用户名: 密码: 验证码:
钙钛矿型可见光响应催化剂的合成及光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源问题制约了人类的可持续发展。半导体光催化技术能直接利用太阳能降解有机污染物或者分解水获取氢能,有望成为解决环境和能源问题的有效途径。半导体光催化技术的核心是获取高活性的可见光响应的半导体光催化材料。可见光响应是充分利用太阳能的前提,高活性是半导体光催化技术应用于实际的基础。本文以高效可见光活性催化剂的开发为目标,结合材料的表征、密度泛函理论的计算,研究了钙钛矿型可见光活性光催化剂的合成过程及其光催化活性的调控机制。
     采用溶胶凝胶法制备了系列钙钛矿氧化物LaBO3(B=Cr、Mn、Fe、Co和Ni)和TiO2粉末。分别在紫外线和可见光下,比较了合成粉末光催化降解甲基橙溶液的活性。结果表明,LaCoO3和LaNiO3在紫外光下比TiO2光催化活性更高,LaFeO3、LaCoO3和LaNiO3具备可见光催化活性且活性依次增强。采用密度泛函理论计算了五种钙钛矿结构氧化物的电子结构和能带结构,结果发现,LaCrO3的价带导带离散性好,但能隙较大;LaMnO3的能带结构显示金属特性,光生电子空穴对容易复合;LaFeO3和LaCoO3的导带离散性不好,不利于光生电子的迁移;LaNiO3的价带导带离散性好,且连续的价带位置更负,光生空穴的氧化能力更强。对五种钙钛矿结构氧化物的晶体结构研究表明,菱形结构的LaCoO3和LaNiO3较正交结构的LaCrO3, LaMnO3和LaFeO3的BO6氧八面体扭曲变形更严重,更有利于光生电子对的分离。因此,在上述5种钙钛矿结构的氧化物中,LaNiO3的电子结构、能带结构和晶体结构最有利于可见光激发和光生电子空穴对的分离,具有最高的可见光催化活性。
     研究了制备方法及制备工艺对LaNiO3的合成及光催化活性的影响。利用DTA-TG,XRD,SEM,TEM和FT-IR等对催化剂的合成过程及产物进行了表征。通过甲基橙溶液的可见光降解实验,研究了煅烧温度、煅烧时间等对LaNiO3的结构和催化活性的影响。结果表明,溶液燃烧法制备的LaNiO3粉末在可见光下的催化活性最高。600℃是LaNiO3相形成的最低温度,当在600℃下煅烧4h所得催化剂的光催化活性最高,在可见光下照射5h对10mg/L的甲基橙溶液的降解率达到74.9%,且催化剂具有很好的稳定性和重复使用性。XPS分析结果表明,在LaNiO3中存在大量氧空位,能有效降低光生电子空穴对复合几率。由氧空位产生的表面吸附氧在光照下能生成高活性的羟基自由基和超氧离子自由基。甲基橙分子在羟基自由基、超氧离子自由基和光生空穴的作用下被降解成二氧化碳和水等无害物质。
     为了进一步提高LaNiO3的光催化性能,研究了Ti元素掺杂对LaNiO3催化活性的影响,并采用溶液燃烧合成技术制备了LaNiO3光催化剂。结果表明,Ti掺杂减缓了溶液燃烧反应的剧烈程度;在650℃煅烧4 h能获得结晶完好,粒径小的LaNi1-xTixO3粉末。以甲基橙为模型化合物研究了Ti掺杂量对LaNi1-xTixO3粉末的合成及光催化活性的影响,结果表明,随着Ti掺杂量的增加,LaNi1-xTixO3粉末的光生电子空穴对复合几率先降低后升高;当Ti掺杂量为3.0 wt%时,电子空穴对复合几率达到最低值;由于LaNi1-xTixO3存在导致催化剂表面吸附氧量随掺杂量增加而减小。因此,LaNi1-xTixO3的催化效果随着Ti掺杂量的增加呈先增大后减小趋势,当Ti掺杂量为3.0wt%时,所得催化剂的催化效果最好。在可见光下照射5h后,LaNi1-xTixO3对甲基橙溶液(10 mg/L)的降解率高达92.2%。
     建立了光催化反应动力学方程,分别研究了LaNi0.97Ti0.03O3用量、甲基橙溶液的初始浓度对光催化反应过程的影响。结果表明,2g/L的LaNi0.97Ti0.03O3对初始浓度为5mg/L的甲基橙溶液浓度降解满足一级反应方程,当甲基橙溶液初始浓度高于10mg/L时,降解动力学方程为零级反应方程,且降解速率常数随甲基橙溶液初始浓度的增加而减小。当LaNi0.97Ti0.03O3投加量高于2g/L时,甲基橙溶液(10 mg/L)降解动力学方程满足一级反应动力学方程。
     研究了LaNiO3复合TiO2光催化材料的制备、结构表征和光催化性能。以分析纯TiO2粉末为原料,通过溶胶凝胶法制备了系列LaNiO3-TiO2复合氧化物,采用DTA-TG、XRD、TEM和BET等测试方法对催化剂的合成过程及其结构进行表征。结果表明,采用溶胶凝胶法在700℃能合成LaNiO3-TiO2复合氧化物,且产物结晶良好。TEM结果显示,纳米级的LaNiO3颗粒分散在不规则的微米级TiO2表面;BET结果显示,复合光催化剂比表面积高于TiO2比表面积。甲基橙溶液降解的光催化性能测试显示,TiO2复合LaNiO3后具备可见光催化活性,10 wt%LaNiO3含量的LaNiO3-TiO2具有最高的光催化活性,6 h甲基橙溶液降解率达55%,远远高于相同量LaNiO3对甲基橙溶液的降解率(10%)。根据能带结构计算和绝对电负性估算了LaNiO3和TiO2的价带和导带组成及位置,认为复合光催化剂活性提高的本质是P-N异质结的内电场及导带电势差促使了光生载流子的分离,降低了光生电子空穴对的复合几率。
Environment and energy issues are still the bottle neck for the continual development of human being. Semiconductor photocatalysis is an advanced technology which can convert solar energy into chemical energy. Pollutants can be removed and hydrogen can be obtained via water-splitting in the presence of converted chemical energy. The focus of semiconductor photocatalysis is to develop visible light induced photocatalysts with high catalytic activity. Visible-light-induced activity is the base of exploiting solar energy. High efficiency makes its application to be possible. In this paper, we focus on developing visible light drived photocatalysts with high catalytic activity and exploring the controllable mechanism of photocatalytic activity by using material characterization and density functional theory (DFT).
     TiO2 and LaBO3 (B= Cr, Mn, Fe, Co and Ni) powders with perovskite structure have been prepared by sol-gel technique. The photocatalytic activity of the as-prepared samples has been evaluated by degradation of methyl orange solution under UV-light and Vis-Light irradiation. The results showed that the photocatalytic activities increased with the order:TiO2, LaNiO3 and LaCoO3 under UV light irradiation. Compared investigation of photocatalytic activities between the as-synthesized powders under visible light irradiation showed that the LaFeO3, LaCoO3 and LaNiO3 were visible-light-driven photocatalyst. Based on the DFT, the energy band structure of LaBO3 series oxidation has been calculated by CASTEP code. The results showed that LaCrO3 own large band gap and high discreteness valence band (VB) and conduction band (CB). DFT calculations of LaMnO3 showed the metal character, resulting high recombination of photo induced carrier. The splitting of CB for LaFeO3 and LaCoO3 degrade the transportation of electron. LaNiO3 own high discreteness VB and CB. The band potentials of LaNiO3 shift downwards, which indicates that photogenerated holes have stronger oxidative power. In the series oxidation, LaCoO3 and LaNiO3 stabilize in the rhombohedral structure. Compared with the LaMnO3, LaFeO3 and LaCrO3, which stabilize in orthorhombic structure, the BO6 octahedra own higher distortion. Because the internal dipole moments promote the charge separation, the LaCoO3 and LaNiO3 exhibited higher photocatalytic activity. The band structure, crystal structure and the degradation of MO solution indicate that LaNiO3 is the best efficient visible light induced photocatalyst in the series perovskite oxidation.
     The preparation, characterization and photocatalytic activity of LaNiO3 have been investigated. The results showed that the formation temperature of LaNiO3 phase is 600℃. The sample synthesized by solution combustion synthesis (SCS) and subsequent calcined at 600℃for 4 h own highest photocatalytic activity. The degradation percentage of methyl orange solution (MO,10 mg/L) after 5 h on the sample is 74.9%. The photocatalyst exhibits good stability and precipitation performance in aqueous solution. The XPS spectra of LaNiO3 showed that there are oxygen vacancies existing in the LaNiO3 lattice, which can promote the segregation of electron/hole pairs. In addition, the adsorption oxygen which induced by the oxygen vacancy can be transformed to high-activity substance such as HO·, HO2·,etc under light irradiation. The MO molecule can be degradated into CO2 and H2O in the presence of holes and such high-activity substance under visible light irradiation.
     The perovskite LaNi1-xTixO3 powder has been prepared by SCS. The synthesis process and structure characterization have been investigated. The results showed that the synthesis process of Ti-doped sample is more persistent and less acute exothermal than undoped sample. Crystalline LaNi1-xTixO3 with fined structure can be prepared after calcined at 650℃for 4 h. MO degradation test showed that the photocatalytic activity of Ti-doped samples first increased and then decreased with the Ti contents. The highest efficiency is observed when the sample calcined at 650℃for 4 h with 3 wt% Ti content. The degradation percentage of MO solution (10 mg/L) on the sample is as high as 92.2% after 5 h visible light irradiation. Combined with the results of PL and XPS spectra, the origin of enhanced performance of the Ti-doped oxidation is the effective separation of charge carriers. The kinetic study on the MO concentration (Co) and the addition concentration of LaNi0.97Ti0.03O3 (C') have been performed. The results showed that, for 2 g/L LaNi0.97Ti0.03O3, the kinetic equation is a first-order reaction when C0=5 mg/L and zero-order reaction when C0>10 mg/L. The rate constant k decreased with the increasing of Co. For 10 mg/L MO solution, the kinetic equation is zero-order reaction when C'> 2g/L.
     The preparation, characterization and photocatalytic performance of LaNiO3 modified TiO2 composite have been investigated. The TiO2 is raw material, and LaNiO3-TiO2 composite have been prepared by using sol-gel technique. The crystal, morphology and optical properties have been characterized by DTA-TG, XRD, TEM, DRS and BET. The results showed that the crystal LaNiO3-TiO2 composite can be synthesized by sol-gel technique at 700℃. TEM showed that nano-size LaNiO3 particles dispersed on the surface of TiO2 particles. The surface area of the composites is large than TiO2. MO degradation test showed that the MO solution can be degradated in the presence of LaNiO3-TiO2 composites under visible light irradiation. The highest efficiency sample can be obtained when the LaNiO3 content is 10 wt%. The degradation of MO reaches to 55% after 6 h visible light irradiation. Compared with LaNiO3 (about 10%), the photocatalytic activity increased drasticly. Based on the DFT calculation, The CB and VB of LaNiO3 and TiO2 have been estimated by absoluted electronegativity. The origin of enhanced performance of the composite is the effective separation of electron/hole pairs caused by the P-N heterounction electric field and the electric potential difference between the CB of P-type LaNiO3 and N-type TiO2.
引文
[1]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2006.
    [2]陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂.北京:科学出版社.2006.
    [3]Fujishima A, Honda K. Photolysis-decomposition of water at surface of an irradiated semiconduction. Nature,1972,37 (1):238-245.
    [4]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions. Bulletin Environmental Contamination and Toxicology,1976,16(6):697-701.
    [5]Graetzel M. Photoelectrochemical cells. Nature,2001,414(6861):338-344.
    [6]Paz Y, Preferential photodetradation-why and how?. Comptes Rendus Chimie, 2006,9(5-6):774-787.
    [7]Walker A B, Peter L M, Lobato K, et al. Analysis of photovoltage decay transients in dye-sensitized solar cells. Journal of Physic and Chemical B,2006,110(50): 25504-25507.
    [8]Rusina Q, Macyk W, Kisch H. Photoelectrochemical properties of a dinitrogen-fixing iron titanate thin film. Journal of Physic and Chemical B,2005, 109(21):10858-10862.
    [9]Kisch H, Lutz P. Photoreduction of bicarbonate catalyzed by supported cadmium sulfide. Photochemical& Photobiological Sciences,2002,1(4):240-245.
    [10]Tsuji I, Kato H, Kudo A. Photocatalytic hydrogen evolution on ZnS-CuInS2-Ag InS2 solid solution photocatalysts with wide visible light absorption bands. Chemistry of Materials,2006,18(7):1969-1975.
    [11]Szacilowski K, Macyk W, Stochel G. Light-Driven OR and XRO programmable chemical logic gates. Journal of the American Chemical Society,2006,128(14): 4550-4551.
    [12]Ye J H, Zou Z G Visible light sensitive photocatalysts In1-xMxTaO4 (M=3d transition-metal) and their activity controlling factors. Journal of Physics and Chemistry of Solids,2005,66(2-4):266-271.
    [13]Kato H, Kudo A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A=Li, Na, and K). Journal of Physic and Chemical B,2001,105(19): 4285-4292.
    [14]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展.科学通报,2003,48(21):2199-2204.
    [15]Anpo M. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-Visible light irradiation: approaches in realizing high efficiency in the use of visible light. Bulletin of the Chemical Society of Japan,2004,77(8):1427-1442.
    [16]Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B:Environmental,1999,23(2-3):89-114.
    [17]洪孝挺,王正鹏,陆峰等.可见光响应型非金属掺杂TiO2的研究进展.化工进属2004,23(10):1077-108.
    [18]Umebayashi T, Yamaki T, Itoh H, et al. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids,2002,63(10):1909-1920.
    [19]Kim S, Hwang S J, Choi W. Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst. Journal of Physic and Chemical B,2005,109(51):24260-24265.
    [20]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293(5528):269-271.
    [21]Khan S U M, Al-Shahry M, Ingler B W. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243-2245.
    [22]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition,2003,42(40):4908-4911.
    [23]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters,2002,81(3):454-456.
    [24]Hong X T, Wang Z P, Cai W M, et al. Visible-Light-Activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chemistry of Materials,2005,17(6): 1548-1552.
    [25]Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society,2004,26(15):4782-4783.
    [26]Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters,2004,33(12):1534-1539.
    [27]Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chemical Communications,2002,7(16):1698-1699.
    [28]Kasahara A, Nukumizu K, Hitoki G, et al. Photoreactions on LaTiO2N under visible light irradiation. The Journal of Physical Chemistry A,2002,106(29):6750-6753.
    [29]Ishikawa A, Takata T, Kondo J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm). Journal of the American Chemical Society,2002,124(45):13547-13553.
    [30]Liu M Y, You W S, Lei Z B, et al. Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chemical Communications, 2004,19:2192-2193.
    [31]Lei Z B, You W S, Liu M Y, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communications,2003,17:2142-2143.
    [32]Yu X D, Qu X S, Guo Y H, Photocatalytic dye methyl orange decomposition on ternary sulfide (CdIn2S4) under visible-light. Chinese Chemical Letters,2005,16(9): 1259-1262.
    [33]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the Perovskite Structure. The Journal of Physical Chemistry B,2002,106(48):12441-12447.
    [34]Wang D F, Zou Z G, Ye J H. A novel series of photocatalysts M2.5VMoO8 (M= Mg, Zn) for O2 evolution under visible light irradiation. Catalysis Today,2004,93-95: 891-894.
    [35]Kim H G, Hwang D W, Lee J S. An undoped, single-phase oxide photocatalyst working under visible light. Journal of the American Chemical Society,2004, 126(29):8912-8913.
    [36]Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contanminants over CaBi2O4 under visible-light irradiation. Angewandte Chemie International Edition,2004,43(34):4463-4466.
    [37]Tang J W, Ye J H. Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. Chemical Physics Letters,2005,410(1-3):104-107.
    [38]Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. Journal of Solid State Chemistry,1996,122(1):227-234.
    [39]Hur S G, Tae W K, Hwang S J, et al. Synthesis of new visible light active photocatalysts of Ba(In1/3Pb1/3M1/3)O3 (M'=Nb, Ta):a band gap engineering strategy based on electronegativity of a metal component. The Journal of Physical Chemistry B,2005,109(31):15001-15007.
    [40]Pilkenton S, Raftery D. Soild-state NMR studies of the adsorption and photooxidation of ethanolon mixed TiO2-SnO2 Photocatalysts. Solid State Nuclear Magnetic Resonance,2003,24(4):236-253.
    [41]Marci G, Augugliaro V, Ldpez-Munoz M J, et al. Preparation characterization and photocatalytie aelivity of polycrystalline ZnO/TiO2 systems:surface, bulk characterization and 4-nitrophenol photodegradation in liquid-solid regime. The Journal of Physical Chemistry B,2001,105(5):1033-1040.
    [42]Shifu C, Wei Z, Wei L, et al. Preparation, characterization and activity evaluation of P-N junction Photocatalyst p-ZnO/n-TiO2. Applied Surface Science,2008,255(5): 2478-2484.
    [43]Lin C F, Wu C H, Onn Z N. Degradation of 4-chloroPhenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. Journal of Hazardous Materials,2008, 154(1-3):1033-1039.
    [44]李芳柏,占国榜,黎永津.WO3/TiO2复合半导体的光催化性能研究.环境科学1999,20(4):75-78.
    [45]Pala B, Sharonb M, Nogami G Preparation and charaeterization of TiO2/Fe2O3 binarymixed oxides and its photocatalytic properties. Materials Chemistry and Physics,1999,59(3):254-261.
    [46]Vaezi M R. Two-step soloehemical synthesis of ZnO/TiO2 nano-composite materials. Journal of Materials Proeessing Technology,2008,205:332-337.
    [47]Wang D F, Zou Z G, Ye J H. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chemistry of Materials,2005, 17(12):3255-3261.
    [48]Kim H G, Borse P H, Choi W, et al. Photocatalytic nanodiodes for visible-light photocatalysis. Angewandte Chemie International Edition,2005,44(29):4585-4589.
    [49]Li J L, Liu L, Yu Y, et al. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method. Electro-Chemistry Communications,2004,6(9):940-943.
    [50]Chatterjee, Mahata A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Applied Catalysis B: Environmental,2001,33(2):119-125.
    [5l]赵兹君.CdS-TiO2复合半导体薄膜的制备及其光催化性能研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学图书馆,2004.
    [52]Zou Z G, Ye J H, Arakawa H. Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters,2000,332:271-277.
    [53]Zou Z G, Ye J H, Sayama K, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry,2002, 148:65-69.
    [54]Zou Z G, Ye J H, Arakawa H. Surface characterization of nanoparticles of NiOx/In0.9Ni0.1TaO4:effects on photocatalytic activity. Journal of Physical Chemistry B,2002,106:13098-13101.
    [55]Ye J H, Zou Z G, Arakawa H, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M= V5+, Nb5+, Ta5+). Journal of Photochemistry and Photobiology A:Chemistry,2002,148: 79-83.
    [56]Zou G Z, Ye J H, Arakawa H. Optical and structural properties of the BiTa1-xNbxO4 (0≤x≤1) Compounds. Solid State Communications,2001,119:471-475.
    [57]Zou G Z, Ye J H, Sayama K, et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1-xNbxO4 (0≤x≤1). Chemical Physics Letters,2001,343:303-308.
    [58]Zou Z G, Ye J H, Sayama K, et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts BiTa1-xNbxO4 (0≤x≤1). Nature,2001,414: 625-627.
    [59]Yin J, Zou Z G, Ye J H. Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M=Sr, Ba). Chemical Physics Letters,2003,378:24-28.
    [60]Uno M, Kosuga A, Okui M, et al. Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7 (Ln= La, Sm, and Gd). Journal of Alloys and Compounds,2005, 400:270-275.
    [61]Uno M, Kosuga A, Okui M, et al. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln= La, Ce, Nd and Sm). Journal of Alloys and Compounds,2006,420:291-297.
    [62]Tang J W, Zhou Z G, Ye J H. Decomposition of acetaldehyde on a Bi-based semiconductor. Research on Chemical Intermediates,2005,31(4-6):499-503.
    [63]李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体光催化的表征及催化性能研究.分子催化,1996,10(3):187-193.
    [64]Wang D, Zuo Z G, Ye J H. A new spinet-type photocatalyst BaCr2O4 for HZ evolution under UV and visible light irradiation. Chemical Physics Letters,2003, 373:191-196.
    [65]Bessekhouad Y, Trari M. Photocatalytic Hydrogen Production from Suspension of Spinel Powders AMn2O4 (A=Cu and Zn). International Journal of Hydrogen Energy, 2001,27:357-362.
    [66]姜妍彦.AB2O4化合物的合成、结构表征与光导诱导特性研究[博士学位论文].大连:大连理工大学,2008.
    [67]Tang J W, Zou Z G, Ye J H. Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4. Chemistry of Materials,2004,16(9):1644-1649.
    [68]牛新书,曹志民.钙钛矿型复合氧化物光催化研究进展.化学研究与作用,2006,18(7):770-775.
    [69]刘源,王颖.钙钛矿型稀土复合氧化物整体式催化剂的研究进展.稀土,2002,4:54-58.
    [70]常振勇,崔连起.钙钛矿金属氧化物催化剂的制备研究与应用综述.精细石油化工,2002,3:49-53.
    [71]Parravano G. Catalytic oxidation of carbon monoxide on nickel oxide. Ⅱ. Nickel oxide containing, foreign ions. Journal of the American Chemical Society,1953, 75:1452-1454.
    [72]Parravano G. Catalytic oxidation of carbon monoxide on nickel oxide. Ⅰ. Pure nickel oxide. Journal of the American Chemical Society,1953,75:1448-1451.
    [73]Kawai T, Kunimori K, Kondow T, et al. Dynamic investigation of the mechanism of reaction between sulfur and oxygen on a molybdenum surface by means of Auger electron spectroscopy. Journal of the Chemical Society,1976,72(4):833-841.
    [74]Weadowcroft A H. The photocatalysis of LaCoO3 in the Perovskite. Applied Catalysis,1986,26(2):265-272.
    [75]Libby W F. Promising catalysis for autoexhaust. Science,1971,171(3):499-451
    [76]Pedersen L A, Libby W F. Unseperated rare earth cobalt oxides as autoexhast catalysts. Science,1972,176(7):1355-1366.
    [77]Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in areducing atmorsphere.l. Experimental results. Materials Research Bulletin,1979,14(5):649-659.
    [78]Wu Y Y, Kawaguchi O, Matsuda T. Catalytic reforming of mechane with carbon dioxide on LaBO3 (B= Co, Ni, Fe, Cr) catalysts. Bulletin of the Chemical Society of Japan,1998,71(3):563-572
    [79]Marchetti L, Forni L. Catalytic combustion of methane over perovskite. Applied Catalysis B:Environmental,1998,15(4):179-187.
    [80]Ferri D, Forni L. Methane combustion on some perovskite-like mixed oxides. Applied Catalysis B:Environmental,1998,16(2):119-126
    [81]Voorhoeve R J H, Patel C K N, Trimble L E, et al. Hydrogen cyanide from the reduction of nitric oxide over platinum, palladium, ruthenium, monel and perovskite catalysts. Journal of Catalysis,1976,45(3):297-304
    [82]Wan J, Zhou J S, Goodenough J B. La0.75Sr0.25Cr0.5Mn0.5O3-δ+Cu composite anode running on H2 and CH4 fuels. Solid State Ionics,2006,177(13):1211-1217
    [83]Inagaki T, Yoshida H, Miura K, et al. Intermediate temperature solid oxide fuel cells with doped lanthanum gallate electrolyte, La(Sr)CoO3 cathode, and Ni-SDC cermet anode. Proceedings-Electrochemical Society,2001,16:963-972.
    [84]Inagaki T, Miura K, Maric R, et al. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte Ⅱ. La(Sr)CoO3 cathode. Journal of Power Sources,2000,86(1):347-351.
    [85]Chartouni D, Kuriyama N, Kiyobayashi T, et al. Air-metal hydride secondary battery with long cycle life. Journal of Alloys and Compounds,2002,330:766-770.
    [86]Shimizu Y, Uemuro K, Matsuda H, et al. Bi-functional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air batteries, Journal of Electrochemical Society,1990,137(11):3430-3433.
    [87]Lee C K, Striebel K A, Mclarnon F R, et al. Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes. Journal of Electrochemical Society,1997, 144(11):3801-3806
    [88]Karlsson G, perovskite catalysts for air electrodes. Electro-Chimica Acta,1985, 30(11):1555-1561.
    [89]Sakaguchi M, Uematsu K, Sakata A. Electrocatalytic activity and oxygen adsorption property of perovskite-type oxides, LnMnO3 (Ln:rare earth). Electro-Chimica Acta, 1990,35(1):65-67
    [90]Youichi, S Y, Uemura K, Matsuda H. Bifunetional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal air battery. Journal of the Electrochemical Society,1990,137(12):3430-3433.
    [91]Wrighton M S, Ellis A B, Kaiser S W. Photoelectrochemical cells:conversion of intense optical energy. Electrochemical Society,1976,5:66-91.
    [92]Wang D F, Ye J H, Kako T, et al. Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. The Journal of Physical Chemistry B,2006,110(32):15824-15830.
    [93]Domen K, Naito S, Soma M, et al. Photocatalytic decomposition of water vapor on an NiO-SrTiO3 catalyst. Journal of the Chemical Society, Chemical Communications, 1980,12:543-544.
    [94]Ishihara T, Takita Y. photo catalytic decomposition of pure water on doped mixed oxide. Materials Integration,2001,14(2):13-17.
    [95]Kato H, Hori M, Konta R, et al. Constructure of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters,2004,33(10):1348-1349.
    [96]Kato H, Kudo A. Visible light response and photocatalytic cativities of TiO2 and SrTiO3 photocatalysts co-doped with antimony and chromium. Journal of Physical Chemistry B,2002,106(19):2029-5034.
    [97]Abe R, Sayama K, Sugihara H. Develophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. The Journal of Physical Chemistry B,2005,109(33):16052-16061.
    [98]Niishiro R, Kato H, Kudo A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Physical Chemistry Chemical Physics:PCCP,2005,7(10): 2241-2245.
    [99]Thampi K R, Subba R M, Schwarz W, et al. Preparation of strontium titanate (SrTiO3) by sol-gel techniques for the photoinduced production of hydrogen and surface peroxides from water. Journal of the Chemical Society,1988,84:1703-1712.
    [100]Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. Journal of Physical Chemistry B,2004,108 (26):8992-8995.
    [101]Ohno T, Tsubota T, Nakamura Y et al. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A:General, 2005,288 (1-2):74-79.
    [102]Mitsui C, Noshiguchi H, Fukamachi K, et al. Photocatalytic decomposition of pure water over NiO supported on KTa(M)O3 (M= Ti4+, Hf4+, Zr4+) perovskite oxied. Chemistry Letters,1999,28:1327-1329.
    [103]Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters,2000,331:373-377.
    [104]傅希贤,桑丽霞,王俊珍.钙钛矿(ABO3)化合物的光催化活性及其影响因素.天津大学学报,2001,34(2):229-231.
    [105]杨秋华,傅希贤,王俊珍.钙钛矿型复合氧化物LaFeO3和LaCoO3的光催化活丝催化学报,1999,20(5):521-524.
    [106]傅希贤,杨秋华,白树林.钙钛矿型氧化物LaFeO3光催化活性研究.化学工业与工程,1999,16(6):316-319.
    [107]桑丽霞,傅希贤,白树林.AB03钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系.感光群学与光化学,2001,19(2):109-115.
    [108]杨秋华,傅希贤,桑丽霞等.钙钛矿型LaFeO3和SrFeO3的光催化性能.硅酸盐通报,2003,(3):15-17.
    [109]董抒华,田贵山,冯柳,等.钙钛矿La1-xSrxMnO3纳米晶光催化活性.中国有色金属学报,2008,18(7):1353-1357.
    [110]孙尚梅,康振晋,朴栋梅.钙钛矿型La0.8Sr0.2CoO3的合成及其光催化活性的研究.延边大学学报,2000,4:285-287.
    [111]Hank WE, Paris WB, Ben JMA, et al. Investigations of the electronic structure of d0 transition metal oxides belonging to the pervoskite family. Journal of Solid State Chemistry,2003,175:94-109.
    [112]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89-92.
    [113]Carbonio R E, Fierro C, Tryk D, et al. Perovskite-type oxide:oxygen electrocatalysis and bulk structure. Journal of Power Sources,1988,22:387-398.
    [114]Hollingworth J, Flavell W R, Thomas A G, et al. Electronic structure and reactivity of La1-xSrxCo1-yCuyO3 and La2-xSrxCo1-yCuyO4. Journal of Electron Spectroscopy and Related Phenomena,1999,101:765-769.
    [115]Singh R N, Lal B. High surface area lanthanum cobaltate and it's A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution. International Jounal of Hydrogen Energy,2002,27:45-55
    [116]Chiba R, Yoshimura F, Sakurai Y, et al. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics,1999,124:281-288.
    [117]Hartley A, Sahibzada M, Weston, et al. La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells. Catalysis Today,2000, 55:197-204.
    [118]John T S, Irvine, Derek J D. Corcoran, Anna Lashtabeg, incorporation of molecular species into the vacancies of perovskite oxides. Solid State Ionics,2002,154: 447-453.
    [119]Kostogloudis G C, Tsiniarakis G, Ftikos C. Chemical reactivity of peroskite oxide SOFC cathodes and yttria stabilized zirconia, Solid State Ionics,2000,135:529-535.
    [120]Kawanishi K, Komatsu M, Inoue T. Thermodynamic consideration of the sol-gel transition in polymer solutions. Polymer,1987,28(6):980-984.
    [121]Kordas G, Klein L C. Effects of water content of gels on sol-gel glass structures. Journal of Non-Crystalline solids,1986,84:325-328.
    [122]Klein L C. Sol-gel processing of ionic conductors. Solid State Ionics,1989,32: 639-645.
    [123]Ulrich D R. Prospects of sol-gel processes. Journal of Non-Crystalline Solids,1988, 100:174-193.
    [124]Ahonkhai S I, Louw R, Born J G P. Thermal hydro-dechlorination of hexachlorobenzene. Chemosphere,1988,17(9):1693-1696
    [125]Kurosaki Y, Kashiwagi T. Visualization of thermal behavior of fluid by laser holographic interferometry. Experimental Thermal and Fluid Science,1990,3(1): 87-107.
    [126]Tsoi P V. A method for calculating direct and inverse problems of unsteady-state heat transfer. International Journal of Heat and Mass Transfer,1988,31(3): 497-504.
    [127]Eckert E R G, Goldstein R J, Pfender E, et al. Heat transfer-a review of 1986 literature. International Journal of Heat and Mass Transfer,1987,30(12): 2449-2523.
    [128]姚思童,于锦,徐炳辉等,La0.7Sr0.3CrO3粉末粒度影响因素的研究,硅酸盐学报,1999,27(5):597-600.
    [129]刘晓梅,吕铭,刘江.La1-xCaxCrO3连接材料的研制.中国稀土学报,1999,17(2):191-192.
    [130]Quadakkers W J, Greiner H, Hansel M, et al. Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs. Solid State Ionics,1996,91:55-67.
    [131]McEvoy A J. Thin SOFC electrolytes and their interfaces-a near term research strategy. Solid State Ionics,2000,132:159-165.
    [132]Daengsakul S, Mongkolkachit C, Thomas C et al. Synthesis and characterization of LaMnO3+δ nanoparticles prepared by a simple thermal hydro-decomposition method. Optoelectronics and Advanced Materials,2009,3(2):106-109.
    [133]Specchia S, Palmisano P, Finocchio E, et al. Ageing mechanisms on PdOx-based catalysts for natural gas combustion in premixed burners. Chemical Engineering Science,2009,65(1):186-192.
    [134]Daengsakul S, Thomas C, Thomas I, et al. Magnetic and cytotoxicity properties of La1-xSrxMnO3 nanoparticles prepared by a simple thermal hydro-decomposition. Nanoscale Research Letters,2009,4(8):839-845.
    [135]Specchia S, Palmisano P, Finocchio E, et al. Catalytic activity and long-term stability of palladium oxide catalysts for natural gas combustion:Pd supported on LaMnO3-ZrO2. Applied Catalysis B:Environmental,2009,92:285-293.
    [136]朱剑莉,张峰,陈成等.La0.9Sr0.1Ga0.8Mg0.2O3的微乳液法合成及其质子导电性研究.无机化学学报,2007,23(9):1621-1625.
    [137]牛建荣,刘伟,戴洪义等.La1-xSrxMnO3纳米粒子的制备、表征及催化性能研究.中国稀土学报,2005,23:12-16
    [138]戈磊,张宪华.微乳液法合成新型可见光催化剂Bi2WO6及其光催化性能.硅酸盐学报,2010,03:457-462.
    [139]郭贵宝,云峰,安胜利.反相微乳液碳吸附耦合法制备氧化钇稳定四方氧化锆纳米粉体及表征.稀土,2010,01:57-60.
    [140]Mori M, Sammes N M, Tompsett G A. Fabrication processing condition for dense dintered Lao.6AEo.4Mn03 perovskites synthesized by the coprecipitation method (AE = Ca and Sr). Power Sources,2000,86:395-399.
    [141]马紫峰,林维明,黄传荣等.固体氧化物燃料电池电极材料研究1:La1-xSrxMnO3的合成及其导电性,电源技术,1993,17(6):1-5.
    [142]Lee Y N, Lago R M, Fierro J L G, et al. Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln= La or Nd and A= K or Sr) perovskites. Applied Catalysis A: General,2001,215:245-256.
    [143]Merzhanov A G History of and new developments in SHS. Ceramic transactions: advanced synthesis and processing of composites and advanced ceramics. Ceramic Bulletin,1973,56:3-25.
    [144]Muthuraman M, Dhas N A, Patil K C. Combustion synthesis of oxide materials for nuclear waste immobilization. Bulletin of Materials Science,1994,17(6):977-987.
    [145]Schafer J, Sigmund W, Roy S, et al. Low temperature synthesis of ultrafine Pb(Zr,Ti)O3 powder by sol-gel combustion. Journal of Materials Research,1997, 12(10):2518-2521.
    [146]Mathews T, Manoravi P, Sellar J R, et al. Solution synthesis and fabrication of thin films of Sr and Mg-doped LaGaO3 perovskites by pulsed laser ablation. Journal of the Australasian Ceramic Society,1998,34(1):263-268.
    [147]Specchia S, Civera A,Saracco G In situ combustion synthesis of perovskite catalysts for efficient and clean methane premixed metal burners. Chemical Engineering Science,2004,59(22-23):5091-5098.
    [148]Ekambaram S. Solution combustion synthesis and luminescent properties of perovskite red phosphors with higher CRI and greater lumen output. Journal of Alloys and Compounds,2005,390:7-9.
    [149]Li Y Y, Yao S S, Xue L H, et al. Sol-gel combustion synthesis of nanocrystalline LaMnO3 powders and photocatalytic properties. Journal of Materials Science,2009, 44(16):4455-4459.
    [150]Guo R S, Wei Q T, Li H L, et al. Synthesis and properties of La0.7Sr0.3MnO3 cathode by gel combustion. Materials Letters,2006,60(2):261-265.
    [151]Li Y Y, Yao S S, Xue L H, et al. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. Journal of Alloys and Compounds,2009,491:560-564.
    [152]Kumar H P, Vijayakumar C, George C N, et al. Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. Journal of Alloys and Compounds,2008,458:528-531.
    [153]Tian Z Q, Yu H T, Wang Z L. Combustion synthesis and characterization of nanocrystalline LaAlO3 powders. Materials Chemistry and Physics,2007,106(1): 126-129.
    [154]Rida K, Benabbas A, Bouremmad F. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite. Applied Catalysis A:General,2007,327(2): 173-179.
    [155]Berger D, Matei C Papa F, et al. Pure and doped lanthanum manganites obtained by combustion method. Journal of the European Ceramic Society,2007,27: 4395-4398.
    [156]Rezlescu E, Doroftei C, Dorin P P, et al. The transport and magnetic properties of La-Pb-Mg-Mn-O manganites at low temperatures. Journal of Magnetism and Magnetic Materials,2008,320(6):796-802.
    [157]Bansal N P, Zhong Z M. Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x nanopowders by solution combustion process. Ceramic Transactions,2006,195: 23-32.
    [158]黄文娅,余颖.可见光化的半导体光催化剂.化学进属2005,17:243-247.
    [159]杨亚辉,陈启元,尹周澜等.光催化分解水的研究进展.化学进属2005,17:631-642.
    [160]付贤智.光催化学科的前沿与发展趋势,见:国家自然科学基金委,新世纪的物理化学—学科前沿与展望,北京,科学出版社,2004.
    [161]Lee J Y, Park J, Cho J H. Electronic properties of N-and C-doped TiO2. Applied Physics Letters,2005,87(1):11904-11911
    [162]Calentin C D, Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide. Chemistry of Materials,2005,17(26):6656-6665.
    [163]龙明策.新型光催化剂的制备、表征及其光催化活性的调控机制:[上海交通大学博士学位论文].上海:上海交通大学图书馆,2007.
    [164]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998
    [165]Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical. Physical Review B, 1964,136:864-871
    [166]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review A,1965,140:1133-1138.
    [167]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B,1981,23(10): 5048-5079.
    [168]Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Physical Review Letters,1980,15(7):566-569.
    [169]Perdew J P, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Physical Review B,1992,46(20):12947-12954.
    [170]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B,1992,45(23):13244-13249
    [171]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters,1976,77(18):3865-3868.
    [172]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B,1986,33(12):8822-8834.
    [173]孟胜.表面上水的第一性原理研究:[中国科学院物理研究所博士学位论文].北京:中国科学院物理研究所,2003.
    [174]李震宇.新材料物性的第一性原理研究:[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2004.
    [175]郭红蝤,李静译,Hoffman R.固体与表面:一位化学家关于扩展结构中成键作用的见解.北京,化学工业出版社,1996.
    [176]Sato J, Kobayashi H, Inoue Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d 10configuration. Ⅱ. Roles of geometric and electronic structures. The Journal of Physical Chemistry B,2003,107(31): 7970-7975.
    [177]Jain S R, Adiga K C, Verneker V R P. Thermochemistry and lower combustion limit of ammonium perchlorate in presence of methyllammonium perchlorates. Combustion and Flame,1981,40:113-120.
    [178]Biswas M. Synthesis of single phase rhombohedral LaNiO3 at low temperature and its characterization. Journal of Alloys and Compounds,2009,480:942-946.
    [179]Jia L S, Li J J, Fang W P. Effect of H2/CO2 mixture gas treatment temperature on the activity of LaNiO3 catalyst for hydrogen production from formaldehyde aqueous solution under visible light. Journal of Alloys and Compounds,2009,489:13-16.
    [180]Garcia de la Cruz R M, Falcon H, Pena M A, et al. Role of bulk and surface structures of La1-xSrxNiO3 perovskite-type oxides in methane combustion. Applied Catalysis B:Environmental,2001,33(1):45-55.
    [181]Lima S M, Pena M A, Fierro J L G, et al. La1-xCaxNiO3 perovskite oxides: characterization and catalytic reactivity in dry reforming of methane. Catalysis Letters,2008,124:195-203.
    [182]Horiba K, Eguchi R, Taguchi M, et al. Electronic structure of LaNiO3-x:An in situ soft x-ray photoemission and absorption study. Physical Review B:Condensed Matter and Materials Physics,2007,76(15):155104/1-155104/6.
    [183]Mickevicius S, Grebinskij S, Bondarenka V, et al. Investigation of the aging of epitaxial LaNiO3-x films by X-ray photoelectron spectroscopy. Optica Applicata, 2006,36:235-243.
    [184]Lee Y C, Hong Y P, Lee H Y, et al. Photocatalysis and hydrophilicity of doped TiO2 thin films. Journal of Colloid and Interface Science,2003,267:127-131.
    [185]Miao J P, Li L P, Liu H J, et al. Structure characterstics and valence state study for La1-xNaxTiO3 synthesized under high-pressure and high-temperature conditions. Materials Letters,2000,42:1-6.
    [186]Sarma D D, Chainani A. Electronic structure of perovskite oxides, LaMO3 (M= Ti-Ni), from high-energy electron spectroscopic investigations. Journal of Solid State Chemistry,1994,111(1):208-216.
    [187]Lu H, Pan J S, Chen X F, et al. Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1-xLaxTiO3 thin films. Journal of Applied Physics,2007,102(1): 1-7.
    [188]Yuan S Y, Zhao Z. Studies of multicomponent complex oxide catalysts for oxidative coupling of methane. Ⅶ. Effect of calcination temperature on Ti-La-Li perovskite-type oxide catalysts. Journal of Natural Gas Chemistry,1995,4(4): 418-425.
    [189]徐毓龙.氧化物与化合物半导体基础.西安:西安电子科技大学出版社,1991.
    [190]Choi W Y, Termin R, Hoffmann I R. The role of metail ion dopants in quantumsized TiO2:orrelation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry,1994,98:13669-13679.
    [191]Jing J W, Zou Z G, Ye J H. Photophysical and photocatalytic properties of AgInW2O8. The Journal of Physical Chemistry B,2003,107(51):14265-14269.
    [192]尹晓红,辛峰,张凤宝.4BS染料光催化降解动力学.化工学报,2002,53(5):528-532.
    [193]Ling T R, Chen Z B, Lee M D. Catalytic behavior and electrical conductivity of LaNiO3 in ethanol oxidation, Applied Catalysis A:General,1996,136:191-203.
    [194]Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. Journal of the Electrochemical Society,1978,125(2):228-232.
    [195]Xu Y, Schoonen M A A. The absolute energy position of conduction and valence band of semiconducting minerals. American Mineralogist,2000,85:543-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700