用户名: 密码: 验证码:
金属非金属共掺杂TiO_2的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2因为有合适的导带电位和价带电位、化学稳定性好、氧化还原能力强,无毒以及环境友好等优点而成为光催化和光电(特别是太阳能电池)领域研究的重要对象。但纯TiO2的带隙较宽,仅能吸收紫外光,从而影响了它在光催化和太阳能电池应用中的发展。因此扩大TiO2的光吸收范围,提高它的光催化活性成为当前研究热点问题之一。
     基于上述问题,本论文采用理论和实验相结合的方法对TiO2进行了系统深入的研究,首先在理论上用第一性原理方法深入研究了TiO2的晶体结构、电子结构、本征缺陷、掺杂改性等重要问题,并在此基础上对金属非金属共掺杂进行了理论计算和分析,发现合适的金属非金属共掺杂不但能够扩大TiO2的光吸收边,而且能有效抑制电子空穴对的复合。然后参考理论研究的结果在实验上制备了几种金属、非金属掺杂的TiO2纳米粉和膜,并对这些样品进行了性能测试与分析,发现掺杂改性特性与理论研究的结果相吻合。论文的主要工作如下。
     1、对7种不同晶相结构的TiO2进行了理论计算,获得了各种晶相的结构常数、总能量、禁带宽度等数据,并分析了这些晶相的物理特性。在进行第一性原理计算时,发现采用GGA近似中的PW91方法要优于其他方法;在TiO2的7种晶相中,萤石矿相TiO2的带隙最小,仅为1.13 eV(直接带隙),比锐钛矿相TiO2带隙要窄1.02eV,这与Ti受到立方晶体场作用而使eg(dz2)能级下移有关,价带顶附近空穴的低有效质量表明了萤石矿相TiO2的载流子有较高的电导率。
     2、采用第一性原理研究了TiO2各种本征点缺陷的几何结构和能带结构,发现本征缺陷的类型和浓度对材料性能有一定的影响。在富O条件下,容易形成VTi缺陷;在富Ti条件下,点缺陷Tii4+和Vo将大量出现,形成Schottky缺陷。对离子掺杂TiO2能带结构的模拟计算时,发现N和C单掺杂TiO2的缺陷形成能较高,使离子掺杂浓度降低,容易产生深能级杂质,成为电子和空穴的复合中心。
     3、针对单掺杂容易形成电子-空穴复合中心问题,论文进一步对金属和非金属共掺杂的TiO2进行了理论研究。结果表明,共掺杂一方面对几何结构的影响十分明显,非金属和金属杂质有团聚成键的趋势,另一方面对能带结构也有很大影响,对比单掺杂,N/V和C/Cr共掺杂的TiO2中的电子-空穴复合中心得到明显抑制,对此进一步分析了非金属和金属杂质的不同补偿作用(施主或受主),提出了共掺杂时可能存在协同效应,这种协同效应可以调整材料的能带结构,改善光催化性能。协同效应可能源自以下几方面:①金属离子掺杂有利于非金属离子掺杂浓度的提高;②对于C/Cr(N/V)共掺杂TiO2体系,导带底下方的施主杂质能级上的两个(一个)电子刚好补偿价带顶上方的受主杂质能级上的两个(一个)空穴,这可以有效减少电子和空穴的复合;③共掺杂作用使他们单掺杂引入过深的杂质能级变浅,减少了电子和空穴在杂质能级上的复合率。
     4、制备了N掺杂TiO2的样品。研究发现:掺N的TiO2样品发生从锐钛矿相到金红石相的相变温度在700℃,而纯TiO2的这种相变温度是600℃左右;N掺杂TiO2后,TiO2的光吸收边红移明显,在可见光区域的光吸收性能比纯TiO2明显好很多。还发现:N掺杂TiO2的可见光吸收性能与样品制备中的煅烧温度以及掺杂的浓度有关,从400℃到700℃,随着煅烧温度逐渐升高,N掺杂TiO2的可见光吸收性能逐渐降低;并且,随着N掺杂浓度的增大,TiO2在可见光区域的吸收能力先增大后减小,当氮掺杂浓度为3%光吸收能力达到最大。
     5、制备了不同浓度的V掺杂TiO2的薄膜样品。研究发现:掺杂前后TiO2薄膜在紫外-可见光范围内的光吸收峰位置变化不大,均在300nm左右;但V掺杂后,TiO2的光吸收边发生了红移,光吸收范围增大,与理论计算结果相吻合;掺杂浓度对光吸收效果也有影响,掺杂浓度为1.0%的TiO2薄膜的光吸收效果最佳。
     6、在制备N、V单掺杂样品并获得良好性能的基础上,进一步制备了N-V共掺杂TiO2的样品,研究了他们的光谱吸收等特性,发现N-V共掺杂样品的光吸收边红移范围比单掺杂样品明显大一些。上述几种掺杂样品的实验结果和前面的理论计算结果相一致。
     7、在前面工作基础上,尝试性设计制作出一种ITO/N-TiO2/V-TiO2/Au薄膜结构太阳能电池,测试了该电池的阻值以及光电特性,发现电池在无光照下有良好的整流特性,在光照下能产生一定的电流和电压,结果表明该电池具有整流特性和光生电压电流。
     论文研究工作取得的创新性成果有:(1)采用理论和实验相结合的研究方法,极大地加快了Ti02改性的探索方向和方法的确定。(2)发现了非金属和金属共掺杂Ti02能够明显抑制单掺杂Ti02中的电子-空穴复合中心,通过分析,提出了共掺杂可能存在协同效应的创新观点。(3)制备出了在可见光范围具有较好光吸收能力的Ti02纳米粉和膜,探索了制备条件和参数对Ti02光吸收边的影响;(4)创造性地制备出了具有平面P-N结结构的Ti02薄膜太阳能电池,经测试表明该电池已具有明显的整流特性和光生电压电流。
Titanium dioxide (TiO2) has received much attention as a important material for photocatalysis and photoelectricity (fields of Solar Cell), which is relatively appropriate conduction band and valance band potential, wide in band gap, chemically stable, strongly reductive and oxidative, non-poisonous, and environmentally friendly. Therefore, TiO2 is wide application in the photocatalystic reaction and the Solar Cell.However, the wide band gap requiring ultraviolet irradiation limits the practical application; Increase TiO2's light absorption region and enhance the photocatalystic active have became one of the hot spot problem.
     Aim at the problem, the paper adopted the theoretical and experiment method to study TiO2.Firstly, study the electron structure property, intrinsic point defects and doping et al important problems by first principles calculation in this dissertation, on these base study the metal and nonmetal codoped TiO2, and found the metal and nonmetal codoped TiO2 are not only can broaden the visible light absorption region of TiO2, but also reduce the electrons and holes recombination ratio. Secondly, according to the result of theory, N-doped and V-doped and N/V codoped TiO2 samples were prepared by a sol-gel technology, measure and analyse these samples properties, the experimental results are in agreement with the theoretical results. The conclusions have outlined as follows:
     1、Seven known TiO2 polymorphs crystal structure are established and the structural optimizations are performed to obtain the equilibrium structural parameters, total energy, and electron energy band structure, et al, and further analyze their energy band, density of states and difference charge density. We have carried out the first-principles calculations for TiO2 polymorphs crystal structure, and find the PW91 project of GGA is excelled other projects. In these calculations, the energy band structure shows that fluorite-type TiO2 has a narrow band gap (only is 1.13eV) and high electrical conductivity for potential photocatalytic applications under visible light.
     2、The geometry structure and stability of intrinsic point defects for TiO2 are studied by first principles calculations. The results show the defect types and defect concentrations are related to the nonequilibrium growth condition.In general, under the O-rich condition, VTi would form spontaneously, and under the Ti-rich condition, Tij4+ and Vo easily appear in Schottky defects. To obtain highly effective photocatalysts, the incorporation of impurities in TiO2 has been made to modify the energy band structure. It is found that the formation energy of N-or C-doped TiO2 is high, resulting in the lower p-type dopant concentration,Easily appear a hight impurity band and male it become the center of electrons and holes recombination.
     3、In order to solve the electrons and holes recombination of doping TiO2, the codoped TiO2 with nonmetals and transition metals is more studied. We find that one codoping have great influence on the original geometry, namely, TM/NM defect pairs tend to bind to each, the other the energy band structures of codoped-TiO2 show that N/V and C/Cr codoping is superior to other codoped systems, due to the passivated donor-acceptor codoping on anatase TiO2 photocatalysts. Our results may help understanding synergistic effect of codoping approach for improving photoelectrochemical activity of anatase TiO2. The synergistic effect is come from as follows:first, metal ion doped TiO2 is advantaged to enhancing the concentration of nonmetal ion. Second, for the N/V and C/Cr codoping systems, the electrons on the impurity bands below the conduction band bottom are right compensate the holes above the valence band, which can availably reduce the electrons and holes recombination ratio. Third, the codoping make the impurity band to become shallow, this is also reduce the recombination ratio.
     4、N-doped TiO2 samples have prepared, we find that pure TiO2 normally undergoes anatase-to-rutile phase transformation in the temperature range of 600℃, but the rutile phase appeared is 700℃when N-doped TiO2, compared with the pure anatase TiO2, The absorbency of N-doped TiO2 in the visible range is more better, it's absorption band red shift is obviously. The visible light absorbency of the N-doped TiO2 will reduce form 400℃to 700℃by increasing the calcined temperature, the optimum temperature in our experiments is 400℃.The results indicate that the optical absorption edge obviously shifts to the visible light range with increasing N content. The N-doped TiO2 showed a significant absorption from 380 to 450nm compared with the non-doped TiO2. However, with further increasing N content, when the N content is larger than 3%,the absorption edges become blue shift,so the optimum N content is 3%.
     5、TiO2 film with different V contents were obtained by changing the addition of th Triethylamine, we find the absorb peak value is about 300nm for doping or non-doping TiO2 by testing with UV-Vis. The spectral responses of TiO2 powders shift to the visible light region after doping, and the absorption range increased, which confirm the theoretical results. The optimum doping concentration of vanadium is 1%.
     6、For the sake of comparing, N-, V-doped and N-V codoped nanosized TiO2 powder were prepared by a sol-gel technology in experiment. Further study their spectral absorption characteristics,we find that the spectral responses of TiO2 powders shift to the visible light region after doping, and the absorption region of N-V codoped TiO2 enlarge mostly,which confirm the theoretical results.
     7、Finally, we study a film structure Solar Cell.We measure its property of U-I, and find the cell have a good current property without light intensity, the Cell can produce a litte current and pressure with light.
     The innovative conclusions have outlined as follows:(1)Adopted the theoretical and experiment method to study TiO2 is very quickly confirm the aim and mean of doping TiO2; (2) Found the metal and nonmetal codoped can availably reduce the electrons and holes recombination ratio, advanced synergistic effect of codoping approach for improving photoelectrochemical activity of anatase TiO2 is great; (3)Prepared some TiO2's powders and films that they can absorb by the visible light, and explored the law that some parameter how to affect the light absorption region; (4) Prepared an double deck film structure Solar Cell, studied how to enhance the photoelectric conversion efficiency.
引文
[1]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望.化学物理学报,2003,16(5):339~349.
    [2]O'Regan B and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740.
    [3]Fujidhima A and Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37~38.
    [4]张文彬,谢利群,白元峰.纳米TiO2光催化机理及改性研究进展.化工科技,2005,13(6):52~57.
    [5]Hadjiivanov K I and Klissurski D G. Surface chemistry of titania (anatase) and titania-supported catalysts.Chem. Soc. Rev.,1996,25:61~69.
    [6]Linsebigler A L, Lu G and Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms,and Selected Results. Chem. Rev.,1995,95:735~751.
    [7]Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69~96.
    [8]Gai Y Q,Li J B,Li S S,et al. Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett.,2009,102: 036402~036405.
    [9]Gratzel M.Photoelectrochemical cells.Nature,2001,414:338~344.
    [10]Frank S N and Bard A J.Heterogeneous photocatalytic oxidation of cyanide and Sulfite in Aqueous Solution at Semiconductor Powder. J.Phys.Chem.,1977, 81:1484-1495.
    [11]Grzechulska J and Moraw ski A W. Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water. Appl Catal B: Environ,2003,46:415~419.
    [12]Vogel R, Hoyer P and Weller H.Quantum-Sized PbS,CdS,Ag2S,Sb2S3 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J.Phys.Chem.,1994,98(12):3183~3191.
    [13]Yang J C, Kim Y C, Shul Y G, et al. Characterization of photoreduction Pt/TiO2 and decomposition of dichlorocetic acid over photoreduced Pt/TiO2 catalysts. Appl.
    Surf. Sci.,1997,121/122:525~529.
    [14]Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants V:Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B,1998,102:5845~5851.
    [15]吴楚龙,柳松,秦好丽.外加“场”辅助TiO2光催化降解有机物研究进展.化工进展,2006,25(5):512~516.
    [16]Yang Y, Li X J, Chen J T, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2. Photochemistry and Photobiology A:Chemistry,2004,163: 517~522.
    [17]Choi W, Termin A and Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J.Phys. Chem.,1994,98 (51):13669~13675.
    [18]Karakitsou K. E and Verykios X E. Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage. Phys. Chem.,1993, 97(6):1184~1189.
    [19]Jeffrey C S and Chen C H.A Visible-light Response Vanadium-doped Titania Nanocatalyst by Sol-gel Method. Journal of Photochemistry and Photobiology A: Chemistry,2004,163:509~515.
    [20]Osorio-Guillen J,Lany S and Zunger A. Atomic Control of Conductivity Versus Ferromagnetism in Wide-Gap Oxides Via Selective Doping:V, Nb, Ta in Anatase TiO2. Phys. Rev. Lett.,2008,100:036601~036604
    [21]Sato S.Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett.,1986,123 (1/2):126~128.
    [22]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293:269~271.
    [23]Nakano Y, Morikawa T, Ohwaki T, et al. Appl.Phys. Lett.,2005,86:132104~ 132106.
    [24]Irie H, Watanabe Y and Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J.Phys. Chem. B,2003,107(23): 5483-5486.
    [25]Batzill M, Morales E H and Diebold U. Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase. Phys.Rev. Lett.,2006,96:026103~026106.
    [26]Khan S U M, Al-Shahry M and Ingler W B.Efficient photochemical water splitting by a chemically modified n-TiO2.Science,2002,297:2243~2245.
    [27]Xie Y B, Yuan C W and Li X Z. Photocatalytic degradation of X23B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system. Colloid Surface A,2005,252(1):87~94.
    [28]Umebayashi T, Yamaki T, Tanaka S,et al. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2. Chem. Lett.,2003,32(4):330~331.
    [29]Ohno T, Mitsui T, Matsumura M, et al. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett.,2003,32(4):364~365.
    [30]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photo-catalysts and their photocatalytic activities under visible light. Applied Catalysis A: General,2004,265:115~121.
    [31]Zhao W, Ma W H and Zhao J C.Efficient degradation of toxic organic pollutants with Ni2O3/TiO21-xBx under visible irradiation. J.A. Chem. Soc.,2004,126(15): 4782~4783.
    [32]Ozaki H, Iwamoto S and Inoue M. Marked promotive effect of iron on visible-light induced photocatalytic activities of nitrogen and silicon-codoped titanias.J.Phys. Chem. C,2007,111:17061~17066.
    [33]Wang Y, Wang Y, Meng Y L, et al. A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2.J.Phys. Chem.C, 2008,112(17):6620~6626.
    [34]Yang X G, Cao C D, Hohn K, et al. Highly visible-lightactive C-and V-doped TiO2 for degradation of acetaldehyde. Journal of Catalysis,2007,252:296~302.
    [35]Gu D E, Yang B C, Hu Y D. V, N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catalysis Communications 2008,9:1472~1476.
    [36]BonnetD.Cadmium-telluride-material for thin film salar cella,Mater Rec.1998. 13(10).2740~2753
    [37]梁宗存、沈辉、李戢洪,太阳能电池及材料研究[J],材料导报,2000,14(8):38~40
    [38]StaeblerD L,Wroski C R.,et al. Reversible conduc2 tivitychanges in discharge produced amorphous Silicon [J].App 1 Phys Lett,1977,31:292.
    [39]苏孙庆.多晶硅薄膜太阳能电池的研究进展[J],技术物理教学,2007,15(2)45~47
    [40]X. Wu, J C Keane, R G Dhere, C DeHart, D S Albin, A Duda, T A Gessert, S Asher, D H Levi, P Sheldon. In:Proceedings of the 17 the uropean photovoltaic solar energy conference 2001 [C],Munich, Germany,2001, pp.995~1001.
    [41]Alessio Bosio, Nicola Romeo, Samantha Mazzamuto and Vittorio Canevari. Polycrystalline CdTe thin films for photovoltaic app lications, Progress in Crystal Growth and Characterization of Materials,2006,52(4):247~279
    [42]Lianghuan Feng, L iliWu, ZhiLei, WeiL i, Yaping Cai, Wei Cai, J ingquan Zhang, QiongLuo, BingL i and Jiagui Zheng. Studies of key technologies for large area CdTe thin film solar cells,Thin Solid Films 2007,515(15):5792~5797
    [43]K Ramanathan, M A Contreras and C L Perkins.,et al.Properties of 19.2% efficiency ZnO/CdS/Cu InGaSe2 thin-film solar cells, Progress in Photovoltaics 2003,11(4):225~230.
    [44]M A Contreras, K Ramanathan, J AbuShama, F Ha-soon, D L Young, B Egaas and R Noufi.Diode charac-teristics in state-of-the-art ZnO/CdS/Cu (In1-xGax) Se2 solar cells, Prog. Photovolt,2005.13(3):209~216.
    [45]MiguelA Contreras, Brian Egaas, K Ramanathan, J Hilt-ner, A Swartzlander, F Hasoon Rommel Noufi.Progress toward 20% efficiency in Cu(In,,Ga) Se2 polycrystalline thin-film solar cells,Prog. Photovolt,1999,7 (4):311~316
    [46]S Jost, F Hergert, R Hock, J Schulze, A Kirbs, T. Vo,M Purwins. The formation of Cu InSe2 thin film solar cell absorbers from electrop lated p recursors with varying selenium content,Solar Energy Materials and Solar Cells,2007,91 (18):1669~ 1675
    [47]Donglin Xia, Jangzhuang Li, Man Xu and Xiujian Zhao. Journal of non-crystalline solids, electrodeposited and selenized CIGS thin films for solar cells,2008,354, (12-13):1447~1450
    [48]Liu Zhaoyun, Pan Kai,Wang Meijia.,et al, Influence of the mixed ratio on the photocurrent of the TiO2/SnO2 composite photoelectrodes sensitized by mercurochrome. Photochem Photobiol A:Chem,2003,157 (1):39~46
    [49]Sahi A, Morikawa TR, Ohwaki T., et al.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293 (13):269~271
    [50]M Gratzel.Solar energy conversion by dye-sensitized photovoltaic cells,Inorg. Chem.,2005,44 (20):6841~6851.
    [51]王孔嘉,戴松元.染料敏化太阳电池及其进展[J],物理,2007,36(11):853~861
    [52]孔凡太,戴松元.染料敏化太阳电池研究进展[J],新材料产业,2007(7):32~35
    [53]王华,王智,钱觉时,唐笑,朱小红.纳米TiO2多孔膜的微结构对染料敏化纳米晶太阳能电池性能的影响[J],材料导报,2007,21(9):48~55
    [54]郝三存,吴季怀,黄昀,范乐庆.染料敏化TiO2纳晶太阳能电池研究进展[J]材料导报200317(7):35~38
    [55]陈云霞,郝江波,何鑫.TiO2基太阳能电池研究进展[J],陶瓷学报,2007,28(1),73-78
    [56]刘显杰,王世敏.有机染料敏化Ti~2纳米晶多孔膜液体太阳能电池研究进展[J],材料导报,2004,18(10):18~24
    [57]PEDe Jongh, D Vanmaekelbergh. Trap-limited electronic transport in nanometer-size TiO2 particales. Phys.Rev. Lett.,1996,77:3427~3430
    [58]G Shlichthorl, SY Huang, J Sp rague,A J Fank. Band edge movment and recombination kinetics in dye-sensitized nanocrystal-line TiO2 solar cells:a study by intensitu modulated photovaltage spectroscopy. Phys.Chem. B.1997,101: 8141~8155
    [59]曾隆月,戴松元,王孔嘉等.染料敏化纳米ZnO薄膜太阳能电池机理初探[J].物理学报,2005,54(1):53~55
    [60]Kakiuchi K, Hosono E, Fujihara S.Enhanced photoelec-trochemical performance of ZnO electrodes sensitized with N-719. Photochem. Photobio.A:Chem., 2006,179(1):81~86
    [61]Ali Elkhidir Suliman, Yiwen Tang and L iang Xu. Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells,2007,91, (18):1658~1662
    [62]Rong Zhang, J ie Pan, Evan P Briggs, Marvin Thrash and Lei L. Kerr studies on the adsorp tion of RuN3 dye on sheet-like nanostructured porous ZnO films. Solar EnergyMaterials and Solar Cells,2008,92, (4):425~431
    [63]Yoshitake Masuda and Kazumi Kato. Rap id growth of thick particulate film of crystalline ZnO in an aqueous solution,Thin Solid Films,2008,516,(9) 2474-2477
    [64]D I Suh, S Y Lee, T H Kim, J M Chun, E K Suh, O B Yang and S KLee. The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires, Chemical Physics Letters,2007,442, (4-6),17:348~ 353
    [65]Poonam Suri and R. M.Mehra. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell, Solar Energy Materials and Solar Cells,2007,91,(6):518~524
    [66]Hohenberg P and Kohn W. Inhomogeneous electron gas.Phys. Rev.,1964,136: B864~871.
    [67]Kohn W and Sham L J. Self-consistent equations including exchange and correlation effects.Phys. Rev.,1965,140:A1133~A1138.
    [68]Kohn W and Sham L J.Quantum Density Oscillations in an Inhomogeneous Electron Gas. Phys. Rev.,1965,137:A1697~A1705.
    [69]Ceperley D M and Alder B J.Ground State of the Electron Gas by a Stochastic Method. Phys.Rev. Lett.,1980,45:566-569.
    [70]Perdew T P and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B,1981,23:5048~5079.
    [71]Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys.Rev. B,1992,45:13244~13249.
    [72]Becke A D.Density-functional exchange-energy approximation with correct asym-ptotic behavior. Phys. Rev. A,1988,38:3098~3100.
    [73]Perdew J P.Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B,1986,33:8822~8824.
    [74]Hammer B, Hansen L B and Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals.Phys. Rev.B,1999,59:7413~7421.
    [75]Perdew J P and Wang Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation. Phys.Rev. B,1986,33: 8800-8802.
    [76]Lagarec K and Desgreniers S.Raman Study of Single Crystal Anatase TiO2 up to 70 GPa. Solid State Commun.,1995,94:519~524.
    [77]Arlt T, Bermejo M, Blanco M A, et al. High-pressure polymorphs of anatase TiO2. Phys. Rev. B,2000,61:14414~14419.
    [78]Sato H, Endo S, Sugiyama M, et al. Baddeleyite-Type High-Pressure Phase of TiO2. Science,1991,251:786~788.
    [79]Dubrovinskaia N A, Dubrovinsky L S,Ahuja R, et al. Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph. Phys. Rev. Lett.,2001,87:275501~275504.
    [80]Swamy V and Muddle B C.Ultrastiff Cubic TiO2 Identified via First-Principles Calculations.Phys.Rev. Lett.,2007,98:035502~035505.
    [81]Mattesini M, de Almeida J S,Dubrovinsky L, et al. High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys.Rev. B,2004,70: 212101~212104.
    [82]L.Samantha, Pugh, T.James Guthrie. Some characteristics of pigments that act the kinetics of fading of prints made from water-based liquid ink formulations. Dyes and Pigments,2002,55:109~121
    [83]R.H.Tait and R.V.Kasowski, Ultraviolet photoemission and low-energy-electron diffraction studies of TiO2 (rutile) (001) and (110) surfaces, Phys. Rev. B, 1979,20(12):5178~5191
    [84]W. Gopel, J.A.Anderson, D.Frankel,M.Jaehnig, K. Phillips, J.A.Schafer, and G. Rocker, Sruf.Sci.1984,189:333
    [85]K. Tsutsumi, O.Aita, and K. Ichikawa, X-ray Ti K spectra and band structures of oxides of titanium,Phys.Rev. B,1977,15(10):4638~4643
    [86]T.Umebayashi, T.Yamaki,T.Sumita et al.UV-ray photoelectron and ab initio band calculation studies on electronic structures of Cr-of Nb-ion implanted titanium dioxide, Nucl. Instr.and Meth.in Phys.Res.B,2003,206:264~267
    [87]B.W. Veal and A.P. Paulikas, Final-state screening and chemical shifts in photoelectron spectroscopy,Phys.Rev.B,1985,31(8):5399~5416
    [88]R.Brydson, H.Sauer, W.Engel, et al.,Electron energy loss and X-ray absorption spectroscopy of rutile and anatase:a test of structural sensitivity, J.Phys. Condens. Matter,1989,1(4):797~812
    [89]L.A. Grunes, R.D. Leapman, C.N. Wilker, et al. Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d Transition-metal oxides, Phys.Rev.B,1982,25(12):7157~7173
    [90]M.L. Knotek and P.J.Feibelman, Ion Desorption by Core-Hole Auger Decay, Phys.Rev.Lett.1978,40(14):964~967
    [91]B.Poumellec, P.J.Durham, and G.Y.Guo, Electronic structure and X-ray absorption spectrum of rutile TiO2, J.Phys.Condens.Matter,1991,3:8195
    [92]N.Daude, C.Gout, and L. Jouanin, Electronic band structure of titanium dioxide, Phys. Rev. B,1977,15(6):3229~3235
    [93]Shang-Di Mo and W.Y.Ching, Electronic and optical properties of three phases of titnnium dioxide:Rutile,anatase,and brookite,1994,51(19):13023~03032
    [94]Min Sik Park, S.K.Kwon et al.Electronic structures of doped anatase TiO2: Ti1-xMxO2 (M=Co,Mn,Fe,Ni), Phys.Rev.B,2002,65:16201-1~16201-4
    [95]R.Asahi and Y.Taga, Electronic and optical properties of anatase TiO2, Phys.Rev.B, 2000,61(11):7459~7465
    [96]K.M. Glassford and J.R. Chelikowsky, Structural and electronic properties of titanium dioxide,Phys.Rev. B,1992,46(3):1284~1298
    [97]K.M. Glasford and J.R. Chelikowsky, Electronic structure of TiO2:Ru, Phys.Rev. B, 1993,47(19):12550~12553
    [98]D.Vogtenhuber, R. Podloucky, A. Neckel, et al.,Electronic structure and relaxed geometry of the TiO2 rutile(110) surface, Phys. Rev. B,1994,49(3):2099-2130
    [99]A.T.Paxton and L.Thien-Nga, Electronic structure of reduced titanium dioxide, Phys.Rev.B,1998,57(3):1579~1584
    [100]J.W. Halley, M.T. Michalewicz, and N. Tit, Electronic structure of multiple vacancies in rutile TiO2 by the equation-of-motion method,Phys.Rev. B, 1990,41(14):10165~10170
    [101]A.Fahmi, C.Minot, B.Silvi, and M.Causa, Theoretical analysis of the structures of titanium dioxide crystals, Phys. Rev. B,1993,47(18):11717~11724
    [102]Keith M.Glassford and James R.Chelikowsky, Electronic structure of TiO2:Ru,
    Phys.Rev.B,1993,47(19):12550~12553
    [103]H.Kohjiro, N.Takeshi, K.Mitsuhiko et al. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer, Solar Energy Materials and Solar Cell, 2005,85(1):21~30
    [104]Bae.D.S, Han.K.S,Choi.S.H, Fabrication and characterization of Ru-doped TiO2 composite membranes by the sol-gel process, Materials Letters, 1997,33(1):101~105
    [105]Xiaoheng Liu, Chunxiang Liang, Hengzhi Wang, et al.Usage of ultrafine anatase/TiO2.nH2O powder:photocatalysis and microstructure control for nanocrystalline TiO2, Materials Science and Engineering,2001,326:235~239
    [106]J.H.Fang, X.M.Lu, X.F.Zhang, CdSe/TiO2 nanocrystalline solar cells, Supramolecular Science,1998,5(5-6):709~711
    [107]M.R.Hoffman, S.T.Martin, W.Choi, et al.Eviromental application of semiconductor photocatalysis. Chem.Rev,1995,95(1):69~96
    [108]H.Tang, K.Prasad, R. Sanjines,et al.,Electrical and optical properties of TiO2 anatase thin films, J.Appl. Phys.1994,75(4):2042~2047
    [109]Ho W K, Yu J C and Lee S C.Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006,179:1171~1176.
    [110]Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews,2007,11:401~425.
    [111]Carey J H and Lawrence J.Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions.Bull.Environ. Contam. Toxicol.,1976,16:697-701.
    [112]高伟,吴凤清,罗臻等.TiO2晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660~662.
    [113]Shang-Di Mo and Ching W Y. Electonic and optical properties of three phases of titanium dioxide:Rutile, anatase, and brookite. Phys. Rev. B,1995,51(19): 13023-13031.
    [114]Dubrovinsky L S,Dubrovinskaia N A, Swamy V, et al. The hardest known oxide. Nature,2001,410:653~654.
    [115]Muscat J, Swamy V and Harrison N M. First principles calculations of phase stability of TiO2. Phys. Rev. B,2002,65:224112~224126.
    [116]Mattesini M, de Almeida J S,Dubrovinsky L, et al. Cubic TiO2 as a potential light absorber in solar-energy conversion. Phys. Rev. B,2004,70:115101~115109.
    [117]Kim D Y, de Almeida J S, Koci L, et al. Dynamical stability of the hardest known oxide and the cubic solar material:TiO2. Appl.Phys. Lett.,2007,90:171903~ 171905.
    [118]Kuo M Y, Chen C L, Hua C Y, et al. Density Functional Theory Calculation of Dense TiO2 Polymorphs:Implication for Visible light responsive Photocatalyst. J. Phys.Chem. B,2005,109:8693~8700.
    [119]Burdett J K, Hughbanks T, Miller G J, et al. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J.Am. Chem. Soc.1987,109: 3639-3646.
    [120]Segall M D, Lindan P L D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code. J Phys Condens Matter,2002,14:2717~2744.
    [121]Liang Y C, Zhang B and Zhao J Z. Mechanical properties and structural identi-fications of cubic TiO2. Phys. Rev. B,2008,77:094126~094130.
    [122]Atashbar M z, Ghantasala M K, Wojtek W. [J].Proc SPIE IntSoc Opt Eng, 1997,3241:382-388
    [123]徐明霞,徐廷献,刘宁.由TiSO4水解-沉淀制备TiO2薄膜[J].硅酸盐学报,1997,25(2):209-213
    [124]尹荔松,周歧发,危韧勇等.纳米TiO2薄膜的制备及其光学特性研究[J].中山大学学报,2000(4):51-56
    [125]陈国珍等.紫外可见分光光度法[B].北京:原子能出版社,1987,42~43
    [126]L.Wu,J.C.Yu,L.Z.Zhang,X.C.Wang,W.K.Ho.Preparation of a Highly Active Nanocrystalline TiO2 Photocatalyst from Titanium Oxo Cluster Precursor.J.Solid State Chem.,2004,177(7):2584-2590.
    [127]D.Bersani,P.P.Lottici,X.Z.Ding.Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals.Appl.Phys.Lett.,1998,72(1):73-75.
    [128]A.Brioude,F.Lequevre,J.Mugnier,J.Dumas,G.Guiraud,J.C.Planet.Raman Spectroscopy of Sol-Gel Ultrathin Films Enhanced by Surface Plasmon Polaritions.J.Appl.Phys.,2000,88(11):6187-6191.
    [129]S.Y.Choi,M.Mamak,N.Coombs,N.Chopra,G.A.Ozin.Thermally StableTwo-Dimensional Hexagonal Mesoporous Nanocrystalline Anatase,Meso-Nc-TiO2:Bulk and Crack-Free Thin Film Morphologies.Adv.Funct.Mater.,2004,14(4):335-344.
    [130]Y.Djaoued,S.Badilescu,P.V.Ashrit,D.Bersani,P.P.Lottici,J.Robichaud. Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films.J. Sol-Gel Sci.Technol.,2002,24(3):255-264.
    [131]Diebold U.The surface science of titanium dioxide. Surf. Sci.Rep.,2003,48(5-8): 53~229.
    [132]Weibel A, Bouchet R and Knauth P.Electrical properties and defect chemistry of anatase (TiO2).Solid State Ionics,2006,177:229~236.
    [133]Yagi E, Hasiguti R and Aono M.Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2-x. Phys.Rev. B,1996,54:7945~7956.
    [134]Nowotny M K, Bak T and Nowotny J.Electrical properties and defect chemistry of TiO2 single crystal. Ⅱ. thermoelectric power. J.Phys.Chem. B,2006,110: 16283-16291.
    [135]Na-Phattalung S,Smith M F, Kim K, et al. First-principles study of native defects in anatase TiO2.Phys. Rev. B,2006,73:125205~125210.
    [136]Zuo X, Yoon S D, Yang A, et al. Ab initio calculation on ferromagnetic reduced anatase TiO2-δ. J.Appl.Phys.,2008,103:07B911~07B913.
    [137]Han G B,Hu S J,Yan S S,et al. Oxygen Vacancy induced ferromagnetism in rutile TiO2-δ. Phys.Status Solidi RRL,2009,3(5):148-150.
    [138]Van De Walle C G and Neugebauer J.First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides. J.Appl.Phys.,2004,95:3851~3879.
    [139]Matsunaga K, Tanaka T, Yamamoto T, et al. First-principles calculations of intrinsic defects in Al2O3.Phys.Rev. B,2003,68:085110~085118.
    [140]Lee D K, Jeon J I, Kim M H, et al. Oxygen nonstoichiometry(δ) of T1O2-δ-revisited. J.Solid State Chem.,2005,178:185~193.
    [141]Baumard J F and Tani E. Electrical conductivity and charge compensation in Nb doped TiO2 rutile. J.Chem. Phys.,1977,67:857~860.
    [142]Koudriachova M.Geometry and ordering of defects in non-stoichiometric rutile. phys. stat. sol.(c),2007,4(3):1205~1208.
    [143]Cho E, Han S,Ahn H S,et al. First-principles study of point defects in rutile TiO2-x. Phys. Rev. B,2006,73:193202~193205.
    [144]Mattioli G, Filippone F, Alippi P, et al. Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2.Phys. Rev. B,2008,78: 241201-241201.
    [145]Maki-Jaskari M A and Rantala T T. Theoretical study of oxygen-deficient SnO2 (110) surface. Phys. Rev. B,2002,65:245428~245435.
    [146]Knauth P and Tuller H L. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J.Appl.Phys.,1999,85:897~902.
    [147]张献仲,陈恕华,蒋如铭.简明结构化学.武汉:华中理工大学出版社,1993.
    [148]Takahira M, Masayuki K, Isao S,et al. Photocatalytic Property and Deep Levels of Nb-doped Anatase TiO2 Film Grown by Metalorganic Chemical Vapor Depostion. Jpn. J.Appl.Phys.2004,43:775~776.
    [149]Gajbhiye N S and Ningthoujam R S.Low temperature synthesis, crystal structure and thermal stability studies of nanocrystalline VN particles. Materials Research Bulletin 2006:41 1612~1621.
    [150]Sato J, Kobayashi H and Inoue Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. II. Roles of Geometric and Electronic Structures. J.Phys.Chem. B,2003,107: 7970~7975.
    [151]R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides.Science,2001,293:69
    [152]Burda C.,Lou Y B.,Chen X. B.,2003 Nano.letters B 3 1049
    [153]Maskazu Anpo,MasatoTakeuehi,The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis,2003,216:506
    [154]Sun Xiaojun et al.Journal of The Chinese Ceramic Society,2002,30:26
    [155]丁士文,李玲,徐向伟et al.钒掺杂纳米二氧化钛光触媒乳液的制备及性能研究.华北电力大学学报,2007(6):88-91
    [156]Bersani, D.;Antonioli, G.;Lottici, P.P.;Lopez, T. J.Non-Cryst.Solids 1998, 232-234,175
    [157]Karla, R. R.;Enrique, A. R.;Daniel, R. J. Electrochem. Soc.2006,153,1296
    [158]De-Eu Gu, Bang-Chao Yang, Yong-Da Hu. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catalysis communications,2008(9):1472-1476
    [159]T.Ihara, M.Miyoshi, Y.Iriyama, et al.Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B:Environmental,2003,42:403-409
    [160]L.Xu, C.Q.Tang, J.Qian, Z.B.Huang. Theoretical and experimental study on the electronic structure and optical absorption properties of Phosphorus-doped TiO2,Applied surface sciecnce,2010(256):2668-2671
    [161]2420212005610120077.徐凌.TiO2掺杂的计算机模拟计算.华中科技大学图书馆,2007
    [162]Wang, Y.;Doren, D.J.Electronic structures of V-doped anatase TiO2, Solid State Communications,2005,136:142
    [163]赵宗彦,柳清菊,张瑾,朱忠其.3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究,物理学报,2007,56:6592-6599
    [164]M.K. Nazeeruddin, De Angelis F.,Fantacci S.et al.Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,J.Am. Chem. Soc.,2005,127(48):16835-16847
    [165]S.Erten,F.Meghdadi,S.Gunes,R,et al.Donor-acceptor heterojunction solar cells based on perylene dimide and perylene bisbenzimidazole.The European Physical Journal Applied Physics 2007,36:225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700