用户名: 密码: 验证码:
智能交通系统中的车对车宽带无线信道建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活节奏的不断加快和路面运行车辆的爆发式增长,公路交通拥堵和公路、铁路交通事故频发成为困扰整个社会的难题。智能交通系统中的车载互联网能够将公路交通中的汽车和高速铁路中的列车分别连接起来,使每辆车维持一个一定范围内的车辆运动状态数据库,以预防碰撞事故发生。同时,车载互联网还能有效调度公路车辆运行,为车辆提供合理且最优的运行路线,以缓解部分地区的拥堵局面。可以说,车载互联网为现代交通运输智能化管理提供了解决方案,而这一切有赖于一个切实有效的车载无线通信系统。众所周知,无线信道建模工作是无线系统设计的重中之重。因此,我们必须广泛而深入地开展车对车无线信道建模工作。
     本文整体研究思路是将车对车通信细分为汽车对汽车通信和高速铁路列车对列车通信两个分支。首先结合车对车通信所独具的高速移动、高多普勒频移和低天线高度等特点,建立了车对车宽带无线信道建模理论和方法。研究了大尺度路径损耗和阴影衰落,小尺度均方根时延扩展、多径延迟线模型、多径莱斯K因子和多径包络相关性等宽带无线信道建模指标。改进了无线信道冲激响应表达式,以突显车对车通信中的多径生灭特性。提出了适于车对车无线信道建模的统计概率分布,以反映多径包络的小尺度快速时变特性。同时,阐释了改进的非几何统计和二维几何统计两种建模方法在车对车无线信道建模中的深刻内涵和内在联系。通过为模型中的发射机、接收机、静态散射体和漫散射体赋予高度维度,本文首次将基于计算机仿真的汽车对汽车非几何统计性建模方法从二维空间拓展至三维空间。
     其次,在汽车对汽车无线信道建模方面,本文以无线电波传播环境为驱动,划分了汽车对汽车无线传播场景,建立了汽车对汽车无线传播场景四级架构。以此为基础,遴选车辆视距传播、车辆部分视距传播(斜坡和立交桥)、车辆非视距传播和车辆停车场环境等四大典型汽车对汽车无线通信传播环境,采用改进的非几何统计性建模方法,首次在这些场景中从大尺度路径损耗,小尺度均方根时延扩展、多径延迟线模型、多径莱斯K因子、多径相关性和多径生灭性等宽带无线信道建模指标出发,提出对应的宽带无线信道模型,以探求视距出现程度对汽车对汽车无线信道特征的影响。同时,搭建部分视距场景中斜坡和立交桥环境无线传播信道仿真平台以验证实测信道模型的准确性。首次将绕射损耗计算引入汽车对汽车几何统计仿真平台中,从高度维度入手建立由桥体和坡体遮挡引起的阴影衰落损耗模型,从而扩大了非几何统计性建模方法的可用范围。
     最后,对于高速列车对列车无线信道建模,本文划分了高速铁路列车对列车无线传播场景。为解决同轨列车在间隔10Km情况下的直接通信问题,搭建了基于邻轨列车中继多跳协作的高速铁路列车对列车物理层无线通信模型,推导了该无线通信模型的误码率和中断概率解析表达式。发现了高速铁路城区高架桥周边分布散射体的二元属性,阐释了城区高架桥场景波导效应成因,并由此出发采用三维几何统计性建模方法,搭建了城区高架桥场景下列车对列车宽带无线信道仿真平台。研究了高速列车对列车无线信道大尺度路径损耗,小尺度均方根时延扩展、莱斯K因子、多径延迟线模型等宽带无线信道特征。
With the accelerating pace of life and increasing number of vechicles on the roads and tracks, congestion on the road and traffic accidents frequently occurring urgingly need solving. Internet of vehicles in the intelligent transportation systems connect the vehicles on the roads and tracks, respectively, and thus makes each vehicle maintain a database of vehcle-movement state in certain communication range. The vehicle can immediately compute the distance between each other to avoid accidents. Also, internet of vehicles can contribute to selection of optimal route to alleviate the congestion on the road. Thus, internet of vehicles provides solution to modern intelligent transportation systems, which is basically based on the effective and reliable vehicular wireless communication system. As known to us, wireless channel modeling is crutial to design of wireless communication system. So it is indispensable for us to deeply and thoroughly study the vehicular radio channel characterization.
     The overall structure of this paper is that we divide the vehicle-to-vehicle communication into two parts, i.e. car-to-car communication and train-to-train communication. Considering characterizatics of vehicle-to-vehicle communication including high-speed, high Doppler frequency shift, and low antenna-height, this paper presents channel modeling theory and approach for vehicle-to-vehicle communication, studys large-scale path loss and shadow loss, and small-scale root-mean square-delay spread, tapped-dealy line model, Ricean K factor and multipath envelope correlation. In order to highlight the multipath birth-and-death in the vehicle-to-vehicle channel modeling, we improve the equation of the channel impulse response. We propose relevant probability distributions for the vehicle-to-vehicle channel modeling. We also demonstrate the similarity and difference of modified non-geometrical stochastic and two-dimension geometry-based stochastic channel modeling approaches in the vehicle-to-vehicle channel modeling.By adding height to the transmitter, receiver, static scatterers and diffuse scatterers, we first extend the two-dimension model to thee-dimenstion space.
     Secondly, motivated by the radio propagation environment, we construct four-level channel architecture for the car-to-car channel modeling. Car line-of-sight propagation, car non-of-sight propagation, car partial non-of-sight propagation (slope and overpass) and car parking-garage environment are seleted for car-to-car wideband channel modeling to explore the influence of extent of the occurring of line-of-sight to the channel characterization. We also use the geometry-based stochastic modeling approach to build simulation platform of slope and overpass scenario. In this platform, from the height dimension, we first consider diffraction in the geometry-based stochastic channel modeling approach.
     Finnaly, this paper builds the four-level channel architecture for the high-speed train-to-train channel modeling. In order to solve the problem of communication between trains on the same track10km apart, we develop a train-to-train communication model in physical layer using relay of mobile train on the neighboring track for cooperative communication, and deduce the analytical expression of bit-error rate and interrupt probability. We point out that the binary characterization of scatterers around tracks of the high-speed railway in the urban overpass scenario, and illustrate the waveguide effect of radio propagation in this area. Based on this finding, we study the train-to-train wireless wideband channel characterization using geometry-based stochastic channel modeling approach in the aspect of path loss, root-mean square delay spread, tapped-delay line model and Ricean K factor.
引文
[I]DAVIS J S, LINNARTZ J P. Vehicle-to-vehicle RF propagation measurements[C].//proceedings of the Conference Record of the 28 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Octobor 31-November 2,1994.vol.1, pp.470-474.
    [2]TURKKA J, RENFORS M. Path loss measurements for a non-line-of-sight mobile-to-mobile environment[C].//proceedings of the 8th International Conference on ITS Telecommunications, Phuket, Octobor 24,2008. pp.274-278.
    [3]ACOSTA G, TOKUDA K, INGRAM M A. Measured joint doppler-delay power profiles for vehicle-to-vehicle communications at 2.4 GHz[C].//proceedings of the IEEE Global Telecommunications Conference, Dallas, November 29-December 3,2004. vol.6, pp.3813-3817.
    [4]ACOSTA G, INGRAM M A. Model development for the wideband expressway vehicle-to-vehicle 2.4 GHz channel[C].//proceedings of the IEEE Wireless Communications and Networking Conference, Las Vegas, April 3-6,2006.vol.3, pp.1283-1288.
    [5]ANDRISANO O, CHIANI M, FRULLONE M, Moss C, Tralli V. Propagation effects and countermeasures analysis in vehicle-to-vehicle communication at millimeter waves[C].// proceedings of the IEEE 42nd Vehicular Technology Conference, Denver, May 10-13,1992. vol.1, pp.312-316.
    [6]SCHAFE W. A new deterministic/stochastic approach to model the intervehicle channel at 60 GHz[C].//proceedings of the IEEE 43 rd Vehicular Technology Conference, Secaucus, May 18-20, 1993. pp.112-115.
    [7]PROAKIS J, Digital Communications[M].5th ed. Me Graw Hill,2007.
    [8]MAURER J, FUGEN T, WIESBECK W. Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz[C].//proceedings of the IEEE 55th Vehicular Technology Conference, Birmingham, May 6-9,2002.vol.3, pp.1274-1278.
    [9]MATOLAK D W, SEN I, XIONG W, Yaskoff N T.5 GHZ wireless channel characterization for vehicle to vehicle communications[C].//proceedings of the IEEE Military Communications Conference, Atlantic City,2005.vol.5. pp.3016-3022.
    [10]MATOLAK D W. Channel modeling for vehicle-to-vehicle communications [J]. IEEE Communications Magazine,2008,46(5):76-83.
    [11]WU Q, MATOLAK D W, SEN I.5-GHz-band vehicle-to-vehicle channels:models for multiple values of channel bandwidth[J]. IEEE Transactions on Vehicular Technology,2010,59(5):2620-2625.
    [12]MATOLAK D W, SEN I. Vehicle-vehicle channel models for the 5-GHz band[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(2):235-245.
    [13]MATOLAK D W, SEN I, XIONG W. Channel modeling for V2V communications[C].// proceeding of the 3rd Annual International Conference on Mobile and Ubiquitous Systems, San Jose, July,2006, pp.1-7.
    [14]ACOSTA M, INGRAM M A. Six time-and frequency-selective empirical channel models for vehicular wireless LANs[J]. IEEE Vehicular Technology Magazine,2007,2(4):4-11.
    [15]TAN I, TANG W, LABERTEAUX K, et al. Measurement and analysis of wireless channel impairments in DSRC vehicular communications[C].//proceedings of the IEEE International Conference on Communications, Beijing, May 19-23,2008. pp.4882-4888.
    [16]KAREDAL J, CZINK C, PAIER A, et al. "Path loss modeling for vehicle-to-vehicle communications[J]. IEEE Transactions on Vehicular Technology,2011,60(1):323-328.
    [17]KUNISCH J, PAMP J. Wideband car-to-car radio channel measurements and model at 5.9 GHz[C].//proceedings of the IEEE 68th Vehicular Technology Conference, Calgary, September 21-24,2008. pp.1-5.
    [18]CHENG L, HENTY B E, STANCIL D D, et al. Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band[J]. IEEE Journal on Selected Areas in Communications,2007,25(8):1501-1516.
    [19]CHENG L, HENTY B E, BAI F, et al. Highway and rural propagation channel modeling for vehicle-to-vehicle communications at 5.9 GHz[C].//proceedings of the IEEE International Symposium Antennas and Propagation, San Diego, July 5-11,2008[C]. pp.1-4.
    [20]CHENG L, HENTY B E, STANCIL D D, et al. Properties and applications of the suburban vehicle-to-vehicle propagation channel at 5.9 GHz[C].//proceedings of the IEEE International Conference on Electromagnetics in Advanced Applications, Torino, September 17-21,2007[C]. pp.121-124.
    [21]CHENG L, HENTY B E, COOPER R, et al. Multi-path propagation measurements for vehicular networks at 5.9 GH[C].//proceedings of the IEEE Wireless Communications and Networking Conference, Las Vegas, March 31-April 3,2008. pp.1239-1244.
    [22]CHENG L, HENTY B E, STANCIL D D, et al.Doppler component analysis of the suburban vehicle-to-vehicle DSRC propagation channel at 5.9 GHz[C].//proceedings of the IEEE Radio and Wireless Symposium, Orlando, January 22-24,2008.pp.343-346.
    [23]CHENG L, HENTY B E, BAI F, et al. Doppler spread and coherence time of rural and highway vehicle-to-vehicle channels at 5.9 GHz[C].//proceedings of the IEEE Global Telecommunications Conference, New Orleans, November 30-December 4,2008. pp.1-6.
    [24]CHENG L, SARAF A. Simulating Doppler components in the vehicle-to-vehicle communication channel [C].//proceedings of the IEEE conference on Radio and wireless symposium, New Orleans, January 10-14,2010. pp.637-640.
    [25]MEIRELES R, BOBAN M, STEENKISTE P, et al. Experimental study on the impact of vehicular obstructions in VANETs[C].//proceedings of the Vehicular Networking Conference, Jersey City, December 13-15,2010. pp.338-345.
    [26]BOBAN M, VINHOZA T T V, FERREIRA, et al. Impact of vehicles as obstacles in vehicular ad hoc networks[J]. IEEE Journal on Selected Areas in Communications,2011,29(1):15-28.
    [27]ABBAS T, TUFVESSON F, SJOBERG K, et al. Measurement based shadow fading model for vehicle-to-vehicle network simulations[J]. arXiv preprint arXiv:1203.3370,2012.
    [28]ABBAS T, TUFVESSON F. Line-of-sight obstruction analysis for vehicle-to-vehicle network simulations in a two-lane highway scenario[J]. International Journal of Antennas and Propagation, 2013,2013:1-6.
    [29]MANGEL T, KLEMP O, HARTENSTEIN H.5.9 GHz inter-vehicle communication at intersections:a validated non-line-of-sight path-loss and fading model[J]. EURASIP Journal on Wireless Communications and Networking,2011,2011(1):1-11.
    [30]LIU P Y, AI B, MATOLAK D W. Ricean K factor and correlation property of vehicular channels in safety scenarios[J], IEEE Antennas and Wireless Propagation Letters,2014.
    [31]SCHACK M, NUCKELT J, GEISE R, et al. Comparison of path loss measurements and predictions at urban crossroads for C2C communications[C].//proceedings of the IEEE 5th European Conference on Antennas and Propagation, Rome, April 11-15,2011. pp.2896-2900.
    [32]PAIER A, KAREDAL J, CZINK N, et al. First results from car-to-car and car-to-infrastructure radio channel measurements at 5.2 GHz[C].//proceedings of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, September 3-7, 2007. pp.1-5.
    [33]BERNADO L, ZEMEN T, TUFVESSON F, et al. Time-, Frequency-, and Space-varying K-Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios[J]. arXiv preprint arXiv:1306.3914,2013.
    [34]PAIER A, KAREDAL J, CZINK N, et al. Car-to-car radio channel measurements at 5 GHz: pathloss, power-delay profile, and delay-Doppler spectrum[C].//proceedings of the 4th IEEE International Symposium on Wireless Communication Systems, Trondheim, Octobor 17-19, 2007. pp.224-228.
    [35]PASCHALIDIS P, WISOTZKI M, KORTKE A, et al. A wideband channel sounder for car-to-car radio channel measurements at 5.7 GHz and results for an urban scenario[C];//proceedings of the IEEE 68th Vehicular Technology Conference, Calgary, September 21-24,2008. pp.1-5.
    [36]PASCHALIDIS P, MAHLER K, KORTKE A, et al. Path loss and multipath power decay of the wideband car-to-car channel at 5.7 GHz[C].//proceedings of the IEEE 73rd Vehicular Technology Conference, Yokohama, May 15-18,2011. pp.1-5.
    [37]RENAUDIN O, KOLMONEN V, VAINIKAINEN P, et al. Wideband MIMO car-to-car radio channel measurements at 5.3 GHz[C].//proceedings of the IEEE 68th Vehicular Technology Conference, Calgary, September 21-24,2008.pp.1-5.
    [38]RENAUDIN O, KOLMONEN V, VAINIKAIEN P, et al. Car-to-car channel models based on wideband MIMO measurements at 5.3 GHz[C].//proceedings of IEEE 3rd European Conference on Antennas and Propagation, Berlin, March 23-27,2009. pp.635-639.
    [39]RENAUDIN O, KOLMONEN V, VAINIKAIEN P, et al. Non-stationary narrowband MIMO inter-vehicle channel characterization in the 5-GHz band[J]. IEEE Transactions on Vehicular Technology,2010,59(4):2007-2015.
    [40]KADREDAL J, TUFVESSON F, ABBAS T, et al. Radio channel measurements at street intersections for vehicle-to-vehicle safety applications:VTC 2010:IEEE 71st Vehicular Technology Conference, Taipei, May 16-19,2010[C].pp.l-5.
    [41]PASCHALIDIS P, MAAHLER K, KORTKE A, et al.2 X 2 MIMO Measurements of the Wideband Car-to-Car Channel at 5.7 GHz on Urban Street Intersections[C].//proceedings of the IEEE Vehicular Technology Conference, San Francisco, September 5-8,2011.pp.1-5.
    [42]BERNADO L, ROMA A, PAIER A, et al. In-tunnel vehicular radio channel characterization[C].// proceedings of the IEEE 73rd Vehicular Technology Conference, Yokohama, May 15-18, 2011.pp.1-5.
    [43]ABBAS T, BERNADO L, THIEL A, et al. Measurements based channel characterization for vehicle-to-vehicle communications at merging lanes on highway [C].//proceedings of the IEEE 5th International Symposium on Wireless Vehicular Communications, Dresden, June 2-3,2013. pp.1-5.
    [45]SUN R Y, MATOLAK D W, LIU P Y, Parking garage channel characteristics at 5 GHz for V2V applications[C].//proceedings of the IEEE 79th Vehicular Technology Conference, Las Vegas, September 1-5,2013. pp.1-5.
    [46]SOMMER C, ECKHOFF D, DRESSLER F. IVC in Cities:Signal attenuation by Buildings and how parked cars can improve the situation[J]. IEEE Transactions on mobile computing, vol. TBD, no. TBD, pp. TBD,2014.
    [47]LIU P Y, AI B, MATOLAK D W, et al. Path loss modeling for example 5 GHz overpass channels[C].//proceedings of the IEEE 79th Vehicular Technology Conference, Seoul, May 17-21,2014. pp.1-5.
    [48]LIU P Y, AI B, MATOLAK D W.5 GHz vehicle-to-vehicle channel characterization for example overpass channels[J]. IEEE Transactions on Vehicular Technology,2014. (在审)
    [49]LIU P Y, MATOLAK D W, AI B, et al. Path loss modeling for vehicle-to-vehicle communication on a slope[J]. IEEE Transactions on Vehicular Technology, vol. TBD, no. TBD, pp. TBD,2014.
    [50]LIU P Y, AI B, MATOLAK D W. A vehicle-to-vehicle geometry-based stochastic model for sloped terrain[J]. IEEE Transactions on Vehicular Technology,2014. (在审)
    [51]WANG L C, LIU W C, CHENG Y H. Statistical analysis of a mobile-to-mobile Rician fading channel model[J]. IEEE Transactions on Vehicular Technology,2009,58(1):32-38.
    [52]CHENG X, WANG C X, LAURENSON D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE Transactions on Wireless Communications,2009,8(9):4824-4835.
    [53]ZAJIC A G, STUBER G L. Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels[J]. IEEE Transactions on Wireless Communications,2009,8(3): 1260-1275.
    [54]PATZOLD M, HOGSTAD B O, YOUSSEF N. Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels[J]. IEEE Transactions on Wireless Communications,2008, 7(2):510-520.
    [55]CHENG X, YAO Q, WEN M, et al. Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems[J]. IEEE Journal on Selected Areas in Communications,2013,31(9):434-448.
    [56]CHENG X, WANG C X, AI B, et al. Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle ricean fading channels[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(1):62-72.
    [57]CHENG X, YAO Q, WANG C X, et al. An improved parameter computation method for a MIMO V2V Rayleigh fading channel simulator under non-isotropic scattering environments[J]. IEEE Communications Letters,2013,17(2):265-268.
    [58]YUAN Y, WANG C, CHENG X, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications,2010,13(1):298-309.
    [59]CHELLI A, PATZOLD M. The impact of fixed and moving scatterers on the statistics of MIMO vehicle-to-vehicle channels[C].//proceedings of the IEEE 69th Vehicular Technology Conference, Barcelona, April 26-29,2009. pp.1-6.
    [60]BORHANI A, PATATZOLD M. Correlation and spectral properties of vehicle-to-vehicle channels in the presence of moving scatterers[J]. IEEE Transactions on Vehicular Technology, 2013,62(9):4228-4239.
    [61]HE Z Y, WEI C. A T-intersection street model of MIMO vehicle-to-vehicle fading channel: Communications[C].//proceedings of the IEEE International Conference on Circuits and Systems, Fujian, May 25-27,2008. pp.75-78.
    [62]HE Z Y, WEI C, WEI Z, et al. Modelling of MIMO vehicle-to-vehicle fading channels in T-junction scattering environments[C].//proceedings of the IEEE 3rd European Conference on Antennas and Propagation, Berlin, March 23-27,2009. pp.652-656.
    [63]WEI Z, PATZOLD M, WEI C, et al. An ergodic wideband MIMO channel simulator based on the geometrical T-junction scattering model for vehicle-to-vehicle communications[C].// proceedings of the IEEE Third International Conference on Communications and Electronics, Nha Trang, August 11-13,2010. pp.323-328.
    [64]WEI Z, PATZOLD M, WEI C et al. A simulation model for wideband MIMO vehicle-to-vehicle fading channels in T-junction propagation environments[C].//proceedings of the IEEE URSI International Symposium on Electromagnetic Theory, Berlin, August 16-19,2010. pp.223-226.
    [65]CHELLI A, PATZOLD M. A non-stationary MIMO vehicle-to-vehicle channel model based on the geometrical T-junction model [C].//proceedings of the IEEE International Conference on Wireless Communications & Signal Processing, Nanjing, November 11-15,2009. pp.1-5.
    [66]AVAZOV N, PATZOLD M. A geometric street scattering channel model for car-to-car communication systems[C].//proceedings of the IEEE International Conference on Advanced Technologies for Communications, Da Nang, August 2-4,2011.pp.224-230.
    [67]MOLISCH A F. A generic model for MIMO wireless propagation channels in macro-and microcells[J]. IEEE Transactions on Signal Processing,2004,52(1):61-71.
    [68]KAREDAL J, TUFVESSON F, CZINK N, et al. A geometry-based stochastic MIMO model for vehicle-to-vehicle communications[J]. IEEE Transactions on Wireless Communications,2009, 8(7):3646-3657.
    [69]RENAUDIN O, KOLMONEN V, VAINIKAIEN P, et al. Wideband measurement-based modeling of inter-vehicle channels in the 5 GHz band[C].//proceedings of the 5th European Conference on Antennas and Propagation, Rome, April 11-15,2011. pp.2881-2885.
    [70]BOBAN M, BARROS J, TONGUZ O K. Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation[J]. arXiv preprint arXiv:1305.0124,2013.
    [71]MAURER J, SCHAFER T M, WIESBECK W. A realistic description of the environment for inter-vehicle wave propagation modelling[C].//proceedings of the IEEE 54th Vehicular Technology Conference, Atlantic City, October 7-11,2001,vol.3, pp.1437-1441.
    [72]ITO K, SUZUK N, KARASAWA Y. Performance evaluation of MIMO-STBC for inter-vehicle communications in a shadowing environment generated by a large vehicle[C].//proceedings of the IEEE 66th Vehicular Technology Conference, Baltimore, September 30-October 3,2007. pp.758-762.
    [73]HOSSEINI T S A, FLEURY M, QADRI N N, et al. Improving propagation modeling in urban environments for vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems,2011,12(3):705-716.
    [74]NUCKELT J, ABBAS T, TUFVESSON F, et al. Comparison of ray tracing and channel-sounder measurements for vehicular communications[C].//proceedings of the IEEE 77th Vehicular Technology Conference, Dresden, June 2-5,2013. pp.1-5.
    [75]REICHARDT L, FUGEN T, ZWICK T. Influence of antennas placement on car to car communications channel[C].//proceedings of the IEEE 3rd European Conference on Antennas and Propagation, Berlin, March 23-27,2009. pp.630-634.
    [76]ABBAS T, KAREDAL J, TUFVESSON F. Measurement-based analysis:the effect of complementary antennas and diversity on vehicle-to-vehicle communication[J]. IEEE Antennas and Wireless Propagation Letters,2013,12:309-312.
    [77]REICHARDT L, STURM C, ZWICK T. Performance evaluation of SISO, SIMO and MIMO antenna systems for car-to-car communications in urban environments[C].//proceedings of the IEEE 9th International Conference on Intelligent Transport Systems Telecommunications, Lille, October 10-12,2009. pp.51-56.
    [78]PONTES J, REICHARDT L, ZWICK T. Investigation on antenna systems for car-to-car communication[J]. IEEE Journal on Selected Areas in Communications,2011,29(1):7-14.
    [79]STRANG T, MEYER M, HOERSTE M Z. A railway collision avoidance system exploiting ad-hoc inter-vehicle communications and galileo[C].//proceedings of the 13th ITS World Conress, London, October 8-12,2006.pp.1-8.
    [80]GARCIA C R, LEHNER A, STRANG T, et al. Comparison of collision avoidance systems and applicability to rail transport[C].//proceedings of the IEEE 7th International Conference on ITS,Telecommunications, Sophia Antipolis, June 6-8,2007.pp.1-6.
    [81]GARCIA C R, LEHNER A, STRANG T, et al. A broadcast vehicle to vehicle communication system in railway environments[C].//proceedings of the 1st International Symposium on Vehicular Computing Systems, Dublin, July 22-24,2008. pp.70-76.
    [82]LEHNER A, GARCIA C R, STRANG T, et al. A multi-broadcast communication system for high dynamic vehicular ad-hoc networks[J]. International Journal of Vehicle Information and Communication Systems,2011,2(3):286-302.
    [83]GARCIA C R, LEHNER A, STRANG T, et al. COMB:Cell based orientation aware MANET broadcast MAC layer[C].//proceedings of the IEEE Global Telecommunications Conference, New Orleans, November 30-December 4,2008.pp.1-5.
    [84]DLR, From the skies to the rails:DLR scientists unveil a new collision avoidance system for trains:http://www.dIr.de/en/desktopdefault.aspx/tabid-6226/10238_read-24385/, May 11,2010.
    [85]GARCIA C R, LEHNER A, STRANG T, et al. Channel model for train to train communication using the 400 MHz band[C].//IEEE Vehicular Technology Conference, Singapore, May 11-14, 2008[C]. pp.3082-3086.
    [86]LEHNER A, GARCIA C R, STRANG T, et al. Measurement and analysis of the direct train to train propagation channel in the 70 cm UHF-band[C].//proceedings of the 3rd International Workshop on Communication Technologies for Vehicles Communication Technologies for Vehicles. Oberpfaffenhofen, March 22-24,2011. pp.45-57.
    [87]KAJI M. and AKEYAMA A. UHF-band propagation characteristics for land mobile radio[J]. International Symposium Digest AP-S,1985,2:835-838.
    [88]LIU P Y, AI B, Zhong Z D, et al. A novel train-to-train communication model design based on multi-hop in high-speed railway[J]. International Journal of Antennas and Propagation,2012, 2012:1-9.
    [89]LIU P Y, ZHOU X J, Zhong Z D. Outage analysis of train-to-train communication model over Nakagami-channel in high-speed railway[J]. International Journal of Antennas and Propagation, 2013,2013:1-10.
    [90]LIU P Y, AI B, SUN R Y. A message broadcast model for train-to-train communication network[C].//proceedings of 8th FTRA International Conference on Multimedia and Ubiquitous Engineering, Zhangjiajie, May 28-31,2014. pp.345-352.
    [91]LIU P Y, AI B, MATOLAK D W, et al. Wave-guide effects in urban viaduct propagation channels for high-speed railway at 930 MHz[C].//proceedings of IEEE 8th European Conference on Antennas and Propagation, Hague, April 6-11,2014.pp.1-5.
    [92]LIU P Y, AI B, MATOLAK D W. Wave-guide effects in urban viaduct propagation channels for high-speed railway at 930 MHz[J]. IEEE Transactions on Intelligent Transportation System,2014.
    [93]LIU P Y, AI B, SUN R Y. Urban viaduct channel characterization of train-to-train communication at 900 MHz[C].//proceedings of FTRA International Conference on Multimedia and Ubiquitous Engineering, Zhangjiajie, May 28-31,2014. pp.353-360.
    [94]HE R S, MOLISCH A F, ZHONG Z D, et al. Measurement based channel modeling with directional antennas for high-speed railway[C].//IEEE Wireless Communications and Networking Conference, Shanghai, April 7-10,2013. pp.2932-2936.
    [95]EGLI J J. Radio propagation above 40 MC over irregular terrain[J]. Proceedings ofthe IRE,1957, 45(10):1383-1391.
    [96]OKUMURA Y, OHMORI E, KAWANO T, et al. Field strength and its variability in VHF and UHF land-mobile radio service[J]. Rev. Elec. Commun. Lab,1968,16(9):825-73.
    [97]EDWARDS R, DURKIN J. Computer prediction of service areas for vhf mobile radio networks[J]. proceedings of the Institution of Electrical Engineers,1969,116(9):1493-1500.
    [98]DADSON C E. Radio network and radio link surveys derived by computer from a terrain data base[J]. NASA STI/Recon Technical Report N,1979,80:19365.
    [99]BLOMQUIST A, LADELL L. Prediction and calculation of transmission loss in different types of terrain[C].//proceedings of the AGARD Electromagnetic Wave Propagation Involving Irregular Surfaces and Inhomogeneous Media 17 p (SEE N75-22045 13-70),1975.
    [100]LONGLE A G, RICE R L. Prediction of tropospheric radio transmission over irregular terrain: a computer-based method[J]. ESSA Tech.l Rep., ERL 79-ITS67,1968.
    [101]THELOT B. Method of calculating the propagation parameters used in the VHF and UHF bands[J]. EUB Review,1981, pp.76-81.
    [102]PAUNOVIC D S, STOJANOVIC Z D, STOJANOVIC I S. Choice of a suitable method for the prediction of the field strength in planning land mobile radio systems[J]. IEEE Transactions on Vehicular Technology,1984,33(3):259-265.
    [103]MURPHY J P, Statistical propagation model for irregular terrain model paths between transportable and mobile antennas [C].//proceedings of the NATO-AGARD Conference,1970. 49.1-49.20.
    [104]LEE W C Y, Mobile Communication Engineering[M], New York:McGraw-Hill,1982.
    [105]OHIRA T, HIRAI T, TOMISATO S, et al. A study of mobile path loss estimation models for a sloping terrain area in cellular systems[C].//proceedings of the IEEE 18th Asia-Pacific Conference on Communications, Jeju Island, October 15-17,2012. pp.472-477.
    [106]NISIRAT M, ISMAIL M, NISSIRAT L, et al. Micro cell path loss estimation by means of terrain slope for 900 and 1800 MHz[C].//proceedings of the International Confonference on Computer and Communication Engineering., Kuala Lumpur, July 3-5,2012. pp.670-674.
    [107]J. D. Parsons, The Mobile Radio Propagation Channel, New York, NY:John Wiley & Sons, 2000.
    [108]WANG Z Y, JIN R H, JIN Y, et al. Propagation model for mobile digital TV coverage under viaduct[J]. Radio Science,2010,45(3):1-9.
    [109]WANG Z Y, JIN R H, JIN Y, et al. Path loss prediction for mobile digital TV propagation under viaduct[J]. IEEE Transactions on Broadcasting,2011,57(1):37-45.
    [110]SAITO K, TAKAHASHI M, ITO K. Field Measurement on Simple Vehicle-Mounted Antenna System Using a Geostationary Satellite[J]. IEEE Transactions on Vehicular Technology,2010, 59(9):4248-4255.
    [111]HE R, ZHONG Z D, AI B, et al. Measurements and analysis of propagation channels in high-speed railway viaducts[J]. IEEE Transactions on Wireless Communications,2013,12(2):794-805.
    [112]LIU L, TAO C, QIU J, et al. Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz[J]. IEEE Journal on Selected Areas in Communications,2012,30(4): 834-845.
    [113]MECKLENBRAUKER C F, MOLISCH A F, KAREDAL J, et al. Vehicular channel characterization and its implications for wireless system design and performance[J]. Proceedings of the IEEE,2011,99(7):1189-1212.
    [114]GRADSHTEYN S, RYZHIK M, Table of integrals, series, and Products,6th ed. New York: Academic,2000.
    [115]GAO L Y, ZHONG Z D, AI B, et al. Estimation of the Ricean factor in K the high speed railway scenarios[C].//International ICST 5th Conference on Communications and Networking in China, Beijing, August 25-27,2010. pp.1-5.
    [116]HE R S, ZHONG Z D, AI B, et al. Short-term fading behavior in high-speed railway cutting scenario:measurements, analysis, and statistical models[J]. IEEE Transactions on Antennas and Propagation,2013,61(4):2209-2222.
    [117]GUAN K, ZHONG Z D, AI B, et al. Semi-deterministic path-loss modeling for viaduct and cutting scenarios of high-speed railway [J]. IEEE Antennas and Wireless Propagation Letters, 2013,12:789-792.
    [118]GUAN K, ZHONG Z D, Al B, et al. Propagation mechanism modelling in the near region of circulartunnels[J]. IET Microwaves, Antennas & Propagation,2012,6(3):355-360.
    [119]GUAN K, ZHONG Z D, AI B, et al. Modeling of the division point of different propagation mechanisms in the near-region within arched tunnels[J]. Wireless personal communications, 2013,68(3):489-505.
    [120]GUAN K, ZHONG Z D, AI B, et al. Propagation mechanism modeling in the near-region of arbitrary cross-sectional tunnels[J]. International Journal of Antennas and Propagation,2012, 2012.
    [121]GUAN K, ZHONG Z D, AI B, et al. Novel hybrid propagation model inside tunnels [C].// proceedings of the IEEE 73rd Vehicular Technology Conference, Yokohama, May 15-18,2011. pp.1-5.
    [122]GUAN K, ZHONG Z D, AI B, et al. Complete Propagation Model in Tunnels[J]. IEEE Antennas and Wireless Propagation Letters,2013,12:741-744.
    [123]GUAN K, ZHONG Z D, AI B, et al. Complete propagation model structure inside tunnels[J]. Progress In Electromagnetics Research,2013,141:711-726.
    [124]GUAN K, ZHONG Z D, AI B, et al. Five-zone propagation model for large-size vehicles inside tunnels [J]. Progress In Electromagnetics Research,2013,138:389-405.
    [125]GUAN K, ZHONG Z D, AI B, et al. Propagation mechanism analysis before the break point inside tunnels[C].//proceedings of the IEEE Vehicular Technology Conference, San Francisco, September 5-8,2011. pp.1-5.
    [126]GUAN K, ZHONG Z D, AI B, et al. Research of propagation characteristics of break point: Near zone and far zone under operational subway condition[C].//proceedings of the 6th International Wireless Communications and Mobile Computing Conference,Chengdu, September 23-25,2010.pp.114-118.
    [127]GUAN K, ZHONG Z D, AI B, et al. Measurement and modeling of subway near shadowing phenomenon[C].//proceedings of the International ICST 5th Conference on Communications and Networking in China, Beijing, August 25-27,2010.pp.1-5.
    [128]GUAN K, ZHONG Z D, AI B, et al. Novel hybrid propagation model inside tunnels[C].// proceedings of the IEEE 73 rd Vehicular Technology Conference, Yokohama, May 15-18,2011. pp.1-5.
    [129]AI B, HE R S, ZHONG Z D, GUAN K, CHEN B H, LIU P Y, et al. Radio wave propagation scene partitioning for high-speed rails[J], International Journal of Antennas and Propagation, 2012,2012:1-7.
    [130]GUAN K, ZHONG Z D, AI B, et al. Propagation measurements and modeling of crossing bridges on high-speed railway at 930 MHz[J]. IEEE Transactions on Vehicular Technology 2013, 63(2):502-517.
    [131]GUAN K, HONG Z D, AI B, et al. Empirical models for extra propagation loss of train stations on high-speed railway[J]. IEEE Transactions on Vehicular Technology,2013,62(3):1395-1408.
    [132]GUAN K, HONG Z D, AI B, et al. Propagation Measurements and Analysis for Train Stations of High-Speed Railway at 930 MHz[J]. IEEE Transactions on Vehicular Technology,2014, vol. TBD, no. TBD, pp. TBD.
    [133]WEI H, Z. ZHONG Z D, GUAN K, et al. "Path loss models in viaduct and plain scenarios of the high-speed railway[C].//proceedings of the International ICST 5th Conference on Communications and Networking in China, Beijing, August 25-27,2010.pp.1-5.
    [134]HE R S, ZHONG Z D, AI B, et al. Path loss measurements and analysis for high-speed railway viaduct scene.[C].//proceedings of the 6th International Wireless Communications and Mobile Computing Conference,Chengdu, September 23-25,2010.pp.266-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700