. Sci., 2006, 253 (4): 1898-1902.
    [139]Yang J. J., Jin Z. S., Wang X. D., et al., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J]. Dalton.Trans., 2003, (20): 3898-3901.
    [140]Bavykin D. V., Lapkin A. A., Plucinski P. K., et al., Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes [J]. Top. Catal., 2006, 39 (3-4): 151-160.
    [141]Ma R. Z., Sasaki T., Bando Y., Alkali metal cation intercalation properties of titanate nanotubes [J]. Chem. Commun., 2005, (7): 948-950.
    [142]Xu J. C., Lu M., Guo X. Y., et al., Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water [J]. J. Mol. Catal. A: Chem., 2005, 226 (1): 123-127.
    [143]Bavykin D. V., Lapkin A. A., Plucinski P. K., et al., TiO2 nanotube-supported ruthenium(III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen [J]. J. Catal., 2005, 235 (1): 10-17.
    [144]Xu J. J., Ao Y. H., Fu D. G., et al., Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity [J]. Colloids Surf., A 2009, 334 (1-3): 107-111.
    [145]Wang Y. Q., Cheng H. M., Zhang L., et al., The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles [J]. J. Mol. Catal. A: Chem. , 2000, 151: 205-216.
    [146]Xie Y. B., Yuan C. W., Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation [J]. Appli. Catal., B, 2003, 46: 251-259.
    [147]Xie Y. B., Yuan C. W., Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation [J]. Appli. Surf. Sci., 2004, 221 (1-4): 17-24.
    [148]?tengl V., Bakardjieva S., Murafa N., Preparation and photocatalytic activity of rare earth doped TiO2 nanopartic [J]. Mater. Chem. Phys., 2009, 114 (1): 217-226.
    [149]Zhao D., Peng T. Y., Liu M., et al., Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure [J]. Microporous Mesoporous Mater., 2008, 114 (1-3): 166-174.
    [150]Zhang Z. B., Wang C. C., Zakaria R., et al., Role of Particle Size in Nanocrystalline TiO2-BasedPhotocatalysts [J]. J. Phys. Chem. B, 1998, 102 (52): 10871-10878.
    [151]Singhal B., Porwal A., Sharma A., et al., Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder [J]. J. Photochem. Photobiol., A, 1997, 108 (1): 85-88.
    [152]Chu D. B., Yuan X. M., Qin G. X., et al., Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells [J]. J. Nanopart. Res., 2008, 10 (2): 357–363.
    [153]Mori K., Maki K., Kawasaki S., et al., Hydrothermal synthesis of TiO2 photocatalysts in the presence ofNH4F and their application for degradation of organic compounds [J]. Chem. Eng. Sci., 2008, 63: 5066– 5070.
    [154]Chen X. F., Wang X. C., Hou Y. D., et al., The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation [J]. J. Catal., 2008, 255 (1): 59–67.
    [155]Li D. Z., Huang H. J., Chen X., et al., New synthesis of excellent visible-light TiO2-xNx photocatalyst using a very simple method. [J]. J. Solid State Chem., 2007, 180 (9): 2630–2634.
    [156]Asahi R., Morikawa T., Ohwaki T., et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293: 269-271.
    [157]Di Valentin C., Finazzi E., Pacchioni G., et al., N-doped TiO2: Theory and experiment [J]. Chem. Phys. , 2007, 339 (1-3): 44–56.
    [158]Li M. S., Zhang S. J., Lou J., et al., Deposition of photocatalytic TiO2 and N-doped TiO2 films by arc ion plating [J]. Trans.Nonferrous Met.Soc.China, 2007, 17: s827-s830.
    [159]王金淑,邢朋飞,李莉莉,等.机械化学法N掺杂纳米TiO2的制备与表征[J].北京工业大学学报, 2006, 32: 633-637.
    [160]Yang Z. Y., Zhou A., Effects of Nitrogen Doping on M icrostructure and Activity of Nanocrystalline TiO2 Powders. [J]. Journal of Wuhan University of Technology-Mater.Sci.Ed., 2007, 22 (3): 457-461.
    [161]Wang X. C., Yu J. C., Chen Y. L., et al., ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNx as Efficient Visible Light Photocatalysts [J]. Environ. Sci. Technol. , 2006, 40 (7): 2369-2374.
    [162]Peng F., Cai L. F., Yu H., et al., Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity [J]. J. Solid State Chem., 2008, 181 (1): 130–136.
    [163]黄东升,曾人杰,陈朝凤,等.铁、氮共掺杂二氧化钛薄膜的亲水性能[J].物理化学学报, 2007, 23 (7): 1037-1041.
    [164]Shen X. Z., Guo J., Liu Z. C., et al., Visible-light-driven titania photocatalyst co-doped with nitrogen and ferrum [J]. Appl. Surf. Sci., 2008, 254 (15): 4726–4731.
    [165]Zhang X., Liu Q. Q., Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel [J]. Appl. Surf. Sci., 2008, 254 (15): 4780-4785.
    [166]Nishijima K., Fujisawa Y., Murakami N., et al., Development of an S-doped titania nanotube (TNT) site-selectively loaded with iron(III) oxide and its photocatalytic activities [J]. Appl. Catal. B., 2008,84 (3-4): 584-590.
    [167]Sreethawong T., Laehsalee S., Chavadej S., Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation [J]. Catal. Commun., 2009, 10: 538–543.
    [168]Ling Q. C., Sun J. Z., Zhou Q. Y., et al., Visible-light-driven titania/silica photocatalyst co-doped with boron and ferrum [J]. Appl. Surf. Sci., 2008, 254 (21): 6731-6735.
    [169]Su Y., Chen S., Quan X., et al., A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity [J]. Appl. Surf. Sci., 2008, 255 (5): 2167-2172.
    [170]Rodriguez J. A., Jirsak T., Dvorak J., et al., Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 [J]. J. Phys. Chem. B., 2000, 104: 319-328.
    [171]邵颖,薛宽宏,陈巧玲,等. TiO2纳米管的光催化作用[J].应用化学, 2003, 20 (5): 433-436.
    [172]Choi Y., Yamamoto S., Umebayashi T., et al., Fabrication and characterization of anatase TiO2 thin film on glass substrate grown by pulsed laser deposition [J]. Solid State Ionics, 2004, 172: 105–108.
    [173]Macak J. M., Tsuchiya H., Berger S., et al., On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si [J]. Chem. Phys. Lett., 2006, 428 (4-6): 421-425.
    [174]Wang J., Lin Z. Q., Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization [J]. Chem. Mater., 2008, 20 (4): 1257-1261.
    [175]Wang J., Zhao L., Lin V. S.-Y., et al., Formation of various TiO2 nanostructures from electrochemically anodized titanium [J]. J. Mater. Chem., 2009, 19 (22): 3682-3687.
    [176]Zhang J. L., Zhou B. X., Zheng Q., et al., Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array [J]. Water Res., 2009, 43 (7): 1986-1992.
    [177]刘国光,郭小阳,郑立庆,等. Zr\TiO2纳米管的制备及其光催化活性的初步研究[J].环境科学学报, 2008, 28 (4): 710—7l3.
    [178]刘国光,张峰,谢友海,等. Zr /TiO2纳米颗粒的制备及其光催化活性[J].环境科学学报, 2006, 26 (5): 846 - 850.
    [179]Chang S. M., Doong R. A., Characterization of Zr-Doped TiO2 Nanocrystals Prepared by a Nonhydrolytic Sol-Gel Method at High Temperatures [J]. J. Phys. Chem. B, 2006, 110 (42): 20808-20814.
    [180]Luka′c J., Klementova′M., Bezdicˇka P., et al., Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol [J]. Appl. Catal., B, 2007, 74 (1-2): 83-91.
    [181]卢新宁,张宁,宋维君,等.氧化镧掺杂TiO2纳米管的制备及光催化性能研究[J].有色金属(冶炼部分), 2007, (1): 46-49.
    [182]Ge R. X., Fu W. Y., Yang H. B., et al., Fabrication and characterization of highly-ordered titania nanotubes via electrochemical anodization [J]. Mater. Lett., 2008, 62 (17-18): 2688–2691.
    [183]Wu B. C., Yuan R. S., Fu X. Z., Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers [J]. J. Solid State Chem., 2009, 182 (3): 560-565.
    [184]Wagner C. D., Zatko D. A., Raymond R. H., Use of the Oxygen KLL Auger Lines in Identification of Surface Chemical States by Electron Spectroscopy for Chemical Analysis [J]. Anal. Chem., 1980, 52 (9): 1445-1451.
    [185]傅献彩,沈文霞,姚天扬,物理化学[M].高等教育出版社, 1990.
    [186]Jung K. Y., Park S. B., Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. [J]. J. Photochem. Photobiol., A, 1999, 127 (1-3): 117–122
    [187]Xu C. K., Shaban Y. A., Ingler Jr. W. B., et al., Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting [J]. Sol. Energy Mater. Sol. Cells, 2007, 91: 938–943.
    [188]Yamaki T., Umebayashi T., Sumita T., et al., Fluorine-doping in titanium dioxide by ion implantation technique [J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, 206: 254–258.
    [189]Horikawa T., Katoh M., Tomida T., Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area [J]. Microporous Mesoporous Mater. , 2008, 110 (2-3): 397–404.
    [190]Huang D. S., Zeng R. J., Chen C. F., et al., Hydrophilicity of TiO2 Thin Films Codoped with Iron and Nitrogen [J]. Acta Phys.-Chim.Sin, 2007, 23 (7): 1037-1041.
    [191]Liu J. J., Qin W., Zuo S. L., et al., Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania [J]. J. Hazard. Mater., 2008, 163 (1): 273-278.
    [192]Vitiello R. P., Macak J. M., Ghicov A., et al., N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia [J]. Electrochem. Commun. , 2006, 8 (4): 544–548.
    [193]Shen H., Mi L., Xu P., et al., Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation [J]. Appl. Surf. Sci., 2007, 253 (17): 7024–7028.
    [194]Liu H. J., Liu G. G., Zhou Q. X., Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity [J]. J. Solid State Chem., 2009, 182 (12): 3238-3242.
    [195]Gutenmann W. H., Lisk D. J., Tissue Storage and Excretion in Milk of Polybrominated Biphenyls in Ruminants [J]. J. Agric. Food Chem, 1975, 23 (5): 1005-1007.
    [196]Luo X. J., Zhang X. L., Liu J., et al., Persistent Halogenated Compounds in Waterbirds from an e-Waste Recycling Region in South Chin [J]. Environ. Sci. Technol., 2009, 43 (2): 306-311.
    [197]Gao F., Luo X. J., Yang Z. F., et al., Brominated Flame Retardants, Polychlorinated Biphenyls, and Organochlorine Pesticides in Bird Eggs from the Yellow River Delta, North China [J]. Environ. Sci. Technol., 2009, 43 (18): 6956-6962.
    [198]Jacobs L. W., Chou S. F., Tiedje J. M., Fate of Polybrominated Biphenyls (PBB’s) in Soils. Persistence and Plant Uptake [J]. J. Agric. Food Chem., 1976, 24 (6): 1976-1201.
    [199]Chen S. J., Ma Y. J., Wang J., et al., Brominated Flame Retardants in Children’s Toys: Concentration, Composition, and Children’s Exposure and Risk Assessment [J]. Environ. Sci. Technol., 2009, 43 (11): 4200-4206.
    [200]Alonso M., Casado S., Miranda C., et al., Decabromobiphenyl (PBB-209) Activates the Aryl Hydrocarbon Receptor While Decachlorobiphenyl (PCB-209) Is Inactive: Experimental Evidence and Computational Rationalization of the Different Behavior of Some Halogenated Biphenyls [J]. Chem. Res. Toxicol., 2008, 21: 643–658.
    [201]Babish J. G., Gutenmann W. H., Stoewsand G. S., Polybrominated Biphenyls: Tissue Distribution and Effect on Hepatic Microsomal Enzymes in Japanese Quail [J]. J. Agric. Food Chem, 1975, 23 (5): 879-882.
    [202]DeVor R., Carvalho-Knighton K., Aitken B., et al., Dechlorination comparison of mono-substituted PCBs with Mg/Pd in different solvent systems [J]. Chemosphere, 2008, 73: 896-900.
    [203]Gao X. B., Wang W., Liu X., Low-temperature dechlorination of hexachlorobenzene on solid supports and the pathway hypothesis [J]. Chemosphere, 2008, 71: 1093-1099.
    [204]Al-Sheikhly M., Silverman J., Neta P., et al., Mechanisms of Ionizing Radiation-Induced Destruction of 2, 6-Dichlorobiphenyl in Aqueous Solutions [J]. Environ. Sci. Technol., 1997, 31 (9): 2473-2477.
    [205]Kim D., Chen J. R., Yen T. F., Mechanism and kinetics of reductive dehalogenation of PBB (polybrominated biphenyl) in the sonolytic and ketyl radical system [J]. J. Hazard. Mater., 2009, 163 (1): 231-238.
    [206]Sugimoto H., Matsumoto S., Sawyer D. T., Degradation and Dehalogenation of Polychlorobiphenyls and Halogenated Aromatic Molecules by Superoxide Ion and by Electrolytic Reduction [J]. Environ. Sci. Technol., 1988, 22 (10): 1182-1186.
    [207]Selli E., Bianchi C. L., Pirola C., et al., Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis [J]. J. Hazard. Mater., 2008, 153: 1136-1141.
    [208]Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-39.
    [209]Lin J., Zong R. L., Zhou M., et al., Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array [J]. Appl. Catal., B, 2009, 89: 425-431.
    [210]Zlamal M., Macak J. M., Schmuki P., et al., Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes [J]. Electrochem. Commun., 2007, 9: 2822-2826.
    [211]Yang S. G., Quan X., Li X. Y., et al., Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO2/Ti electrode [J]. Photochem. Photobiol. Sci., 2006, 5: 804-814.
    [212]王宁,李新勇,侯阳,等. TiO2纳米管的阳极氧化法制备及对对氯苯酚的光电降解研究[J].科学通报, 2008, 53 (13): 1528 -1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700