用户名: 密码: 验证码:
N掺杂二氧化钛纳米材料的光电性质及光催化活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能的研究和利用是当今世界所面临的重大课题,利用太阳能进行光催化一直是人们研究的热点,光催化技术由于其价格便宜,环境友好,稳定性高等优点,在环境污染控制领域具有广泛的应用前景。半导体光催化是近年来国内外最活跃的研究领域之一,尤其是随着纳米技术的飞速发展,光催化纳米材料通过吸收太阳光,可以直接分解环境污染物,无二次污染,所以深入研究纳米半导体光催化剂对于从根本上解决环境污染问题具有重大的意义。通常,光催化过程包括三步,(1)光催化材料吸收一定的光能(hν> Eg),(2)在光激发下产生的光生载流子(电子、空穴)迁移到催化剂表面,(3)光生载流子与吸附在催化剂表面的物质发生氧化还原反应。在这三步过程中,可能影响光催化过程量子效率的重要因素有:光生载流子的分离效率和复合效率,以及光生载流子向表面迁移过程中载流子的迁移率等。因此深入研究光催化纳米材料的光催化活性与光生电荷行为的内在关系,对于光催化剂材料的开发和应用至关重要。研究光催化纳米结构材料的表面与界面光生电荷行为,是探讨其光催化机理的基础,为进一步优化光催化体系的性能提供理论依据。
     以TiO_2为代表的传统光催化纳米材料,存在着量子效率低以及不能有效利用太阳光等缺点,影响了它的广泛应用,因此,开发高效利用太阳光、高量子效率的光催化纳米结构材料具有重大意义。近年来的研究发现,非金属掺杂的TiO_2,特别是N掺杂TiO_2,能够拓展TiO_2的响应光谱范围,进而提高其对太阳光的利用率。因此,深入研究以N掺杂TiO_2为中心的光催化材料的光电性质,能够使我们更好的理解新一代光催化纳米结构材料的光催化机制。
     本文工作主要是利用表面光电压技术,瞬态光电压技术以及Kelvin探针技术研究了N掺杂TiO_2纳米材料,N-TiO_2 / TiO_2复合材料,TiO_2混晶结构纳米材料的表面与界面光生电荷行为,以及光电性质与光催化活性之间的关系,为进一步优化光催化体系的性能提供理论依据。得到了以下创新性成果:
     1.以尿素为氮源,采用水热法制备了不同N掺杂量的TiO_2 (N- TiO_2)光催化剂.利用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)以及荧光光谱(PL)等技术对其进行了系统的表征,以罗丹明B (RhB)和甲基橙(MO)溶液的脱色降解为模型反应,分别考察了不同N含量的样品在紫外和可见光区的光催化活性.利用表面光电压(SPV)和瞬态光电压(TPV)技术研究了N掺杂TiO_2纳米粒子表面光生电荷的产生和传输机制,并探讨了光生电荷与光催化活性之间的关系.结果显示,随着N含量的增大, TiO_2表面光伏响应阈值发生红移,可见光部分光电压响应强度逐渐增强,同时瞬态光伏响应达到最大值的时间亦有着不同程度的延迟.这表明适量的N掺杂能够提高TiO_2纳米粒子中光生载流子的分离效率,相应地延长了载流子的传输时间,从而增加光生电荷的寿命,而过量的N掺杂则增加了TiO_2纳米粒子中光生载流子的复合中心,同时亦改变了TiO_2的能级结构,影响了光生空穴的氧化能力,从而导致了光催化活性的下降。
     2.在N掺杂TiO_2纳米粒子的基础上,制备了不同质量比(N-TiO_2 vs. TiO_2)的TiO_2包覆N-TiO_2的具有异质结构的N-TiO_2 / TiO_2复合纳米粒子,并对其进行了光催化降解甲基橙及亚甲基蓝的实验。结果表明,无论在紫外光还是可见光的照射下,当N-TiO_2与TiO_2的质量比为8: 2时,复合粉体的光催化活性都是最好的。通过Kelvin探针测试结果可知N-TiO_2的表面功函低于TiO_2, N-TiO_2与TiO_2之间形成的界面能够使光生电子从TiO_2向N-TiO_2转移,我们通过SPV和TPV的结果可以得到光生电荷的微观运动行为,N-TiO_2 / TiO_2复合纳米粒子在光的激发下,由于界面场的存在促进了光生电子和空穴的有效分离,并抑制其复合。
     3.通过对N-TiO_2 / TiO_2复合纳米粒子的研究,我们发现异质结构纳米粒子作为光催化剂具有更好的光催化活性,因此我们对混晶TiO_2 (锐钛矿/金红石)纳米粒子晶相间界面结的形成,以及光生电荷行为与光催化反应之间的关系进行了研究。我们制备了不同质量比(锐钛矿vs.金红石)的TiO_2纳米粒子,并对其进行了紫外光催化降解罗丹明B实验。随着金红石含量的逐渐增多,TiO_2光催化活性先增大后减小。应用Kelvin探针技术研究了混晶TiO_2纳米粒子的表面功函,利用表面光电压和瞬态光电压表征了光生电荷的运动行为。混晶TiO_2的表面功函介于纯锐钛矿和纯金红石相TiO_2之间,锐钛矿相TiO_2的表面功函高于金红石相,所以可以认为在混晶TiO_2中,锐钛矿和金红石之间的界面结有形成的可能,SPV和TPV的结果进一步证明了在紫外光照射下,锐钛矿和金红石之间形成的界面结影响着体系的光生电荷的运动行为,金红石相的含量也影响着界面电场作用的大小,从而导致光催化活性的不同。
Development and utilization of solar energy is a major issue which is facing the world today, and photocatalysis using solar energy has attracted an enormous amount of research interest. The photocatalytic technology has been widely applied in the field of environmental pollution control because of cheap, environmentally friendly, and high stability advantages. Semiconductor Photocatalysis is one of the most active areas of research in recent years at home and abroad, especially with the rapid development of nanotechnology, photocatalytic nano-materials can break down environmental pollutants, and no secondary pollution. Therefore, it is meaningful to study the nano- photocatalyst for the fundamental solution to environmental problems. Tiypically, the photocatalytic process includes three steps, (1) photocatalytic materials absorb photoenergy (hν> Eg), (2) photogenerated carriers (electron, hole) migration to the catalyst surface under the excitation, (3) redox reactions occurred on the catalyst surface. In this three-step process, the important factors which may affect the quantum efficiency of photocatalytic are: the separation efficiency and recombination efficiency of photogenerated carriers, the carrier mobility of the photogenerated carriers that migrate to the surface and so on. Therefore, it is essential to study the intrinsic relationship between photoinduced charge behavior and photocatalytic activity of nano-materials for the development and application of photocatalytic materials. The behaviors of the photoinduced charges at the surface and interface of the photoactive systems are important to explore the basis of the photocatalytic mechanism, and further optimize the performance of photocatalytic system.
     TiO_2 is the tradition photocatalytic nanomaterials, but its application is limited by the dissatisfactory quantum efficiency, the neglectable utilization of solar energy and other shortcomings. So it is meaningful to develop the nano-structured photocatalytic materials which can use sunlight efficiently. In recent years, many studies have found that non-metal-doped TiO_2, especially the N-doped TiO_2, could expand the range of the response spectrum, thereby increasing the utilization of solar energy. Therefore, it is essential to study the N-doped TiO_2 photocatalytic material, and we can better understand the new generation of nano-structured materials, and the photocatalytic mechanism.
     In this thesis, we mainly studied the photoelectric properties of N doped TiO_2 nano-materials, N-TiO_2 / TiO_2 composite materials, TiO_2 with mixed crystal structure by the surface photovoltage technique, transient photovoltaic technology and Kelvin probe technique, and the relationship between the photocatalytic activity and the behaviors of photoinduced charges at the interface and surface of nano-materials was also discussed. Innovative achievements as following:
     1. Nitrogen-doped TiO_2 (N-TiO_2) photocatalysts with different N doping were successfully synthesized by hydrothermal method using urea as the nitrogen source. The samples were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS) and photo luminescence spectroscopy (PL). The photodegradation of Rhodamine B (RhB) and Methyl Orange (MO) solution was used to evaluate the photocatalytic activity of the catalysts under UV and visible light irradiation. The surface photovoltage (SPV) and transient photovoltage (TPV) techniques were applied to investigate the separation and transport mechanism of the photo-generated charge carriers of N-doped TiO_2 nanoparticles. The relationship between the photo-generated charge carriers and the photocatalytic activity was also discussed. The results show that the SPV threshold values were shifted to the visible region, and stronger photovoltaic response in the visible region were observed with the increase of N doping. Simultaneously, it is found that the maximum values of TPV response time are different for N-TiO_2. These results indicate that the photo-induced charge carriers are separated efficiently with appropriate amount of N doping, and accordingly the transmission time is extended, which imply the lifetime of photo-induced charge carriers is increased. While an excessive amount of N act as the recombination centers for the photo-induced electrons and holes, they reduce the photocatalytic activity though they contribute to the visible light absorbance.
     2. Based on N doped TiO_2 nanoparticles, we prepared the N-TiO_2 / TiO_2 composite nanoparticles with different mass ratio of N-TiO_2 and TiO_2. The N-TiO_2 nanoparticles were coated with TiO_2 which had the heterogeneous structure. And we tested the photocatalytic activity by degrading methyl orange and methylene blue. The results showed that under both the UV and visible light irradiation, the photocatalytic activity of the composite powders (the mass ratio of N-TiO_2 and TiO_2 is 8:2) is the best. Kelvin probe results indicated that the surface work function of N-TiO_2 was less than that of TiO_2, the interface between N-TiO_2 and TiO_2 could be formed and the photo-electrons might transfer from TiO_2 to N-TiO_2. The SPV and TPV results revealed the behavior of photo-generated charges, we could observe that the photo-generated charges were easier to separate and difficult to recombination under the hetero-interface in the N-TiO_2 / TiO_2 composite nanoparticles.
     3. Through the N-TiO_2 / TiO_2 composite nanoparticles study, we found that the nanoparticles with heterogeneous structure have better photocatalytic activity, so we studied the mixed crystal TiO_2 (anatase / rutile)nanopowders. We prepared the mixed crystal TiO_2 (anatase / rutile) nanoparticles via hydrolyze method. The influence of the interface junction between anatase and rutile TiO_2 on the photogenerated charge carriers properties were studied by Kelvin probe (KP), surface photovoltage (SPV) and transient photovoltage (TPV) techniques. The nanopowders of anatase, rutile and mixed-phase TiO_2 were synthesized through hydrolysis method. The prepared nanoparticles were well characterized by XRD, TEM, HRTEM, and UV-vis diffuse reflectance spectroscopy. And the photocatalytic activities of these samples were evaluated on the degradation of RhB under UV-light irradiation. The KP results revealed that the difference of the surface work function between anatase and rutile may cause the built-in field at the interface in the mixed-phase TiO_2. The formation of the interface junction was further revealed through the red shift of the SPV response peak and the time retardation of the TPV response in the mixed-phase TiO_2. The relationship between enhanced photocatalytic activity of mixed-phase TiO_2 and the characteristics of photogenerated charge carriers was also discussed.
引文
[1] VINCENZO BALZANI, ALBERTO CREDI, MARGHERITA VENTURI, Photochemical Conversion of Solar Energy, ChemSusChem, 2008, 1:26.
    [2] NATHAN S. LEWIS, et al. Basic Research Needs for Solar Energy Utilization, Argonne National Laboratory, 2005, 4: 1.
    [3]周馨我,张公正,范广裕,功能材料学[M],北京理工大学出版社,2002,第一版,1.
    [4] HOFFMANNM R, MARTIN S T, CHOIW, et al. Environental Ap 2p lications of Semiconduct or Photocatalysis [J]. Chemical Reviews, 1995, 95 (1): 69 - 96.
    [5] OSTERL OH F E. Inorganic Materials as Catalysts for Photochemical Splitting of Water [J]. Chemistry of Materials, 2008, 20 (1): 35 - 54.
    [6] MALDOTTI A, MOLINARI A, AMADELLI R. Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2 [J]. Chemical Reviews, 2002, 102 (10): 3811- 3836.
    [7] LINSEBIGLER A L. LU G. YATES J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chemical Reviews, 1995, 95 (3): 735-758.
    [8] FUJISHIMA A, HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238: 37-38.
    [9] XIN JIANG X, WANG. T. Influence of Preparation Method on Morphology and Photocatalysis Activity of Nanostructured TiO2 [J]. Environmental Science & Technology, 2007, 41(12): 4441-4446.
    [10] WANG C C. ZHANG Z B. YING J Y. Photocatalytic Decomposition of Halogenated Organics Over Nanocrystalline Titania [J]. NanoSmactared Materials, 1997, 9(1-8): 583-586.
    [11] PENG T. ZHAO D. DAI K. SHI W. HIRAO K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity [J]. Journal of Physical Chemistry B, 2005, 109: 4947-4952.
    [12] JING ZHANG, QIAN XU, ZHAOCHI FENG, MEIJUN LI, CAN LI. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2 [J]. Angewandte Chemie International Edition. 2008, 47:1766-1769.
    [13] ASAHI R. MORIKAWA T. OHWAKI T. AOKI K. TAGA Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science 2001, 293: 269-271.
    [14] MASAYUKI YAGI. MASAO KANEKO. Molecular Catalysts for Water Oxidation [J], Chemical Reviews. 2001, 101: 21-36.
    [15] ZHU S B. XU T G. FU H B. ZHAO J C. ZHU Y F. Synergetic Effect of Bi2WO6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation [J]. Environmental Science & Technology, 2007, 41(17): 6234-6239.
    [16] GIOVANNI P. VINCENZO A. MARIO P. LEONARDO P. Photocatalysis: a promising route for 21st century organic chemistry [J], Chemical Communications., 2007, 3425-3437.
    [17] JAMES P. MCEVOY, GARY W. BRUDVIG, Water-Splitting Chemistry of Photosystem II [J], Chemical Reviews, 2006, 106: 4456.
    [18] O’REGAN B. GR?TZEL M. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [19] GR?TZEL M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A, 2004, 164: 3-14.
    [20] GR?TZEL. M. Dye-sensitized Solar Cells [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145–153.
    [21] OLSON D C. PIRIS J. COLLINS R T. SHAHEEN S E. GINLEY D S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites [J]. Thin Solid Films, 2006, 496(1): 26–29.
    [22] GREENE L E. LAW M. YUHAS B D. YANG P D. ZnO?TiO2 Core?Shell Nanorod/P3HT Solar Cells [J]. Journal of Physical Chemistry C, 2007, 111(50): 18451–18456.
    [23] PASQUIER A D. MASTROGIOVANNI D D T. KLEIN L A. WANG T. GARFUNKEL E. Photoinduced Charge Transfer Between Poly (3-hexylthiophene) and Germanium Nanowires [J]. Applied Physical Letters, 2007, 91(18): 183501-1-183501-3.
    [24] MARTíN G. BELLINO, DIEGO G. LAMAS, NOEMíE. WALS?E DE RECA, A Mechanism for the Fast Ionic Transport in Nanostructured Oxide-Ion Solid Electrolytes [J], Advanced Materials, 2006, 18(22): 3005-3009.
    [25] HONG Y. CHENGZHONG Y. QUNLIANG S. YONGYAO X. FUYOU L. ZHIGANG C. XIANGHONG L. TAO YI. CHUNHUI HUANG. High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized Solar Cells by Self-assembly [J], Chemistry of Materials, 2006, 18(22): 5173-5177.
    [26] PRASAD T. QIQUAN Q. HUI J. ION G. KIRK S. S. JOHN R. R. Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications [J], Journal of the American Chemical Society, 2007, 129(29): 8958-8959.
    [27] YUAN G. CHUN-CHIH W. LEEYIH W. HSING-LIN W. Conjugated Polyelectrolytes with pH-Dependent Conformations and Optical Properties [J], Langmuir, 2007, 23(14): 7760-7767.
    [28] YASUYUKI N. NAOKI A. HIROSHI S. AKIHIKO T. TOMOJI K. TAKUYA M. ZIN SEOK Y. DEOK Y. TAE KYU A. DONGHO K. ATSUYA M. NAGAO K. ATSUHIRO O. A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core [J], Journal of the American Chemical Society, 2006, 128(12): 4119-4127.
    [29] SERGEY M. CHRISTIAN L. EUGENY A. E. OLGA S. BEATE R. DIETER W. Synthesis and Photophysical Properties of Annulated Dinuclear and Trinuclear Phthalocyanines [J], Chemistry- A European Journal, 2006, 12(5): 1468-1474.
    [30] JOHANNES A. A. W. ELEMANS, RICHARD VAN HAMEREN, ROELAND J. M. NOLTE, ALAN E. ROWAN, Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines and Perylenes [J]. Journal of Advanced Materials, 2006, 18(10): 1251-1266.
    [31] CHANG-QI MA. ELENA M. TONY D. MARTIJN M. WIENK, REN A. J. JANSSEN. PETER B. Functionalized 3D Oligothiophene Dendrons and Dendrimers - Novel Macromolecules for Organic Electronics [J], Angewandte Chemie International Edition, 2007, 119(10): 1709-1713.
    [32] PETER J. S. RORY B. IGOR M. S. ALEXANDER L. K. LYUDMILA K. SERGEY G. IGOR F. P. N. SERDAR S, CHRISTOPH W. Fluorene functionalised sexithiophenes—utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells [J], Journal of Materials Chemistry, 2007, 17: 1055-1062.
    [33] MINGQIAN TAN, PRABHAKARAN MUNUSAMY, VENKATARAMANAN MAHALINGAM, FRANK C. J. M. VAN VEGGEL. Blue Electroluminescence from InN@SiO2 Nanomaterials [J], Journal of the American Chemical Society, 2007, 129(46): 14122-14123.
    [34] FAN Z Y. RAZAVI H. DO J W. MORIWAKI A. ERGEN O. CHUEH Y L. LEU P W. HO J C. TAKAHASHI T. REICHERT L A. NEALE S. YU K. WU M. AGER J W. JAVEY A. Three-dimensional Nanopillar-array Photovoltaics On Low-cost and Flexible Substrates [J]. Nature Materials, 2009, 8(8): 648–653.
    [35] KANG S H. CHOI S H. KANG M S. KIM J Y. KIM H S. HYEON T. SUNG Y E. Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency [J], Advanced Materials, 2008, 20(1): 54-58.
    [36] WANG X. ZHI L J. TSAO N. TOMOVI? ?. LI J L. MüLLEN K. Transparent Carbon Films as Electrodes in Organic Solar Cells [J], Angewandte chemie-international edition, 2008, 47(16): 2990-2992.
    [37] SHALOM M. ALBERO J. TACHAN Z. MARTINEZ-FETTERO E. ZABAN A. PALOMARES E. Quantum Dot?Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers [J]. The Journal of Physical Chemistry Letters, 2010, 1(7): 1134-1138.
    [38] SHANKAR K. MOR G K. PRAKASAM H E. VARGHESE O K. GRIMES G A. Self-Assembled Hybrid Polymer-TiO2 Nanotube Array Heterojunction Solar Cells [J]. Langmuir, 2007, 23(24): 12445-12449.
    [39] LEVENTIS H C. KING S P. SUDLOW A. HILL M S. MOLLOY K C. HAQUE S A. Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks [J]. Nano Letters, 2010, 10 (4): 1253–1258
    [40] SUN Z X. XU L. GUO W H. XU B B. LIU S P. LI F Y. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates [J]. Journal of Physical Chemistry C, 2010, 114(11): 5211–5216.
    [41] DENNLER G. SCHARBER M C. AMERI T. DENK P. FORBERICH K. WALDAUF C. BRABEC C J. Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells [J], Advanced Materials, 2008, 20(3): 579-583.
    [42] BOUCLéJ. CHYLA S. SHAFFER M S P. DURRANT J R. BRADLEY D D C. NELSON J. Hybrid Solar Cells from a Blend of Poly (3-hexylthiophene) and Ligand-Capped TiO2 Nanorods [J], Advanced Functional Materials, 2008, 18(4): 622-633.
    [43] BRIAN YULIARTO, HAOSHEN ZHOU, TAKEO YAMADA, ITARU HONMA, KEISUKE ASAI, Synthesis of a Surface Photovoltage Sensor UsingSelf-Ordered Tin-Modified MCM-41 Films: Enhanced NO2 Gas Sensing [J], ChemPhysChem, 2004, 5(2): 261-265.
    [44] MOR G K. VARGHESE O K. GRIMES C A. CARVALHO M A. PISHKO M V. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [J]. Journal of Materials Research., 2004, 19: 628-634.
    [45] LI M. CHEN Y. An investigation of response time of TiO2 thin-film oxygen sensors [J]. Sensors and Actuators, B, 1996, 32: 83-85.
    [46] COMINI E. FAGLIA G. SBERVEGLIERI G. LI Y X. WLODARSKI W. GHANTASALA M K. Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb [J]. Sensors and Actuators, B, 2000, 64: 169-174.
    [47] RUIZ A M. CORNET A. SHIMANOE K. MORANTE J R. YAMAZOE N. Transition metals (Co, Cu) as additives on hydrothermally treated TiO2 for gas sensing [J]. Sensors and Actuators, B, 2005, 109: 7-12.
    [48] KIND H. YAN H Q. MESSER B. LAW M. YANG P D. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14(2): 158-160.
    [49] S J PEARTON, B SKANG, SUKU KIM, F REN, B P GILA, C R ABERNATHY, JENSHAN LIN, S NG CHU, GaN-based diodes and transistors for chemical, gas, biological and pressure sensing [J], Journal of Physics: Condensed Matter, 2004, 16, R961-R994.
    [50] RONIT FREEMAN, RON GILL, MORITZ BEISSENHIRTZ, ITAMAR WILLNER, Self- assembly of semiconductor quantum-dots on electrodes for photo- electrochemical biosensing [J], Photochemistry and Photobiology Sciences, 2007, 6: 416-422.
    [51] ISAO MATSUI, Nanoparticles for Electronic Device Applications: A Brief Review [J], Journal of Chemical Engineering of Japan, 2005, 38(8): 535-538
    [52] ELI ROTHENBERG, MIRI KAZES, EHUD SHAVIV, URI BANIN, Electric Field Induced Switching of the Fluorescence of Single Semiconductor QuantumRods [J], Nano Letters, 2005, 5(8): 1581-1586.
    [53] KUAN-JU WU, KUNG-CHING CHU, CHIH-YU CHAO, YANG-FANG CHEN, CHIH-WEI LAI, CHIA-CHENG KANG, CHUN-YEN CHEN, PI-TAI CHOU, CdS Nanorods Imbedded in Liquid Crystal Cells for Smart Optoelectronic Devices [J], Nano Letters, 2007, 7(7): 1908-1913.
    [54] SAMUEL S. MAO, Nanolasers: Lasing from nanoscale quantum wires [J], International Journal of Nanotechnology, 2004, 1(1-2): 42-85.
    [55] YONG ZHANG, LIN-WANG WANG, ANGELO MASCARENHAS, "Quantum Coaxial Cables" for Solar Energy Harvesting [J], Nano Letters, 2007, 7(5): 1264-1269.
    [56] WOJCIECH MACYK, GRA?YNA STOCHEL, KONRAD SZACI?OWSKI, Photosensitization and the Photocurrent Switching Effect in Nanocrystalline Titanium Dioxide Functionalized with Iron(II) Complexes : A Comparative Study [J], Chemistry- A European Journal, 2007, 13: 5676-5687.
    [57] HO SUN LIM, DONGHOON KWAK, DONG YUN LEE, SEUNG GOO LEE, KILWON CHO, UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity [J], Journal of the American Chemical Society, 2007, 129(14): 4128-4129.
    [58] MASAYUKI SUDA, MASARU NAKAGAWA, TOMOKAZU IYODA, YASUAKI EINAGA, Reversible Photoswitching of Ferromagnetic FePt Nanoparticles at Room Temperature [J], Journal of the American Chemical Society, 2007, 129(17): 5538-5543.
    [59] STEFAN HECHT, Optical Switching of Hierarchical Self-Assembly: Towards“Enlightened”Materials [J], Small, 2005, 1(1): 26-29.
    [60] S. SATO, Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region [J]. Chemical Physics Letters, 1986, 123: 126–128.
    [61] H. NODA, K. OIKAWA, T. OGATA, K. MATSUKI, AND H. KAMATA, Preparation of titanium(IV) oxides and its characterization [J], Bulletin of the Chemical Society of Japan, 1986,1084–1090.
    [62] N. C. SAHA, H. G. TOMPKINS, Titanium nitride oxidation chemistry: an x-rayphotoelectron spectroscopy study [J]. Journal of Applied Physics, 1992, 72: 3072–3079.
    [63] IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders [J]. Journal of Physical Chemistry B, 2003, 107: 5483–5486.
    [64] DIWALD O, THOMPSON T L, ZUBKOV T. Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light [J]. Journal of Physical Chemistry B, 2004, 108: 6004–6008.
    [65] PENG F, CAI L, YU H. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity [J]. Journal of Solid State Chemistry, 2008, 181: 130-136.
    [66] CHEN H, NAMBU A, WEN W, et al. Reaction of NH3 with titania: N-doping of the oxide and TiN formation [J]. Journal of Physical Chemistry C, 2007, 111: 1366–1372.
    [67] YATES H M, NOLAN M G, SHEEL D W. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition [J]. Journal of Photochemistry and Photobiology A, 2006, 179: 213–223.
    [68] JAGADALE T C, TAKALE S P, SONAWANE R S, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method [J]. Journal of Physical Chemistry C, 2008, 112: 14595–14602.
    [69] HORIKAWA T, KATOH M, TOMIDA T. Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area [J]. Microporous Mesoporous Mater, 2008, 110: 397–404.
    [70] DIWALD O, THOMPSON T L, ZUBKOV T, et al. Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light [J]. Journal of Physical Chemistry B, 2004, 108: 6004–6008.
    [71] IHARA T, MIYOSHI M, IRIYAMA Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B, 2003, 42: 403–409.
    [72] NAKAMURA R, TANAKA T, NAKATO Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes [J]. Journal of Physical Chemistry B, 2004, 108: 10617–10620.
    [73] LINDGREN T, MWABORA J M, AVENDA?O E. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. Journal of Physical Chemistry B, 2003, 107: 5709–5716.
    [74] LIN Z, ORLOV A, LAMBERT R M, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2 [J]. Journal of Physical Chemistry B, 2005, 109: 20948– 20952.
    [75] C. DI VALENTIN, G.-F. PACCHIONI, A. SELLONI, S. LIVRAGHI, E. GIAMELLO, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations [J], Journal of Physical Chemistry B,2005, 109(23): 11414–11419.
    [76] GHICOV A, MACAK J M, TSUCHIYA H, et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes [J]. Nano Letters, 2006, 6(5):1080–1082.
    [77] GENG J, YANG D, ZHU J. Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method [J]. Materials Research Bulletin, 2009, 44:146–150.
    [78] TACHIKAWA T, FUJITSUKA M, MAJIMA T. Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts [J]. Journal of Physical Chemistry C, 2007, 111(14): 5259–5275.
    [79]LIVRAGHI S, ELGHNIJI K, CZOSKA A M, et al. Nitrogen doped and nitrogen-fluorine codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light [J]. Journal of Photochemistry and Photobiology A, 2009, 205: 93–97.
    [80] OZAKI H, IWAMOTO S, INOUE M. Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen- and silicon-codopedtitanias [J]. Journal of Physical Chemistry C, 2007, 111: 17061–17066.
    [81] GOMBAC V, DE ROGATIS L, GASPAROTTO A, et al. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications [J]. Chemical Physics, 2007, 339: 111–123.
    [82] LIN L, ZHENG R Y, XIE J L, et al. Synthesis and characterization of phosphor and nitrogen co-doped titania [J]. Applied Catalysis B, 2007, 76: 196–202.
    [83] LEE M S, HONG S S, MOHSENI M. Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent [J]. Journal of Molecular Catalysis A: Chemical, 2005, 242: 135–140.
    [84] ZHANG X, UDAGAWA K, LIU Z, et al. Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst [J]. Journal of Photochemistry and Photobiology A, 2009, 202: 39–47.
    [85] YIN S, LIU B, ZHANG P, et al. Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading [J]. Journal of Physical Chemistry C, 2008, 112: 12425–12431.
    [86] ZHANG X, LIU Q. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel [J]. Applied Surface Science, 2008, 254: 4780–4785.
    [87] GARNETT E C, Y ANG P. Silicon Nanowire Radial p?n Junction Solar Cells [J]. Journal of the American Chemical Society, 2008, 130: 9224-9225.
    [88] LUTHER J M, LAW M, BEARD M C. Schottky Solar Cells Based on Colloidal Nanocrystal Films [J], Nano Letters, 2008, 8 (10) :3488-3492.
    [89] OU Y, LIN J, FANG S.Effect of UV/ozone treatment of the dielectric layer on the device performance of pentacene thin film transistors [J]. Chemical Physics Letters, 2006, 429: 124-128.
    [90] LI Q , CHEN L , LU G. J. Visible-Light-Induced Photocatalytic Hydrogen Generation on Dye-Sensitized Multiwalled Carbon Nanotube/Pt Catalyst [J] Journal of Physical Chemistry C, 2007 , 111 : 11494-11499.
    [91] LIANG X, WANG L, MA X. Enhanced red electroluminescence from a polycrystalline diamond film/Si heterojunction structure [J]. Applied Physics 44Letters, 2007, 90: 161123-161126.
    [92] BERNARDS D A , FLOREST ORRES S , ABRUN H D, Observation of Electroluminescence and Photovoltaic Response in Ionic Junctions [J]. Science, 2006, 313: 1416-1419.
    [93] CASSELL A M, LI J, STEVENS R M D. Vertically aligned carbon nanotube heterojunctions [J]. Applied Physics Letters, 2004, 85 (12): 2364- 2366.
    [94] I IMORI H , Y AMANE S , K ITAMURA T, High Photovoltage Generation at Minority-Carrier Controlled n-Si/p-CuI Heterojunction with Morphologically Soft CuI [J]. Journal of Physical Chemistry C, 2008, 112: 11586-11590.
    [95] KUANG Q , LAO C S , LI Z, Enhancing the Photon- and Gas-Sensing Properties of a Single SnO2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization [J]. Journal of Physical Chemistry C, 2008, 112:11539-11544.
    [96] TZOLOV M B, KUO T F, STRAUS D A. Carbon Nanotube?Silicon Heterojunction Arrays and Infrared Photocurrent Responses [J]. Journal of Physical Chemistry C, 2007, 111: 5800-5804.
    [97] FLATT A K, CHEN B, T OUR J M. Fabrication of Carbon Nanotube?Molecule?Silicon Junctions [J]. Journal of the American Chemical Society, 2005, 127: 8918-8919.
    [98] PATOLSKY F, TIMKO B P, YU G. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays [J]. Science, 2006, 313: 1100-1104.
    [99] BRAHIMI R, BESSEKHOUAD Y, BOUGUELIA A. Improvement of eosin visible light degradation using PbS-sensititized TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194: 173-180.
    [100] ZHANG Y G, MA L L, LI J L, YU Y. In Situ Fenton Reagent Generated from TiO2/Cu2O Composite Film: a New Way to Utilize TiO2 under Visible Light Irradiation [J]. Environmental Science and Technology, 2007, 41: 6264-6269.
    [101] BRAHIMI R. BESSEKHOUAD Y. BOUGUELIA A. TRARI M. CuAlO2/TiO2 Heterojunction Applied To Visible Light H2 Production [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186 (2-3): 242–247.
    [102] YONG JOO KIM, BIFEN GAO, SONG YI HAN, MYUNG HAK JUNG, ASHOK KUMAR CHAKRABORTY, TAEGYUNG KO, CHONGMU LEE, WAN IN LEE. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst [J]. Journal of Physical Chemistry C 2009, 113: 19179–19184.
    [103] HUANG H J. LI D Z. LIN Q. ZHANG W J. SHAO Y. CHEN Y B. SUN M. FU X Z. Efficient Degradation of Benzene over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation [J]. Environmental Science and Technology, 2009, 43(11): 4164–4168.
    [104] O. Akhavan, R. Azimirad, S. Safad, M. M. Larijani. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents [J]. Journal of Materials Chemistry, 2010, 20: 7386–7392.
    [105] Chongyin Yang, Wendeng Wang, Zhichao Shan, Fuqiang Huang. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2 [J]. Journal of Solid State Chemistry, 2009, 182: 807–812.
    [106] Yongqiang Cao, Tao He, Yongmei Chen, Yaan Cao. Fabrication of Rutile TiO2 Sn/Anatase TiO2 N Heterostructure and Its Application in Visible-Light Photocatalysis [J]. Journal of Physical Chemistry C, 2010, 114: 3627–3633.
    [107] OZAWA T, IWASAKI M, TADA H. Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity [J]. Journal of Colloid and Interface Science, 2005, 281: 510-513.
    [108] SUN B , VORONTS OV A V , SMIRNIOTIS P G. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation [J]. Langmuir, 2003, 19: 3151-3156.
    [109] ZHANG H T. WU X B. WANG Y M. CHEN X Y. LI Z S. YU T. YE J H. ZOU Z G. Preparation of Fe2O3/SrTiO3 Composite Powders and Their Photocatalytic Properties [J]. Journal of Physics and Chemistry of Solids, 2007, 68(2): 280-283.
    [110] LV J. KAKO T. LI Z S. ZOU Z G. YE J H. Synthesis and Photocatalytic Activities of NaNbO3 Rods Modified by In2O3 Nanoparticles [J]. Journal ofPhysical Chemistry C, 2010, 114(13): 6157-6162.
    [111] PONCHIO CHATCHAI, YOSHINORI MURAKAMI, SHIN-YA KISHIOKA1, ATSUKO Y. NOSAKA, YOSHIO NOSAKA. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation [J]. Electrochimica Acta, 2009, 54: 1147-1152.
    [112] XINPING LIN, FUQIANG HUANG, JINGCHENG XING, WENDENG WANG, FANGFANG XU. Heterojunction semiconductor SnO2/SrNb2O6 with an enhanced photocatalytic activity: The significance of chemically bonded interface [J]. Acta Materialia, 2008, 56: 2699–2705.
    [113] MOTOYOSHI R. OKU T. SUZUKI A. KIKUCHI K. KIKUCHI S. Fabrication and Characterization of Titanium Dioxide / Copper Indium Disulfide Solar Cells [J]. Journal of the Ceramic Society of Japan, 2010, 118(1): 30-33.
    [114] WANG Z J. LI Z Y. SUN J H. ZHANG H N. WANG W. ZHENG W. WANG C. Improved Hydrogen Monitoring Properties Based on p-NiO/n-SnO2 Heterojunction Composite Nanofibers [J]. Journal of Physical Chemistry C, 2010, 114 (13): 6100–6105.
    [115] CHEN Y J. ZHU C L. WANG T H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J]. Nanotechnology, 2006, 17(12): 3012–3017.
    [116] TALAPIN D V. NELSON J H. SHEVCHENKO E V. ALONI S. SADTLER B. ALIVISATOS A P. Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies [J]. Nano Letters, 2007, 7(10): 2951-2959.
    [117] CHUEH Y L. HSIEH C H. CHANG M T. CHOU L J. LAO C S. SONG J H. GAN J Y. WANG Z L. RuO2 Nanowires and RuO2/TiO2 core/shell Nanowires: from Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties. Advanced Materials, 2007, 19(1): 143-149.
    [118]BRINZA M. WILLEKENS J. BENKHENDIR M L. EMELIANOVA E V. ADRIAENSSENS G J. Photoconductivity methods in materials research [J], Journal of Materials Science: Materials in Electronics, 2005, 16(11-12): 703-713.
    [119]GREENWALD Y. COHEN G. POPLAWSKI J. EHRENFREUND E. SPEISER S. DAVIDOV D. Transient Photoconductivity of Acceptor-Substituted Poly(3-butylthiophene) [J], Journal of the American Chemical Society, 1996, 118(12): 2980-2984.
    [120]PARKER J H. JR. WARREN R W. Kelvin Device to Scan Large Areas for Variations in Contact Potential [J], Review of Scientific Instruments, 1962, 33(9): 948-950.
    [121]BUTZ R. WAGNER H. A device for measuring contact potential differences with high spatial resolution [J], Applied Physics A: Materials Science & Processing, 1977, 13(1): 37-42.
    [122]LIESS H D. MACKEL R. REN J. The Scanning Kelvin Microscope with Voltage Modulation: a New Principle to Image Discrete Surface Potentials [J], Surface and Interface Analysis, 1997, 25: 855-859.
    [123]M?CHEL R., BAUMG?RTNERM H. REN J. The scanning Kelvin microscope [J], Review of Scientific Instruments, 1993, 64(3): 694-699.
    [124]NABHAN W. EQUER B. BRONIATOWSKI A. DE ROSNY G. A high-resolution scanning Kelvin probe microscope for contact potential measurements on the 100 nm scale [J], Review of Scientific Instruments, 1997, 68(8): 3108-3111.
    [125]STEINKE R. HOFFMAN M. B?HMISH M. EISENMENGER J. DRANSFELD K. LEIDERER P. Potentiometry with the acoustic near field microscope: A new method for microscopy of surface potentials [J], Applied Physics A: Materials Science and Processing, 1997, 64(1): 19-27.
    [126]KIKUKAWA A. HOSAKA S. IMURA R. Vacuum compatible high-sensitive Kelvin probe force microscopy [J], Review of Scientific Instruments, 1996, 67(4): 1463-1467.
    [127]LI Y. NXUMALO J N. THOMSON D J. Two-dimensional imaging of charge carrier profiles using local metal–semiconductor capacitance–voltage measurement [J], Journal of Vacuum Science and Technology B, 1996, 16(1): 457-462.
    [128]MURTHY C S. POSSELT M. FEUDEL T. Physically based modeling of two-dimensional and three-dimensional implantation profiles: Influence of damage accumulation [J], Journal of Vacuum Science and Technology B, 1996, 16(1): 440-446.
    [129]M. ABE, T. UCHIHASHI, OHTA M. UEYAMA H. SUGAWARA Y. MORITA S. Detection mechanism of an optical evanescent field using a noncontact mode atomic force microscope with a frequency modulation detection method [J], Journal of Vacuum Science and Technology B, 1997, 15(4): 1512-1515.
    [130]ARAKAWA M., KISHIMOTO S. MIZUTANI T. Kelvin Probe Force Microscopy for Potential Distribution Measurement of Cleaved Surface of GaAs Devices [J], Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers, 1997, 36: 1826-1829.
    [131]MCDANIEL A A. HSU J W P. GABOR A M. Near-field scanning optical microscopy studies of Cu(In, Ga)Se2 solar cells [J]. Applied Physics Letters, 1997, 70(26): 3555-3557.
    [132]HSU J W P. FITZGERALD E A. XIE Y H. SILVERMAN P J. Tudies of electrically active defects in relaxed GeSi films using a near-field scanning optical microscope [J]. Jornal of Applied Physics, 1996, 79(10): 7743-7750.
    [133]STEINKE R. HOFFMANN M. B?HMISCH M. EISENMENGER J. DRANSFELD K. LEIDERER P. Potentiometry with the acoustic near field microscope: A new method for microscopy of surface potentials [J]. Applied physics A: Materials science and processing, 1997, 64(1): 19-27.
    [134]L. KRONIK, Y. SHAPIRA, Surface Photovoltage Phenomena: Theory, Experiment, and Applications [J]. Surface Science Reports. 1999, 37:1-206.
    [135] Q. D. ZHAO, L. L. PENG, Y. H. LIN, M. YANG, T. F. XIE, D. J. WANG. Surface Photovoltage Study of Photogenerated Charges in ZnO Nanorods Array Grown on ITO [J]. Chemical Physics Letters. 2007, 434: 96-100.
    [136]B. MAHROV, G. BOSCHLOO, A. HAGFELDT, L. DLOCZIK, TH. DITTRICH, Photovoltage Study of Charge Injection from Dye Molecules intoTransparent Hole and Electron Conductors [J]. Applied Physics Letters. 2004, 84: 5455-5457.
    [137] I. MORA-SERò, TH. DITTRICH, A. BELAIDI, G. GARCIA-BELMONTE, J. BISQUERT, Observation of Diffusion and Tunneling Recombination of Dye-Photoinjected Electrons in Ultrathin TiO2 Layers by Surface Photovoltage Transients [J]. The Journal of Physical Chemistry B. 2005, 109: 14932-14938.
    [138] V. DUZHKO, V. Y. TIMOSHENKO, F. KOCH, TH. DITTRICH, Photovoltage in Nanocrystalline Porous TiO2 [J]. Physical Review B. 2001, 64: 075204-075210.
    [139] R. COHEN, L. KRONIK, A. SHANZER, D. CAHEN, A. LIU, Y. ROSENWAKES, J. K. LORENZ, A. B. ELLIS, Molecular Control over Semiconductor Surface Electronic Properties: Dicarboxylic Acids on CdTe, CdSe, GaAs, and InP [J]. Journal of the American Chemical Society. 1999, 121: 10545-10553.
    [1] MOR, G. K.; SHANKAR, K.; PAULOSE, M.; VARGHESE, O. K.; GRIMES, C. A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells [J],Nano Letters, 2006, 6(2): 215-218.
    [2] KONSTANTINAU, I. K.; ALBANIS, T. A. Applied Catalysis B, 2003, 42: 319
    [3] SAKTHIVEL, S.; KISCH, H. Daylight photocatalysis by carbon-modified titanium dioxide [J], Angewandte Chemie International Edition, 2003, 42(40): 4908-4911.
    [4]华南平,吴尊义,杜玉扣,邹志刚,杨平.物理化学学报, 2005, 21: 1081-1085.
    [5] ASAHI, R.; MORIKAWA, T.; OHWAKI, T.; AOKI, K.; TAGA, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293: 269-271.
    [6] TIAN, F. H.; LIU, C. B. DFT Description on Electronic Structure and OpticalAbsorption Properties of Anionic S-Doped Anatase TiO2 [J]. Journal of Physical Chemistry B, 2006, 110(36): 17866-17871.
    [7] ZHOU,Y. K.; HOLME, T.; BERRY, J.; OHNO, T. R.; GINLEY, D.; HAYRE, R.O. Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts [J]. Journal of Physical Chemistry C, 2010, 114(1): 506-515.
    [8] LI, J. Y.; LU, N.; QUAN, X.; CHEN, S.; ZHAO, H. M. Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties [J]. Industrial and Engineering Chemistry Research, 2008, 47(11): 3804-3808.
    [9] LINSEBIGLER, A.L.; LU, G. Q.; YATES, J.T. Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results [J]. Chemical Reviews, 1995, 95(3): 735-758.
    [10] MONLLOR-SATOCA, D.; GóMEZ, R. Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction [J]. Journal of Physical Chemistry C, 2008, 112(38): 14706-14709.
    [11] GROSS, D.; MORA-SERó, I.; DITTRICH, T.; BELAIDI, A.; MAUSER, C.; HOUTEPEN, A. J.; COMO, E. D.; ROGACH, A. L.; FELDMANN, J. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy [J]. Journal of the American Chemical Society, 2010, 132(17): 5981-5983.
    [12] DUZHKO, V.; TIMOSHENKO, V. Y.; KOCH, F.; DITTRICH, TH. Photovoltage in nanocrystalline porous TiO2 [J]. Physical Review B, 2001, 64: 075204-1- 075204-7.
    [13] ALEXANDER, D. Q.; LI, L. S. Long and Oriented Single-Walled Carbon Nanotubes Grown by Ethanol Chemical Vapor Deposition [J]. Journal of Physical Chemistry B, 2004, 108(42): 16451-16456.
    [14] HUANG, D. G.; LIAO, S. J.; ZHOU, W. B.; QUAN, S. Q.; LIU, L.; HE, Z. J.; WAN, J. B. Synthesis of samarium- and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of4-chlorophenol [J]. Journal of Physics and Chemistry of Solids, 2009, 70(5): 853-859.
    [15] DONCHEV V. KIRILOV K. IVANOV Ts. GERMANOVA K. Surface photovoltage phase spectroscopy–a handy tool for characterisation of bulk semiconductors and nanostructures [J]. Materials Science and Engineering B, 2006, 129(1-3): 186-192.
    [16] SATHISHI, M.; VISWANATHAN, B.; VISWANATH, R. P.; GOPINATH, C. S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst [J]. Chemistry of Materials, 2005, 17(25): 6349-6353.
    [17] MASAAKI KITANO, KEISHO FUNATSU, MASAYA MATSUOKA, MICHIO UESHIMA, MASAKAZU ANPO. Preparation of Nitrogen-Substituted TiO2 Thin Film Photocatalysts by the Radio Frequency Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity under Visible Light Irradiation [J]. Journal of Physical Chemistry B, 2006, 110(50): 25266-25272.
    [18] VALENTIN, C. D.; PACCHIONI, G.; SELLONI, A.; LIVRAGHI, S.; GIAMELLO, E. Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations [J]. Journal of Physical Chemistry B, 2005, 109(23): 11414-11419.
    [19] BURDA, C.; LOU, Y; CHEN, X.; SAMIA, A.C.S.; STOUT, J.; GOLE, J.M. Enhanced Nitrogen Doping in TiO2 Nanoparticles [J]. Nano Letters, 2003, 3(8): 1049-1051.
    [20] KRONIK, L.; SHAPIRA, Y. Surface photovoltage phenomena: theory, experiment, and applications [J]. Surface Science Reports, 1999, 371: 1-206.
    [21]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社, 2003: 98-100.
    [22] WEI, X.; XIE, T. F.; XU, D.; ZHAO, Q. D.; PANG, S. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique [J]. Nanotechnology, 2008, 19: 275707.
    [1] GANG L. HUA GUI Y. XUEWEN W. LINA C. JIAN P. GAO QING (MAX) L. HUIMING C. Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN [J]. Journal of American Chemical Society, 2009, 131: 12868-12869.
    [2] TZARARA LO′PEZ-LUKE. ABRAHAM WOLCOTT. LI-PING XU. SHAOWEI CHEN. ZHENHAI WEN. JINGHONG LI. ELDER DE LA ROSA. JIN Z. ZHANG. Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications [J]. The Journal of Physical Chemistry C, 2008, 112: 1282-1292.
    [3] O. Akhavan. R. Azimirad. S Safa. M M Larijani. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents [J]. Journal of Materials Chemistry, 2010, 20: 7386-7392.
    [4] Vinodkumar Etacheri. Michael K. Seery. Steven J. Hinder. Suresh C. Pillai. Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts [J]. Chemistry of Materials, 2010, 22: 3843-3853.
    [5] Thiam Peng Ang. Choon Sian Toh.Yi-Fan Han. Synthesis, Characterization, and Activity of Visible-Light-Driven Nitrogen-Doped TiO2-SiO2 Mixed Oxide Photocatalysts [J]. The Journal of Physical Chemistry C, 2009, 113: 10560-10567.
    [6] PUBBIAMOORTHY R. SAIF A H. JAMES R D. DONAL D C B. JENNY N. The Effect of Polymer Optoelectronic Properties on the Performance of Multiayer Hybrid Polymer/TiO2 Solar Cells [J]. Advanced Functional Materials, 2005, 15(4): 609-618
    [7] YANBING GUO. YAJIE ZHANG. HUIBIAO LIU. SIU WAI LAI. YULIANG LI. YONGJUN LI. WENPING HU. SHU WANG. CHI MING CHE. DAOBEN ZHU. Assembled Organic/Inorganic p-n Junction Interface and Photovoltaic Cell on a Single Nanowire [J]. The Journal of Physical Chemistry Letters, 2010, 1: 327-330.
    [8] LIRONG ZHENG. YUANHUI ZHENG. CHONGQI CHEN. YINGYING ZHAN. XINGYI LIN. QI ZHENG. KEMEI WEI. JIEFANG ZHU. Network StructuredSnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity [J]. Inorganic Chemistry, 2009, 48: 1819-1825
    [9] YONG JOO KIM. BIFEN GAO. SONG YI HAN. MYUNG HAK JUNG. ASHOK KUMAR CHAKRABORTY. TAEGYUNG KO.CHONGMU LEE. WAN IN LEE. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst [J]. The Journal of Physical Chemistry C, 2009, 113(44): 19179-19184.
    [10] CHEN Y J. ZHU C L. WANG T H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J]. Nanotechnology, 2006, 17(12): 3012–3017.
    [11] XI ZHANG. LIZHI ZHANG. TENGFENG XIE. DEJUN WANG. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO Heterostructures [J]. The Journal of Physical Chemistry C, 2009, 113(17): 7371-7378.
    [12] JUM SUK JANG. SUK JUN HONG. JAE YUL KIM. JAE SUNG LEE. Heterojunction photocatalyst TiO2/AgGaS2 for hydrogen production from water under visible light [J]. Chemical Physics Letters, 2009, 475: 78–81.
    [13] JULIANA C. T. FABIANO M. PAOLA C. MARIA TEREZINHA C. S. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181: 152–157.
    [14] QINGSHUO WEI. KOUSKE HIROTA. KEISUKE TAJIMA. KAZUHITO HASHIMOTO. Design and Synthesis of TiO2 Nanorod Assemblies and Their Application for Photovoltaic Devices [J]. Chemistry of Materials, 2006, 18: 5080-5087.
    [15] G.D. SHARMAA. RAJ KUMAR. M.S. ROYA. Investigation of charge transport, photogenerated electron transfer and photovoltaic response of iron phthalocyanine (FePc):TiO2 thin films. Solar Energy Materials & Solar Cells, 2006, 90: 32–45.
    [16] EMILY A W. VENDA J P. RYAN C C. SCOTT M G. DAVID C B. MOUNGI G B. GEORGE M. W. The Use of Size-Selective Excitation To Study Photocurrentthrough Junctions Containing Single-Size and Multi-Size Arrays of Colloidal CdSe Quantum Dots [J]. Journal of American Chemical Society, 2008, 130: 83-92.
    [17] QIAOLIANG BAO. ZHISONG LU. JUN LI. KIAN PING LOH. CHANG MING LI. Theoretical and Experimental Studies of Electronic Transport of Dithienothiophene [J]. The Journal of Physical Chemistry C, 2009, 113: 12530-12537.
    [18] MINGCE LONG. WEIMIN CAI. HORST KISCH. Visible Light Induced Photoelectrochemical Properties of n-BiVO4 and n-BiVO4/p-Co3O4 [J]. The Journal of Physical Chemistry C, 2008, 112: 548-554.
    [19] B. MAHROV, G. BOSCHLOO, A. HAGFELDT, L. DLOCZIK, TH. DITTRICH, Photovoltage Study of Charge Injection from Dye Molecules into Transparent Hole and Electron Conductors [J]. Applied Physics Letters, 2004, 84 : 5455-5457.
    [20] DITTRICH TH. DUZHKO V. Photovoltage in Free-Standing Mesoporous Silicon Layers [J], Physica Status Solidi A: Applied Research, 2003, 197(1): 107-112.
    [21] DUZHKO V. TIMOSHENKO V Y. KOCH F. DITTRICH TH. Photovoltage in nanocrystalline porous TiO2 [J], Physical Review B, 2001, 64(7): 075204(7 pages).
    [1] G. K. MOR, K. SHANKAR, M. PAULOSE, O. K. VARGHESE, C. A.GRIMES, Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Letters. 2006, 6: 215-218.
    [2] I. K. KONSTANTINAU, T. A. ALBANIS, Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways [J]. Applied Catalysis B: Environmental. 2003, 42: 319-335.
    [3] S. SAKTHIVEL, H. KISCH, Daylight Photocatalysis by Carbon-modified Titanium Dioxide [J]. Angewandte Chemie International Edition. 2003, 42: 4908-4911.
    [4] R. K.SHARMA, M. C.BHATNAGAR, G. L. SHARMA, Mechanism in Nb Doped Titania Oxygen Gas Sensor [J]. Sensors and Actuators B: Chemical. 1998, 46(3): 194-201.
    [5] I.P. PARKIN, R.G. PALGRAVE, Self-cleaning Coatings [J]. Journal of Materials Chemistry. 2005, 15: 1689-1695.
    [6] J. TANG, H. QUAN, J. YE, Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2 [J]. Chemistry of Materials. 2007, 19: 116-122.
    [7] K. I. IUCHI, Y. OHKO, T. TATSUMA, A. FUJISHIMA, Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination [J]. Chemistry of Materials. 2004, 16: 1165-1167.
    [8] Z. DING, G. Q. LU, P. F. GREENFIELD, Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water [J]. The Journal of Physical Chemistry B. 2000, 104: 4815-4820.
    [9] T. OHNO, K. SARUKAWA, M. MATSUMURA, Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution [J]. The Journal of Physical Chemistry B. 2001, 105: 2417-2420.
    [10] G. H. LI,; K. A. GRAY, The Solid–solid Interface: Explaining the High and Unique Photocatalytic Reactivity of TiO2-based Nanocomposite Materials [J]. Chemical Physics, 2007, 339: 173-187.
    [11] A. DI PAOLA, M. BELLARDITA, R. CECCATO, L. PALMISANO, PARRINO, Highly Active Photocatalytic TiO2 Powders Obtained by Thermohydrolysis of TiCl4 in Water [J]. The Journal of Physical Chemistry C, 2009, 113(34): 15166-15174.
    [12] J. ZHANG, Q. XU, Z.C. FENG, M. J. LI, C. LI, Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2 [J]. Angewandte Chemie International Edition. 2008, 47: 1766-1769.
    [13] K. Y. SONG, M. K. PARK, Y. T. KWON, H. W. LEE, W. J. CHUNG, W. I. LEE, Preparation of Transparent Particulate MoO3/TiO2 and WO3/TiO2 Films and Their Photocatalytic Properties [J]. Chemistry of Materials. 2001,13: 2349-2355.
    [14] T. KAWAHARA, Y. KONISHI, H. TADA, N. TOHGE, J. NISHII, S. ITO, A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity [J]. Angewandte Chemie International Edition. 2002, 41: 2811-2813
    [15] D.C. HURUM, A.G. AGRIOS, K. A. GRAY, T. RAJH, M. C. THURNAUER, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR [J]. The Journal of Physical Chemistry B, 2003, 107: 4545-4549.
    [16] D.C. HURUM, A.G. AGRIOS, S. E. CRIST, K. A. GRAY, T. RAJH, M. C. THURNAUER, Probing Reaction Mechanisms in Mixed Phase TiO2 by EPR [J]. Journal of Electron Spectroscopy and Related Phenomena. 2006,150: 155-163.
    [17] J. ZHANG, M.J. LI, Z.C. FENG, J. CHEN, C. LI, UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk [J]. The Journal of Physical Chemistry B. 2006, 110: 927-935.
    [18] A. A. GRIBB, J. F. BANFIELD, Particle Size Effects on Transformation Kinetics and Phase Stability in Nanocrystalline TiO2 [J]. American Mineralogist. 1997, 82: 717-728.
    [19] KUMAR, K. P. SCR. Anatase-to-Rutile Transformation in Pure Titania and in Titania–Alumina Nanocom- posites [J]. Metallurgical Transactions, 1995, 32(6): 873-877.
    [20] Q. ZHANG, D. WANG, X. WEI, T. F. XIE, Z. LI, Y. H. LIN, M. YANG, A Study of the Interface and the Related Electronic Properties in n-Al0.35Ga0.65N/GaN Heterostructure [J]. Thin Solid Films. 2005, 491: 242-248.
    [21]张清林,魏霄,肇启东,林艳红,杨敏,王德军.利用瞬态光电压技术对纳米TiO2薄膜电极中光生电荷传输机理的研究[J].高等学校化学学报, 2006, 27(3): 550-552.
    [22] S. BAKARDJIEVA, J. ?UBRT, V. ?TENGL, M. J. DIANEZ, M. J. SAYAGUES, Photoactivity of Anatase–rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase [J]. Applied Catalysis B: Environmental. 2005, 58 : 193-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700