用户名: 密码: 验证码:
推荐系统中若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet的发展,网站在为用户提供越来越多信息的同时,其结构也变得更加复杂,如何及时地在网络上的海量信息中发现所需要的信息已经变得越来越困难。推荐系统一方面通过预测用户对项目的喜好程度来为用户提供信息过滤,应用知识发现技术来生成个性化推荐,帮助用户找到所需信息;另一方面辅助企业达到个性化营销的目的,进而提升销售量,为企业创造更多的利润。此外,加之个性化服务发展与普及,推荐系统在越来越多的Web站点上得到广泛应用,特别是各类电子商务平台中。由于推荐系统具有良好发展和应用前景,已经成为Web智能技术中的一个重要研究方向,受到了众多研究者的广泛关注。
     近年来,推荐系统在理论和实践中都得到了快速的发展,但是随着所应用的系统规模的进一步扩大,推荐系统也面临着一系列的挑战。本论文对推荐系统中的推荐算法及隐私保护等关键技术进行了有益的探索和研究。本论文的研究内容主要是将数据挖掘与机器学习相关技术应用于推荐系统中,主要涉及推荐系统的实时性、推荐质量和隐私保护等方面的应用研究。本论文的主要研究工作如下:
     (1)针对推荐系统中数据高维稀疏性的影响,提出了一种基于非负矩阵分解的协同过滤技术,分析及实验都表明,算法能够提高推荐生成速度,满足推荐系统实时性要求。实验还表明,算法能够提高推荐质量。
     (2)推荐系统中项目数量庞大,用户仅能对其中部分项目进行评价。当用户之间缺少对相同项目评分时,即使他们对相似项目进行评分,系统也不将其视为近邻,这就导致了“相似不相同”问题,影响推荐质量。针对这一问题,我们提出了分层相似性的概念,建立了推荐系统的多层相似性度量。实验表明该相似性度量能够提高协同过滤算法的推荐精度。
     (3)推荐算法的实时性要求一直以来都是研究者关注的重点内容之一。本文提出了一种基于用户聚类的协同过滤算法,通过离线对基本用户进行聚类,在线时利用已有用户聚类搜索目标用户最近邻,并产生推荐。算法分析表明其能够提高目标用户最近邻的搜索效率,加快生成推荐。通过结合多层相似性度量,实验表明,其不仅能够提高推荐生成效率,而且能够提高推荐质量。
     (4)信息安全和隐私保护是数据挖掘领域的热点之一。推荐系统需要收集用户兴趣喜好等相关数据,在一定程度上涉及了用户的个人隐私,因而推荐系统中的隐私保护也开始受到研究人员的关注。本文提出了一种基于随机扰动的隐私保护推荐算法。算法在用户数据收集过程中采用随机扰动技术,并使用非负矩阵分解对数据进行处理,从而形成隐私保护功能,并在此基础上产生推荐。通过分析及实验表明,算法在保护用户个人隐私的基础上,能够产生具有一定精确度的推荐结果,以满足推荐系统的需要。
With the development of the Internet, the web provides more and more information for users, while the structure of the web has also become more and more complex. This situation has made it substantially more difficult for users to find the information they need from the vast amount of materials available on the Internet. The recommender system provides information filtering for a user by predicting the particular user's preference, and it can apply knowledge discovery techniques to make personalized recommendations to help the user quickly find the desired information. At the same time, the recommender system can enable enterprises to achieve the objective of personalized marketing, which can improve sales and generate more profits. In addition, with the popularization of personalized service, the recommender system is widely used on a growing number of web sites, especially in the E-Commerce platform. Because of its great potential for development and applications, the recommender system has become an important research area in web intelligent technologies and attracted significant attention from researchers.
     Although the development of recommender system has been successful in both research and applications, a number of challenging research problems still exist. To address these challenges, this dissertation explores and studies some key technologies of the recommender system, such as the design of novel algorithms with better recommendation quality and enhanced privacy protection technology. In particular, data mining and machine learning techniques are incorporated into the recommender system. Technologies for enhanced real-time recommendation, improved recommendation quality and strengthened privacy protection in the recommender system are investigated.
     The main research results of this dissertation are as follows:
     First, the performance of collaborative filtering systems degrades with increasing number of customers and objects. To reduce the dimensionality of filtering databases and to improve the performance, non-negative matrix factorization (NMF) is proposed. Theoretical analysis proves that NMF-based collaborative filtering can accelerate the process of recommendation generation to satisfy the demands of real-time recommender system. Experimental results show that NMF-based algorithm can improve the performance of collaborative filtering systems in both the recommendation quality and the efficiency of recommendation generation.
     Second, the number of objects in the recommender system is generally very large, and individual users are only able to evaluate a small fraction of all the available objects. As a result, the lack of the overlap of objects rated or evaluated by different users can prevent the recommender system from recognizing the otherwise obvious similarity among different objects if each of these objects is rated by a different individual. This is the "similar but not identical" problem which can seriously affect the quality of recommendation results. Therefore, the multi-layer similarity concept is presented and a multi-layer similarity evaluation procedure is established for the recommender system. The experimental results illustrate that the multi-layer similarity evaluation can improve the accuracy and consequently the quality of the recommendations.
     Third, to overcome the speed bottleneck of collaborative filtering algorithm used for generating recommendations, a collaborative filtering algorithm based on clustering basal users is described. The algorithm separates the process of recommendation into offline and online phases. In the offline phase, the data of basal users are preprocessed, and the basal users are clustered; while in the online phase, the nearest neighbors of an active user are identified according to the basal user clusters, and the recommendation to the active user is generated. During the course of recommendation generation, the multi-layer similarity evaluation is used. Experimental results show that the presented algorithm can improve the performance of collaborative filtering systems in both the recommendation quality and efficiency.
     Finally, the recommender system operates by collecting rating or evaluation information for objects and matching users who share the same interests or tastes. This is potentially a serious threat to individual privacy because most online systems collect preferences of users which include their private information. So more and more users and researchers are concerned with the privacy protection in the recommender system. In this dissertation, a new privacy protection algorithm is presented. In this algorithm, randomized perturbation techniques are applied during the course of user data collection, and the collected data are further processed by NMF, which enables the protection of sensitive information. The algorithm produces the recommendation based on the privacy protected users’data. Both the theoretical analysis of the algorithm and experimental results demonstrate that the algorithm can not only protect users’privacy, but also generate recommendations with satisfactory accuracy to meet the needs of the recommender system.
引文
[1] Schafer J B, Konstan J A, Riedl J. Recommender Systems in E-Commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, Denver, United States, ACM Press, 1999, 158~166.
    [2] Schafer J B, Konstan J A, Riedl J. E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery, 2001, 5(1): 115~153.
    [3] Herlocker J. Understanding and Improving Automated Collaborative Filtering System. [Ph.D. Thesis], Minneapolis, Minnesota: University of Minnesota, 2000.
    [4] Rashid A M. Mining Influence in Recommender Systems. [Ph.D. Thesis], Minneapolis, Minnesota: University of Minnesota, 2007.
    [5] Rich E. User Modeling via Stereotypes. Cognitive Science, 1979, 3(4):329~354.
    [6] Powell M J D. Approximation Theory and Methods. England: Cambridge University Press, 1981.
    [7] Meadow C T, Bert R. Boyce B R, Kraft D H, et al. Text Information Retrieval Systems (3rd ed.). Orlando: Academic Press, Inc., 2007.
    [8] Armstrong J S. Principles of Forecasting - A Handbook for Researchers and Practitioners. New York: Kluwer Academic, 2001.
    [9] Murthi B P S, Sarkar S. The Role of the Management Sciences in Research on Personalization. Management Science, 2003, 49(10):1344~1362.
    [10] Hill W, Stead L, Rosenstein M, et al. Recommending and Evaluating Choices in a Virtual Community of Use. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI’95), Denver, Colorado, USA ACM Press, 1995, 194~201.
    [11] Resnick P, Iakovou N, Sushak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, United States, ACM Press, 1994, 175~186.
    [12] Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating‘Word of Mouth’. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI’95), Denver, Colorado, USA, ACM Press, 1995, 210~217.
    [13] Belkin N, Croft B W. Information Filtering and Information Retrieval: Two Sides of the Same Coin? Communications of the ACM, 1992, 35(12):29~38.
    [14] Singhal A. Modern Information Retrieval: A Brief Overview. IEEE Data Engineering Bulletin,2001, 24(4): 35~43.
    [15] Manning C D, Raghavan P, Schütze H. Introduction to Information Retrieval. England: Cambridge University Press, 2008.
    [16] Pirkola A, Hedlund T, Keskustalo H, et al. Dictionary-Based Cross-Language Information Retrieval: Problems, Methods, and Research Findings. Information Retrieval, 2001, 4(2-3): 209~230.
    [17] Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM, 1992, 35(12):61~70.
    [18] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734~749.
    [19] Berners-Lee T, Hall W, Hendler J A, et al. A Framework for Web Science. Foundations and Trends in Web Science, 2006, 1(1): 1~130.
    [20] Sobecki J. Web-based Recommendation Systems Technologies and Applications. New Generation Computing, 2008, 26(3):205~208.
    [21] Koren Y. Tutorial on Recent Progress in Collaborative Filtering. In: Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, ACM Press, 2008, 333~334.
    [22] Buckley C, Salton G, Allan J, et al. Automatic Query Expansion Using SMART:TREC3. In: Proceedings of the 3rd Conference on Text Retrieval (TREC3, Gaithersburg, MD), Harman DK, ed., NIST Press, 1994, 69~80.
    [23] Bohte S M, Langdon W B, Poutre H L. On Current Technology for Information Filtering and User Profiling in Agent-Based Systems, Part I:A Perspective. http://www.cwi.nl/projects/TA/reports/profiling.ps.2000.
    [24] Han J W,Kamber M. Data Mining: Concepts and Techniques (2nd ed.), Morgan Kaufmann Publishers, 2006 (中译本:范明,孟小峰.数据挖掘概念与技术.北京:机械工业出版社,2007).
    [25] Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. MA: Addison-Wesley, 2005.
    [26] Mooney R J, Roy L. Content-based Book Recommending Using Learning for Text Categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, Texas, USA, ACM Press, 2000, 195~204.
    [27] Carreira R, Crato J M, Goncalves D, et al. Evaluating Adaptive User Profiles for NewsClassification. In: Proceedings of the 9th International Conference on Intelligent User Interfaces (IUI’04), Funchal, Madeira, Portugal, ACM Press, 2004, 206~212.
    [28] Balabanovic M, Shoham Y. Fab: Content-Based, Collaborative Recommendation. Communications of ACM, 1997, 40(3):66~72.
    [29] Konstan J A, Miller B N, Maltz D, et al. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 1997, 40(3):77~87.
    [30] Basu C. Recommendation as Classification and Recommendation as Matching: Two Information-Centered Approaches to Recommendation. [Ph.D. Thesis], New Brunswick, NJ, USA: Rutgers University, 2002.
    [31] Terveen L, Hill W, Amento B, et al. PHOAKS: A System for Sharing Recommendations. Communications of the ACM, 1997, 40(3):59~62.
    [32] Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Journal of Information Retrieval, July 2001, 4(2): 133~151.
    [33] Nathanson T, Bitton E, Goldberg K. Eigentaste 5.0: Constant-time Adaptability in a Recommender System Using Item Clustering. In: Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, Minnesota, USA, ACM Press, 2007, 149~152.
    [34] Breese J S, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98), Madison, Wisconsin, USA, Morgan-Kaufmann Press, 1998, 43~52.
    [35] Yu K, Schwaighofer A, Tresp V, et al. Probabilistic Memory-Based Collaborative Filtering. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(1): 56~69.
    [36] Lemire D. Scale and Translation Invariant Collaborative Filtering Systems. Information Retrieval, 2005, 8(1): 129~150.
    [37] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms. In: Proceedings of the 10th International Conference on World Wide Web (WWW’01), Hong Kong, China, ACM Press, 2001, 285~295.
    [38] Wang J, Vries1 A P, Reinders M J T. Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity Fusion. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’06), Seattle, Washington, USA, ACM Press, 2006, 501~508.
    [39] Rashid A M, Lam S K, LaPitz A, et al. Towards a Scalable kNN CF Algorithm: Exploring Effective Applications of Clustering. In: Advances in Web Mining and Web Usage Analysis,LNCS 4811, Berlin Heideberg, Springer-Verlag, 2007, 147~166.
    [40] Song X D, Tseng B L, Ching-Yung Lin C Y, et al. Personalized Recommendation Driven by Information Flow. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’06), Seattle, Washington, USA. ACM Press. 2006, 509~516.
    [41] Jin R, Chai J Y, Si L. An Automatic Weighting Scheme for Collaborative Filtering. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’04), Sheffield, South Yorkshire, UK, ACM Press, 2004, 337~344.
    [42] Hofmann T. Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’03), Toronto, Canada, ACM Press, 2003, 259~266.
    [43] Marlin B. Modeling User Rating Profiles for Collaborative Filtering. In: Proceedings of 17th Annual Conference Neural Information Processing Systems (NIPS’03), Vancouver, British Columbia, Canada, MIT Press, 2003, 345~354.
    [44] Marlin B. Collaborative Filtering: A Machine Learning Perspective, [Ph.D. Thesis], Toronto: University of Toronto, 2004.
    [45] Pavlov D, Pennock D. A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains. In: Proceedings of 16th Annual Conference Neural Information Processing Systems (NIPS’02), Vancouver, British Columbia, Canada, MIT Press, 2002, 1441~1448.
    [46] Harper F M, Sen S, Frankowski D. Supporting Social Recommendations with Activity-Balanced Clustering. In: Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, Minnesota, USA, ACM Press, 2007, 165~168.
    [47] Wang J, Vries A P, Reinders M J T. A User-Item Relevance Model for Log-Based Collaborative Filtering. European Conference on Information Retrieval (ECIR’06), London, UK, Springer-Verlag, 2006, 37~48.
    [48] Hofmann T. Latent Semantic Models for Collaborative Filtering. ACM Transactions on Information Systems, 2004, 22(1):89~115.
    [49] Karypis G. Evaluation of Item-Based Top-n Recommendation Algorithms. In: Proeedings of the 10th International Conference on Information and Knowledge Management (CIKM’01),Atlanta, Georgia, USA, ACM Press, 2001, 247~254.
    [50] Herlocker J L, Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’99), Berkeley, California, USA, ACM Press, 1999, 230~237.
    [51]曾春,邢春晓.个性化服务技术综述.软件学报, 2002, 13(10):1952~1961.
    [52]孙小华.协同过滤系统的稀疏性与冷启动问题研究.杭州:浙江大学博士论文,2005.
    [53]余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析.系统工程理论与实践, 2004 (8):96~101.
    [54] Huang Z, Chen H, and Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. ACM Transactions on Information Systems, 2004, 22(1):116~142.
    [55] Li S, Zhou C, Chen H. Research on Content-Based Text Retrieval and Collaborative Filtering in Hybrid Peer-to-Peer Networks.In: Proceedings of the 8th International Conference on Computer Supported Cooperative Work in Design (CSCWD’04), Xiamen, China, Springer-Verlag, 2005, 417~426.
    [56] Shih Y Y, Liu D R. Hybrid Recommendation Approaches: Collaborative Filtering via Valuable Content Information. In: Proceedings of the 38th Hawaii International Conference on System Sciences. Big Island, HI, USA, IEEE Computer Society Press, 2005, 1~7.
    [57] Schein A I, Popescul A, Ungar L H, et al. Methods and Metrics for Cold-Start Recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’02), Tampere, Finland, ACM Press, 2002, 253~260.
    [58] Soboroff I, Nicholas C. Combining Content and Collaboration in Text Filtering. In: International Joint Conference on Artificial Intelligence Workshop: Machine Learning for Information Filtering, Stockholm, Sweden, Morgan-Kaufmann Publishers Inc., 1999.
    [59] Burke R. Hybrid Web Recommender Systems. The Adaptive Web, LNCS 4321, Berlin Heideberg, Springer-Verlag, 2007, 377~408.
    [60] Ilic M, Leite J, Slota M. Explicit Dynamic User Profiles for a Collaborative Filtering Recommender System. In: Advances in Artificial Intelligence - IBERAMIA 2008, 11th Ibero-American Conference on AI, Lisbon, Portugal, Springer-Verlag, 2008, 352~361.
    [61] Billsus D, Pazzani M. User Modeling for Adaptive News Access. User Modeling andUser-Adapted Interaction, 2000, 10(2-3):147~180.
    [62] Tran T, Cohen R. Hybrid Recommender Systems for Electronic Commerce. In: Proc. Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical Report WS-00-04, Austin, TX, USA, AAAI Press, 2000.
    [63] Basilico J, Hofmann T. A Joint Framework for Collaborative and Content Filtering. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’04), Sheffield, South Yorkshire, UK, ACM Press, 2004, 550~551.
    [64] Melville P, Mooney R J, Nagarajan R. Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI’02), Edmonton, Alberta, Canada, AAAI Press, 2002, 187~192.
    [65] Hofmann T. Probabilistic Latent Semantic Analysis. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI’99), Stockholm, Sweden, Morgan-Kaufmann Press, 1999, 289~296.
    [66] Popescul A, Ungar L H, Pennock D M, et al. Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence 2001 (UAI’01), Seattle, Washington, USA, Morgan-Kaufmann Press, 2001, 437~444.
    [67] Huang Z, Zeng D D, Chen H. A Unified Recommendation Framework Based on Probabilistic Relational Models. In: Fourteenth Annual Workshop on Information Technologies and Systems (WITS’04), Washington, DC, USA, 2004.
    [68] Ansari A, Essegaier S, Kohli R. Internet Recommendation Systems. Journal of Marketing Research, August 2000, 37(3): 363~375.
    [69] Hirayama J I, Nakatomi M, Takenouchi T, et al. Bayesian Collaborative Predictors for General User Modeling Tasks. In: Proceedings of the 14th International Conference on Neural Information Processing (ICONIP’07), Kitakyushu, Japan, Springer-Verlag, 2007, 742~751.
    [70] Basilico J, Hofmann T. Unifying Collaborative and Content-Based Filtering. In: Proceedings of the 21st International Conference on Machine Learning (ICML’04), Banff, Canada, ACM Press, 2004.
    [71] Burke R. Knowledge-Based Recommender Systems. Encyclopedia of Library and Information Systems, J. E. Daily, A. Kent, and H. Lancour, editors, vol. 69, Supplement 32, Marcel Dekker, 2000.
    [72] Schickel-Zuber V, Faltings B. Using Hierarchical Clustering for Learning the Ontologies Used in Recommendation Systems. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA, ACM Press, 2007, 599~608.
    [73] Middleton S E, Shadbolt N R, Roure D C. Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems (TOIS), 2004, 22(1):54~88.
    [74] Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems, 2004, 22(1):5~53.
    [75]王宏宇.商务推荐系统的设计研究.合肥:中国科学技术大学博士论文, 2007.
    [76] Miller B N, Albert I, Lam S K, et al. MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System. In: Proceedings of the 8th International Conference on Intelligent User Interfaces (IUI’03), Miami, Florida, USA, ACM Press, 2003, 263~266.
    [77] Cleverdon C, Kean M. Factors Determining the Performance of Indexing Systems. Aslib Cranfield Research Project, Cranfield, England. 1968.
    [78] Sarwar B M, Karypis G, Konstan J A, et al. Analysis of Recommendation Algorithms for E-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce (EC’00). New York, USA, ACM Press, 2000, 285~295.
    [79] Sarwar B M, Karypis G, Konstan J A, et al. Application of Dimensionality Reduction in Recommender System–A Case Study. In: Proceedings of the ACM WebKDD 2000 Worskhop on Web Mining for E-Commerce, Boston, MA, USA, ACM Press, 2000.
    [80]邓汉成,王瑛,王敏芳.从检索实例看查全率与查准率之间的关系.情报学报, 2000, 19(3):237~241,.
    [81]邓汉成,王敏芳,王瑛.查全率与查准率之间关系的理论研究.情报学报, 2000, 19(4):359~362.
    [82]马景娣.查全率-查准率间存在顺变关系的数学证明.情报学报, 2003, 21(1):27~29.
    [83]王敏芳,邓汉成.查全率与命中记录集合之间的关系研究.情报学报, 2005, 24(5):35~39.
    [84]张保明.查全率-查准率互逆相关性的数学解释.情报科学, 1982 (2):12~15.
    [85] Davis J, Goadrich M. The Relationship between Precision-Recall and ROC Curves. In: Proceedings of the 23rd International Conference on Machine Learning (ICML’06), Pittsburgh, Pennsylvania, ACM Press, 2006, 233~240.
    [86] Marques de sa JP. Pattern Recognition Concepts, Methods and Application. Berlin Heideberg, Springer-Verlag, 2002.
    [87] Bishop C M. Pattern Recognition and Machine Learning, Springer-Verlag, 2006.
    [88] Sarwar B M, Konstan J A, Borchers A, et al. Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: Proceedings of the 1998 ACM conference on Computer Supported Cooperative Work, Seattle, Washington, USA, ACM Press, 1998, 345~354.
    [89] Balabanovic M. An Adaptive Web Page Recommendation Service. In: Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, CA, ACM Press. 1997, 378~385.
    [90] Heckerman D, Chickering D M, Meek C, et al. Dependency Networks for Inference, Collaborative Filtering, and Data Visualization. Journal of Machine Learning Research, 2000, 1:49~75.
    [91] Yao Y Y. Measuring Retrieval Effectiveness Based on User Preference of Documents. Journal of the American Society for Information Science, 1995, 46(2):133~145.
    [92] Kumar R, Raghavan P, Rajagopalan S, et al. Recommendation Systems: A Probabilistic Analysis. Journal of Computer and System Sciences, 2001, 63(1): 42~61.
    [93] Wang J, Robertson S, Vries A P, et al. Probabilistic Relevance Ranking for Collaborative Filtering. Information Retrieval, 2008, 11(6): 477~497.
    [94] Jin R, Si L. A Bayesian Approach toward Active Learning for Collaborative Filtering. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI’04), Banff, Canada, Morgan-Kaufmann Press, 2004, 278~285.
    [95] Jin R, Si L, Zhai C. A Study of Mixture Models for Collaborative Filtering. Journal of Information Retrieval, 2006, 9(3):357~382.
    [96] Sulliva D O, Smyth B, Wilson D C, et al. Improving the Quality of the Personalized Electronic Program Guide. User Modeling and User-Adapted Interaction, 2004, 14:5~36.
    [97] Lin W Y, Alvarez S A, Ruiz C. Efficient Adaptive-Support Association Rule Mining for Recommender Systems. Data Mining and Knowledge Discovery, 2002, 6(2):83~105.
    [98] Leung C W, Chan S C, Chung F. A Collaborative Filtering Framework Based on Fuzzy Association Rules and Multiple-Level Similarity. Knowledge and Information systems, 2006, 9(4):492~511.
    [99] Si L and Jin R. Flexible Mixture Model for Collaborative Filtering. In: Proceedings of the 20th International Conference on Machine Learning (ICML’03), Washington, DC, USA, AAAI Press, 2003, 704~711.
    [100] Zhou D, Zhu S H, Yu K, et al. Learning Multiple Graphs for Document Recommendations. In: Proceeding of the 17th International Conference on World Wide Web (WWW’08), Beijing, China, ACM Press, 2008, 141~150.
    [101] Demir G N, Uyar A S, ?güdücüS G. Graph-Based Sequence Clustering Through Multiobjective Evolutionary Algorithms for Web Recommender Systems. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, England, ACM Press, 2007, 1943~1950.
    [102] Vozalis M G, Margaritis K G.. Applying SVD on Generalized Item-based Filtering. International Journal of Computer Science & Applications, 2003, 3(3):27~51.
    [103] Vozalis M G, Margaritis K G. Using SVD and Demographic Data for the Enhancement of Generalized Collaborative Filtering. Information Sciences, 2007, 177(15): 3017~3037.
    [104] Hubert L J, Meulman J J, Heiser W J. Two Purposes for Matrix Factorization: A Historical Appraisal. SIAM Review, 2000, 42(1):68~82.
    [105] Duda R O, Hart P E, Stork D G. Pattern Classification (2nd edition). New York: John Wiley & Sons, 2001.
    [106] Lee D D, Seung H S. Learning the Parts of Objects with Non-Negative Matrix Factorization. Nature, 1999, 401:788~791.
    [107] Liu W, Zheng N. Non-Negative Matrix Factorization Based Methods for Object Recognition. Pattern Recognition Letters, 2004, 25:893~897.
    [108]刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用.科学通报. 2006, 51(3):241~250.
    [109] Ramanath R, Kuehni R G, Snyder W E, et al. Spectral Spaces and Color Spaces. Color Research and Application, 2004, 29(1):29~37.
    [110] Kawamoto T, Hotta K, Mishima T, et al. Estimation of Single Tones from Chord Sounds Using Non-Negative Matrix Factorization. Neural Network World, 2000, 10(3):429~436.
    [111] Xu W, Liu X, Gong Y. Document-Clustering Based on Non-Negative Matrix Factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’03), Toronto, CA, ACM Press, 2003, 267~273.
    [112] Shahnaz F, Berry M W, Pauca V P, et al. Document Clustering Using Non-Negative Matrix Factorization. Information Processing and Management, 2006, 42(2):373~386.
    [113] Novak M, Mammone R. Improvement of Non-Negative Matrix Factorization Based Language Model Using Exponential Models. In: IEEE Workshop on Automatic Speech Recognition andUnderstanding, Madonna di Campiglio Trento, Italy, IEEE Computer Society Press, 2001, 190~193.
    [114] Brunet J P, Tamayo P, Golub T R, et al. Metagenes and Molecular Pattern Discovery Using Matrix Factorization. Proceedings of the National Academy of Sciences (PNAS), 2004, 101(12): 4164~4169.
    [115] Liu W X, Yuan K H, Ye D T. On Alpha-Divergence Based Nonnegative Matrix Factorization for Clustering Cancer Gene Expression Data. Artificial Intelligence in Medicine, 2008, 44(1):1~5.
    [116] Paatero P, Tapper U. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 1994, 5: 111~126.
    [117] Lee D D, Seung H S. Algorithms for Non-Negative Matrix Factorization. In: Leen T, Dietterich T, Tresp V, eds. Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press, 2000.
    [118] Hoyer P O. Non-Negative Matrix Factorization with Sparseness Constraints. Journal of Machine learning research, 2004, 5:1457~1469.
    [119] Vozalis E G, Margaritis K G. Recommender Systems: An Experimental Comparison of Two Filtering Algorithms. In: PCI2003 (EPY9), Thessaloniki, Greece, 2003.
    [120] Kim B M, Li Q, Kim J W, et al. A New Collaborative Recommender System Addressing Three Problems. In: Proceeding of the 8th Pacific Rim International Conference on Artificial Intelligence, Auckland, New Zealand, 2004, 495~504.
    [121] Truong K Q, Ishikawa F, Honiden S. Improving Accuracy of Recommender System by Item Clustering. IEICE Transactions on Information and Systems, 2007, E90-D(9):1363~1373.
    [122] Kim C, Kim J. A Recommendation Algorithm Using Multi-Level Association Rules. In: Proceeding of the IEEE/WIC International Conference on Web Intelligence, Halifax, Canada, IEEE Computer Society Press, 2003, 524~527.
    [123] MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, USA, University of California Press, 1967, 281~297.
    [124] Lloyd S P. Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 1982, 28:128~137. (original version: Technical Report, Bell Labs, 1957)
    [125] George T, Merugu S. A Scalable Collaborative Filtering Framework Based on Co-Clustering. In: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). Houston, Texas, USA, IEEE Computer Society Press, 2005, 625~628.
    [126] Kim K, Ahn H. A Recommender System using GA K-Means Clustering in an Online Shopping Market. Expert Systems with Applications, 2008, 34(4): 1200~1209.
    [127] Anglade A, Tiemann M, Vignoli F. Complex-Network Theoretic Clustering for Identifying Groups of Similar Listeners in P2P Systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems. Minneapolis, Minnesota, USA, ACM Press, 2007, 41~48.
    [128] Cranor L F, Reagle J, Ackerman M S. Beyond Concern: Understanding Net Users’Attitudes about Online Privacy. Technical Report, AT&T Labs-Research, 1999.
    [129] Agrawal R. Data mining: Crossing the Chasm. In: 5th International Conference on Knowledge Discovery in Databases and Data Mining, San Diego, California, 1999, Http://www.almaden.ibm.com/cs/quest/papers/kdd99_chasm.ppt.
    [130] Verykios V S, Bertino E, Fovino I N, et al. State-of-the-art in Privacy Preserving Data Mining. ACM SIGMOD Record, 2004, 33(1).
    [131] Aggarwal C C, Yu P S. Privacy-Preserving Data Mining: Models and Algorithms. New York: Springer US, 2008.
    [132] Polat H, Du W. SVD-Based Collaborative Filtering with Privacy. In: 2005 ACM Symposium on Applied Computing, New York, USA, ACM Press, 2005, 791~795.
    [133] Canny J. Collaborative Filtering with Privacy. In: IEEE Symposium on Security and Privacy, Oakland, CA: IEEE Computer Society Press, 2002, 45~57.
    [134] Berkovsky S, Eytani Y, Kuflik T, et al. Enhancing Privacy and Preserving Accuracy of a Distributed Collaborative Filtering. In: Proceedings of the 2007 ACM Conference on Recommender Systems. Minneapolis, Minnesota, USA, ACM Press, 2007, 9~16.
    [135] Xiao X K, Tao Y F. Personalized Privacy Preservation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’06), Chicago, Illinois, USA, ACM Press, 2006, 229~240.
    [136]臧铖.个性化搜索中隐私保护的关键问题研究.杭州:浙江大学博士学位论文, 2008.
    [137] Polat H, Du W. Privacy-Preserving Collaborative Filtering Using Randomized Perturbation Techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida, USA, IEEE Computer Society Press, 2003, 625~628.
    [138]张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究.计算机学报, 2006, 29(8):1487~1495.
    [139] Agrawal R, Srikant R. Privacy-Preserving Data Mining. In: Proceedings of the 2000 ACM SIGMOD on Management of Data, New York, USA, ACM Press, 2000, 439~450.
    [140] Evfimievski A, Srikant R, Agrawal R, et al. Privacy Preserving Mining of Association Rules. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, ACM Press, 2002, 217~228.
    [141] Evfimievski A, Srikant R, Agrawal R, et al. Privacy Preserving Mining of Association Rules. Information Systems, 2004, 29: 343~364.
    [142]贾俊平.统计学.北京:清华大学出版社, 2004.
    [143]耿修林,谢兆茹.应用统计学.北京:科学出版社, 2004.
    [144] Agrawal D, Aggarwal C C. On the Design and Quantification of Privacy Preserving Data Mining Algorithms. In: Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database System, Santa Barbara, CA, USA, ACM Press, 2001, 247~255.
    [145] Ziegler C N, McNee S M, Konstan J A, et al. Improving Recommendation Lists Through Topic Diversification. In: Proceedings of the 14th International Conference on World Wide Web (WWW’05), Chiba, Japan, ACM Press, 2005, 22~32.
    [146] Weng L T, Xu Y, Li Y F, et al. Improving Recommendation Novelty Based on Topic Taxonomy. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Workshops on Intelligent Agent Technology (WI-IATW’07), Silicon Valley, USA, IEEE Computer Society Press, 2007, 115~118.
    [147] Radlinski F, Dumais S. Improving Personalized Web Search Using Result Diversification. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’06). Seattle, Washington, USA, ACM Press, 2006, 691~692.
    [148] Fleder M D, Hosanagar K. Recommender Systems and Their Impact on Sales Diversity. In: Proceedings of the 8th ACM Conference on Electronic Commerce, San Diego, California, USA, ACM Press, 2007, 192~199.
    [149] Wang J, Pouwelse J, Fokker J, et al. Personalization of a Peer-to-Peer Television System. Multimedia Tools and Applications, 2008, 36(1-2): 89~113.
    [150] Miller B N, Joseph A. Konstan J A, et al. Pocketlens: Toward a Personal Recommender System. ACM Transactions on Information Systems, 2004, 22(3): 437~476.
    [151] Wang J, Pouwelse J, Lagendijk R L, Reinders M J T. Distributed Collaborative Filtering for Peer-to-Peer File Sharing Systems. In: Proceedings of the 21st Annual ACM Symposium on Applied Computing (SAC’06), Dijon, France, ACM Press, April 2006, 1026~1030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700