用户名: 密码: 验证码:
平动式啮合电机的结构设计与基本特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足机器人系统对续航能力和空间适应性的要求,本文提出了一种新结构、新原理的机器人关节用低速大扭矩电动机—平动式啮合电动机。它是一种通过定转子间磁阻的变化将电能转化为机械能,在平行四边形结构的约束下使转子绕定子作圆周平动,进而可直接由转子带动摆线机构,利用摆线机构的减速作用输出大扭矩的高集成度电动机。由于该电机通过摆线齿轮啮合机构带动负载,避免了直接驱动电机受负载不稳影响较大的缺点,同时由于齿轮啮合传动,摩擦损失小、传动效率高,因此该结构较依靠定转子之间的摩擦力输出低转速、大扭矩的超声波及谐波减速电机有更高的效率和使用寿命。在本文中对该新型电机的运行机理、设计特点、磁场分布、稳态运行性能及启动特性进行了系统的理论分析,设计制造了原理样机并进行了样机试验。
     文中在对平动式啮合电机的结构特点和运行原理进行详细阐述的基础上,将平动式啮合电机的基本电磁原理与磁阻电机进行了比较,从能量转换角度对平动式啮合电机的基本性能和特点进行了分析。将平动式啮合电机依据其功能分四大部分作了较详细的分析,列举了四大机构演化出的具有实用前景的可选结构,并进行了结构间的性能比较。最终归纳出了实用性强,并具有理论研究价值的两种具有典型平动式啮合电机特征的结构组合,分别命名为平动电机和柔性平动电机,同时确立了平动式啮合电机驱动电路的基本形式。
     考虑到平动电机原理样机的独特结构,沿用磁阻电机的研究思路,采用有限元方法建立了该电机的二维磁场模型,对电机磁场分布和磁路特点进行了初步分析。通过获得的不同转角下磁化曲线簇,并借助磁共能方法获得了电机矩角特性。探讨了电机的气隙长度,定子极弧角度、定子轭厚等结构参数对电机转矩特性的影响。最后采用非线性磁参数法建立了电机动态分析模型,并利用建立的磁参数库和矩角特性曲线,对平动电机的稳态和启动特性进行了分析。
     为了满足电机优化设计和实时控制的需要,针对平动电机的特殊结构建立了便于计算的等效磁路模型。该模型是在对平动电机二维磁场进行深入分析的基础上,借用磁力线和等磁位线互换的方法,将磁力线分布不均匀的磁通管引入到分析模型中,采用等效磁路法建立了非线性分析模型。该模型对电机磁场分布不均和磁路局部饱和现象进行有效处理,减少了模型中磁通管单元的数量,使模型简化并兼顾了求解精度。在该分析模型的基础上,推导出了电机绕组满足的以绕组磁链为状态变量的微分方程,建立了电机稳态运行分析的数学模型。对电机单相导通状态下的稳态运行特性进行了仿真分析,其结果与非线性磁参数法所得结果相吻合。
     为避免平动电机中转子平动所引发的惯性力以及由其定转子结构特点所决定的磁路耦合现象,本文通过引入柔性机构,将定转子磁极分开,避免了不同磁极磁路的耦合,在简化结构的同时实现了定转子相向运动,弱化了惯性力对电机整体运行的不良影响。使该类电机采用解析方法便可对磁路进行分析,柔性电机的有限元分析结果也表明该电机所用的解析方法在一定参数范围内具有较好的准确性。
     柔性机构的加入,也使电机的机械部分的分析变得复杂,需要充分考虑柔性机构对电机整体性能的影响。因此本文着重对柔性铰链在转子运动过程中所产生的弹性变形对电磁转矩输出的影响进行了分析,建立了计入柔性铰链静刚度和导向框架引起的x,y向运动质量不等以及柔性轴径向刚度后的电机振动模型,并讨论了电机振动的影响因素。
     最后,在理论分析的基础上,作者研制了平动式啮合电机的原理样机,样机实验证明了该电机结构新颖合理,实现了设计初衷。同时理论分析和样机实验均表明定子相对电机机架浮动的结构能够较好地抵消转子偏心运动带来的振动,体现该类型电机具有较高的研究价值和较好的应用前景。
This dissertation presents a type of low speed and high torque motor applied in robot joint——translation meshing motor (TMM) with new structure and new principle which meets the need of space endurance and space fitness of robot It is a new motor which integrates reduction gears into the drive and translates the electric energy into the mechanical energy through the reluctance variety between the stator and the rotor. The rotor of this new motor is constrained to move around the stator by circle translation with a parallelogram linkage, and drives the cycloid machine to output big torque. This type of motor reduces the influence of load fluctuation through cycloid gears to drive load. And because of fewer frictions between driving and driven gears, the motor has higher efficiency and longer life man the ultrasonic motors and the harmonic gear motors. In mis dissertation, profound study is involved in several aspects, including basic operation principle, design features, magnetic field distribution, steady and starting performance characteristics. And then the prototypes of TMM have been designed, manufactured and experimented.
     In this dissertation, the features of construction and principle of operation of TMM are discussed in details. Compared with the basic magnetic principle of reluctance motor, the performances and features of the TMM are analyzed through energy method. TMM can be divided into four partitions according to function, and more useful structures deduced from the four partitions are introduced. Finally, from these structures, two typical TMM constructions that have more practical and theoretical are concluded, and named translational motor and flexible translational motor, respectively.
     Considering the unique structure of the translational motor, following the method applied in reluctance motor, Finite Element Method (FEM) of translational motor is founded, and then Magnetic field distribution and magnetic circuit characteristics is analyzed primarily. So the flux linkages at different rotor angles are calculated. By the FEM and co-energy method, the static characteristics of translational motor are obtained. The influences of gap length, polar arc and thick of stator yoke on electromagnetic torque are discussed. At last, the nonlinear magnetization data model is established to analyze the dynamic characteristics of the translational motor, and the steady state and starting features are obtained by the magnetization and torque-angle curves.
     The Magnetic Equivalent Circuit (MEC) model is founded aiming at the special structure of the translational motor for optimum design and real-time control of the motor. Borrowing the exchange principle of magnetic line of force and magnetic equipotential line, the tube in which the flux distribution is non-uniform is applied to the model. With these measures, the local saturation of the motor is treated and the number of flux tube units is reduced in order that the model is simplified. Based on the model, a steady state analysis model of the translational motor is founded with the state equations established which takes the flux linkages of the phase windings as state variable. And the steady state characteristics of the prototype are obtained under single-phase excitation. Compared nonlinear magnetization data method results, the new model is proved concise and precise.
     In this dissertation, a type of flexible translational motor is introduced to avoid the magnetic circuit coupling arising from structure feature of the stator and rotor and reduce the influence of the inertial force of rotor translation. Through using flexible mechanism this new motor divides the magnetic pole of the rotor and the magnetic pole of the stator, which avoids the different magnetic circuit coupling, produces the movement between the rotor and stator that are moving towards each other, which reduces the inertia force when the motor operates. Thus, the analytic method is applied to analyze the magnetic circuit of the motor, and the result is precise compared with FEM in some extent.
     Furthermore, the flexible structure makes the structure analysis of the motor more complex, and the effects of the flexible structure on motor properties should be taken into account. So, the rigidity of the flexure hinge and the flexible shaft and the quality unevenness in x, y distinction caused by guidance frames are included in the analytic model. Then the oscillation equation is established, and the effects of the dynamic partitions on the performance of the motor are discussed.
     Above the theoretical analysis, several prototypes are designed and manufactured. Through the prototype experiments, the construction of the translational meshing motor is testified to be reasonable and the original intention is realized. This motor is showed to be worth to research and has prospect of extensive application.
引文
[1]王光建,梁锡昌,蒋建东.机器人关节的发展现状与趋势.机械传动,2004,28(4),1-5.
    [2]Koichi Suzumori,Takefumi Kanda,Kazuo Uzuka,etc.Nutation Motor:A new direct-drive stepping motor for robots,IEEE Technical Exhibition Based Conference on Robotics and Automation,Proceedings,2004,21-22.
    [3]J.M.Vranish,D.P.Naik,J.B.Restorff,etc.Magnetostrictive direct drive for rotary motor development.IEEE Trans.Magnetics,1991,27(6),5355-5357.
    [4]史涔溦,新型半导体换流低速磁阻电动机的研究[博士论文],浙江大学,2001.
    [5]苏玉鑫,段宝岩.提高直接驱动电动机系统刚度的机电一体化设计.机械工程学报,2001,37(8),75-79.
    [6]李克美.谐波传动的原理特点及应用.设备与技术,2006,设备管理与维修(8),29-30.
    [7]王长明,阳培,张立勇.谐波齿轮传动概述.机械传动,2006,30(4),86-88.
    [8]郭海训,大力矩高精度超声波电机的基础研究[博士论文],浙江大学,2002.
    [9]贺红林,赵淳生.机器人的超声电机驱动及其控制研究,压电与声光,2005,27(6),694-697.
    [10]陈超,曾劲松,赵淳生.行波超声电动机的动力学模型,机械工程学报,2006,42(12),76-82.
    [11]Hayashi,I.,Iwastsuki,N.and Kawai,M.,Development of a Piezoelectric Cycloid Motor.Mechatronics,1992,433-444
    [12]张爱华,周建军.旋转式超磁致伸缩马达最新研究进展.杭州电子工业学院学报,2004,24(6),78-81.
    [13]Koichi SUZUMORI,Kohei HORI.Micro electrostatic wobble motor with toothed electrodes,Proceeding of the IEEE MEMS,1997,227-232.
    [14]S.C.JACOBSEN,R.H.PRICE,J.E.WOOD,etc.The wobble motor:an electrostatic,planetary-armature,microactuator.Micro Electro Mech Sys Invest Mico Struct Sens Actuators Mach Rob,1989,17-24.
    [15]R.Mahadevan,Analytical modelling of electrostatic structures,Proceeding of the IEEE MEMS,1990,120-127.
    [16]Hitoshi KIMURA,Shigeo HIROSE,Koji NAJSAYA.Development of the Crown Motor.IEEE Intl Conference,On Robotics and Automation,2001,2442-2447.
    [17]Koichi Suzumori,Tatsuya Hashimoto,Kazuo Uzuka,etc.Pneumatic Direct-drive stepping motor for robots.IEEE Intl Conference,on Intelligent Robots and Systems,2002,2031-2036.
    [18]Koichi Suzumori,Kohei Hori,Toyomi Miyagawa,A Direct-drive pneumatic stepping motor for robots:Designs for Pipe-Inspection Microrobots and for Human-Care Robots.IEEE Intl Conference,On Robotics and Automation,1998,3047-3052.
    [19]Takashi Nagata,Koichi Suzumori,Takefumi Kanda,etc.Electric direct-drive stepping motor for robots.IEEE Intl Conference,On Robotics and Automation,2004,4492-4497.
    [20]Koichi Suzumori,New actuators and their applications-from Nano actuators to mega actuators.IEEE Intl Symposium,On MHS,2004,15-21.
    [21]张秋豪,啮合式电动机[硕士论文],北京邮电大学,2001
    [22]赫文玲,张新海.研究电机电磁场问题的方法.焦作大学学报,2007,4(2),71-72.
    [23]唐任远,等.现代永磁电机理论与设计.北京:机械工业出版社,2001
    [24]Jun-Ho Kim,Eun-Woong Lee,and Jong-Han Lee.Design of the starting device installed in the single-phase switched reluctance motor.IEEE Trans,Magnetics,43(4),2007,1741-1744.
    [25]Ji-Young Lee,Byoung-Kuk Lee,Tao Sun,etc.Dynamic Analysis of Toroidal Winding Switched Reluctance Motor Driven by 6-Switch Converter.IEEE Trans,On Magnetics,42(4),2006,1275-1278.
    [26]J.Mizia,K.Adamiak,A.R.Eastham,etc.Finite element forcecalculation:comparison of methods for electric machines.IEEE Trans,On Magnetics,24(1),1988,447-450.
    [27]M.E Ravichandran,V.T.Sadasivan Achari,C.C.Joseph,etc.A simplified design methodology for switched reluctance motor using analytical and finite element Method.Intl Conference,on PEDES,2006,4147857.
    [28]R.Arumugam,D.A.Lowther,R.Krishnan,etc.Magnetic field analysis of a switched reluctance motor using a two dimensional finite element model.IEEE Trans,On Magnetics,MAG-21(5),1985,1883-1885.
    [29]Y.Chen,S.Chen,Z.Q.Zhu,etc.Starting torque of single-phase flux-switching permanent magnet motors.IEEE Trans,On Magnetics,42(10),2006,3416-3418.
    [30]王秋蓉,葛宝明.无轴承开关磁阻电机的转矩与径向力特性分析.北京交通大学学报,31(2),2007,107-110.
    [31]林明耀,程明,周鹗.新型12/8极双凸极变速永磁电机的设计与分析.东南大学学报,32(6),2002,944-948.
    [32]花为,程明,Z.Q.Zhu,etc.新型磁通切换型双凸极永磁电机的静态特性研究.中国电机工程学报,26(13),2006,129-134.
    [33]李永斌,江建中,邹国棠.新型定子双馈双凸极永磁电机研究,中国电机工程学报,25(1),2005,119-123.
    [34]陈金涛,辜承林.新型横向磁通永磁电机研究.中国电机工程学报,25(15),2005,155-160.
    [35]童怀,黄声华,付光洁.场路结合模型法中非线性磁网络方程组的解法.设计与研究,微电机,29(4),1996,3-5,9.
    [36]H.R.Bolton,Y.Shakweh.Performance prediction of Laws' s relay actuator.IEE Proceedings,Part B:Electric Power Applications,137(1),1990,1-13.
    [37]M.Moallem,H.Nikkhajoei,M.Falahi.Predicting the Performance of a Switched Reluctance Machine Using Improved Magnetic Equivalent Circuit Method.Intl Conference,on Power Electronics and Drive Systems,1995,198-201.
    [38]Joseph D.Law,Thomas J.Busch,Thomas A.Lipo.Magnetic circuit modelling of the field regulated reluctance machine part I:model development.IEEE Trans,on Energy Conversion,11(1),1996,49-55.
    [39]Thomas J.Busch,Joseph D.Lax,Thomas A.Lipo.Magnetic circuit modelling of the field regulated reluctance machine part ll:saturation modelling and results.IEEE Trans,on Energy Conversion,11(1),1996,56-61.
    [40]C.B.Rasmussen,E.Ritchie.A magnetic equivalent circuit approach for predicting PM motor performance.IEEE Industry Applications Society Annual Meeting,1997,10-17.
    [41]M.Moallem,G.E.Dawson.An improved magnetic equivalent circuit method for predicting the characteristic of highly saturated electromagnetic devices.IEEE Trans,On Magnetics,34(5),1998,3632-3635.
    [42]James M.Kokernak,David A.Torrey.Magnetic circuit model for the mutually coupled switched-reluctance machine.IEEE Trans,On Magnetics,36(2),2000,500-507.
    [43]Tao Sun,Ji-Young Lee,Jung-Pyo Hong.Magnetic field analysis using magnetic equivalent circuit for the initial design of toroidal winding switched reluctance motor.IEEE Intl Conference,on ICEMS,2005,2129-2132.
    [44]James M.Kokernak,David A.Torrey.Magnetic circuit model for the mutually coupled switched reluctance machine.Conference Record-IAS Annual Meeting,1,1997,302-309.
    [45]Guillaume Crevecoeur,Luc Dupre,Rik Van de Walle.Space mapping optimization of the magnetic circuit of electrical machines including local material degradation.IEEE Trans,On Magnetics,43(6),2007,2609-2611.
    [46]郭伟,赵争鸣,詹琼华.磁网络模型在两相激磁开关磁阻电机中的应用.电机与控制学报,10(2),2006,154-159.
    [47]王宗培,赵书韬.混合式步进电动机静转矩计算模型的改进—分布非线性磁网络模型.中国电机工程学报,19(5),1999,35-38.
    [48]童怀,傅光洁,陶醒世.混合式步进电机静态特性的工程计算方法.华中理工大学学报,24(11),1996,46-48.
    [49]沙德尚,邓智泉,孟小利.基于变网络等效磁路法的双凸极电机电感参数变化规律的分析.中小型电机,28(6),2001,5-9.
    [50]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型.中国电机工程学报,27(12),2007,33-40.
    [51]国珍,白保东.开关磁阻电机等效磁网络模型的建立与仿真.沈阳工业大学学报,26(5),2004,517-520.
    [52]童怀.开关磁阻电机等效磁网络模型的降阶处理方案.电工技术学报,15(1),2000,3 1-36.
    [53]童怀,傅光洁,黄声华等.开关磁阻电机稳态特性的等效磁网络模型分析方法Ⅰ.数学模型.中国电机工程学报,18(2),1998,106-110.
    [54]童怀,傅光洁,黄声华等.开关磁阻电机稳态特性的等效磁网络模型分析方法Ⅱ.系统仿真.中国电机工程学报,18(3),1998,204-207.
    [55]程明,周鹗,黄秀留.双凸极变速永磁电机的变结构等效磁路模型.中国电机工程学报,21(5),2001,23-28.
    [56]沙德尚,孔力,孙晓.双凸极无刷直流发电机的非线性数学模型.电工技术学报,18(4),2003,6-10.
    [57]童怀,王宗培.五相混合式步进电机牵入特性的齿层比磁导分析模型.中国电机工程学报,14(1),1994,20-26.
    [58]王宗培,童怀.五相混合式步进电机的齿层比磁导稳态方针模型.中国电机工程学报,13(2),1993,31-36.
    [59]詹琼华.开关磁阻电动机.华中理工大学出版社,1992.
    [60]童怀.新型两相励磁开关磁阻电机驱动系统的稳态特性分析.中国电机工程学报,25(10),2005,149-154.
    [61]孙雨施,王素菊,曲民兴,沈世尧.直流磁系统的计算与分析(模型、算法、程序).国防工业出版,1987,65-80.
    [62]童怀.磁阻电机动态特性的非线性分析与计算机仿真.科学出版社,2000.
    [63]Stephenson J.M.Corda,J.Computation of torque and current in double salient reluctance motors with nonlinear magnetisation data[C].Proc,IEEE Intl Conference,Electric Power Applications,1979,126(5):393-396
    [64]刘迪吉.开关磁阻调速电动机非线性分析.南京航空学院学报,1989(1)
    [65]范瑜,王哈力等.开关磁阻电动机调速系统的数字仿真.中国电机工程学报,15(2),1995,101-109.
    [66]吴建华.开关磁阻电动机稳态性能的一种快速非线性仿真法.电工技术学报,12(3),1997,6-11.
    [67]莫雨峰,刘成良.基于Dymola的开关磁阻电机建模及仿真.计算机仿真,21(4),2004,34-37.
    [68]Miller T J E,Mcgilp M.Nonlinear theory of the switched reluctance motor for rapid computer aided design.IEEE Proc.,1990,137(6,Pt.B):337-347
    [69]吴建华.开关磁阻电机设计与应用.机械工业出版社,2001.
    [70]Arkadan,A.A,Kielgas,B.W.Switched reluctance motor driver system dynamic performance prediction and experimental verification IEEE Transaction on Energy Conversion,9(1),1994,36-44
    [71]张志铭,文贵印,叶鸿.浅析磁阻电机内部的机电能量转换原理.电子技术参考,2(2),2002,5-8.
    [72]张春林,姚九成.平动齿轮机构的基本型与其演化的研究.机械设计与研究,3,1998,29-30.
    [73]姚九成,赵国军.平动齿轮机构的演化与创新.江汉石油学院学报,24(2),2002,103-105.
    [74]齿轮手册编委会编.齿轮手册(上册)(第二版),机械工业出版社,2005.
    [75]齐人光.浅述渐丌线齿轮一摆线齿轮一圆弧齿轮.机械设计与制造,1,2000,46-47.
    [76]房婷婷.摆线包络行星传动啮合理论研究.硕士学位论文,重庆大学,2007.
    [77]薛云娜,王勇,王宪伦.新型摆线传动的共轭啮合机理.山东大学学报,35(4),2005,26-29.
    [78]于靖军.全柔性机器人机构分析及设计方法研究.博士学位论文,北京航空航天大学,2002.
    [79]李冰,邓智泉,严仰光.无轴承异步电机的最大径向力有限元分析.中小型电机,30(3),2003,20-24.
    [80]朱(火晃)秋,张涛.无轴承永磁同步电机有限元分析.中国电机工程学报,26(3),2006,136-140.
    [81]汤蕴缪.电机内的电磁场(第二版).科学出版社,1998.
    [82]王秋蓉,葛宝明.无轴承开关磁阻电机磁场及力特性的分析.电机与控制学报,11(3),2007,217-220.
    [83]章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度.中国电机工程学报,27(3),2007,68-72.
    [84]乔静秋,葛英辉,熊素铭,等.轮毂式永磁同步电动机电磁转矩的数值计算与误差分析.电工技术学报,17(6),2002,15-18.
    [85]Tamhuvud T,Reichert.K,Accuracy problems of force and torque calculation in FE-systems.IEEE Trans,on Magnetics,24(1),1988,443-446.
    [86]阎秀恪,谢德馨,于存湛,等.电磁力有限元分析中麦克斯韦应力法的积分路径选取的研究.电工技术学报,18(5),2003,32-36.
    [87]严加根,刘闯,姚国飞,等.开关磁阻电机矩角特性的研究与应用.电工技术学报,20(9),2005,29-33.
    [88]赵宏伟,刘建芳,华顺明,等.压电型步进精密旋转驱动器.光学精密工程,13(3),2005,305-310.
    [89]刘国嵩,赵宏伟,曾平,等.新型压电步进型精密直线驱动器.光学精密工程,13(3).2005,291-297.
    [90]Furukawa E,Mizino M.Displacement amplification and reduc2tion by means of linkage.International Journal of Japanese Society of Precision Engineering,24,1990,285-290.
    [91]Ryu J W.62Axis Ultraprecision Positioning Mechanism Design and Positioning Control.Daejeon,Korea:KAIST,1997.
    [92]Xu W,King T.Flexure hinges for piezoactuator displacement amplifiers:Flexibility,accuracy,and stress considerations.Precision Engineering,19,1996,4-10.
    [93]Ryu J w,Gweon D G.Error analysis of a flexure hinge mecha2nism induced by machining imperfection.Precision Engineering,21,1997,83-89.
    [94]Kim Jun Hyung,Kim Soo Hyun,Kwak Yoon Keun.Development of a piezoelectric actuator using a three2dimensional bridge2 type hinge mechanism.Review of Scientific Instruments,74(5),2003,2918-2924.
    [95]Lobontiu Nicolae,Carcia Ephrahim,Hardau Mihail,et al.Stiff2ness characterization of corner2filleted flexure hinges.Review of Scientific Instruments,75(11),2004,4896-4905.
    [96]胡家炘,王跃方,罗孟杰,等.中型高速电机柔性转子特性研究.沈阳工业大学学报.17(1),1995,5-9.
    [97]罗孟杰,胡家忻,徐玉秀,等.柔性轴电机转子临界转速的动态测试技术研究.沈阳工业大学学报,18(3),1996,14-18.
    [98]Ding Q,Leung,A.Y.T.,Numerical and experimental investigations on flexible multi-bearing rotor dynamics,Journal of Vibration and Acoustics,Transactions of the ASME,127(4),2005,408-415.
    [99]宗光华,余志伟,毕树生,等.直角切口柔性铰链平行四杆机构的屈曲分析.航空学报.28(3),2007,729-734.
    [100]吴鹰飞,周兆英.柔性铰链的应用.中国机械工程,13(18),2002,1615-1618.
    [101]吴鹰飞,周兆英.柔性铰链传动刚度计算公式的推导.仪器仪表学报,25(1),2004.125-128.
    [102]Her I,Chang J C.A linear scheme for the displacement analysis of micropositioning stages with flexure hinges.ASME,J.of Mechanical Design,116(3),1994,770-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700