用户名: 密码: 验证码:
电力系统分布式动态状态估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步相量测量单元(phasor measurement unit, PMU)能够对电力系统机电暂态过程中相量信息进行直接测量,为电力系统动态安全监控提供了新的技术手段。然而,由于传感器误差以及干扰的影响,PMU量测不可避免地存在随机误差和不良数据。如果不对PMU量测量进行处理而直接应用,则有可能无法准确监测电力系统动态过程,甚至导致控制系统做出错误的控制策略。针对PMU量测信息,本文系统地研究了机电暂态过程中分布式动态状态估计方法。论文主要研究成果如下:
     (1)提出分布式动态状态估计框架。在发电厂和变电站分别进行发电机动态状态估计和变电站零阻抗特性状态估计,将估计结果上送至调度中心进行数据整合并实施全系统状态估计。提出了一种系统机电暂态过程中基于PMU的发电机动态状态估计新方法。该方法充分考虑系统机电暂态过程中调速器对发电机机械转矩的调节作用。建立了系统机电暂态过程中发电机动态状态估计模型;给出了系统噪声误差方差的具体计算方法;进一步提出基于比例对称采样无迹卡尔曼滤波的发电机动态状态估计算法。仿真结果表明提出的方法精度高于机械转矩恒定的方法。
     (2)针对PMU量测中存在不良数据的问题,提出一种鲁棒性发电机动态状态估计算法。将时变多维观测噪声尺度因子引入到容积卡尔曼滤波中,根据量测新息对量测误差进行在线调整,使其更加逼近真实噪声。再利用调整后的误差计算滤波增益,使其能够在PMU量测存在不良数据的情况下对状态量预报值进行准确修正从而得到精确的发电机状态量估计值。针对时变多维观测噪声尺度因子为非对角阵而造成滤波增益求逆发生奇异的问题,提出解决方案。仿真结果表明,当PMU出现连续多点坏数据时,鲁棒动态状态估计仍然能够得到准确的估计结果。
     (3)提出了一种系统机电暂态过程中,基于PMU的变电站状态估计新方法。该方法将变电站内断路器的零阻抗特性作为虚拟量测,进一步提升冗余度。同时,在系统故障后断路器状态未知的情况下建立状态估计模型,能够有效辨识断路器的实际状态。针对PMU量测存在不良数据的问题,给出了基于非二次准则状态估计的不良数据辨识方法,并对门槛值的选取方案进行了改进,能够有效辨识不良数据。
     (4)提出了一种机电暂态过程中全系统状态估计方法。基于机网接口的直接解法,给出了发电机动态状态估计结果转化为网络节点电压相量伪量测的误差方差计算方法;提出了考虑发电机动态状态估计约束的全系统状态估计方法,通过发电机动态状态估计约束进一步提升机电暂态过程中系统状态量的估计精度。
Phasor measurement unit can measure the phasors in the electromechanical transient process, which provide a new opptunity of power system dynamic monitoring and control. However, the PMU measurements experience random errors and bad data unavoidablely due to the sensor errors and disturbances. If the PMU measurements are applied directly without any treatment, the power system dynamic process may not be monitored accurately, even the wrong control scheme is likely be conducted by control system. In this dissertation, a power system dynamic state estimator in the electromechanical transient process based on PMU is studied. The main work of this dissertation is summarized as follows:
     (1) A framework of distributed dynamic state estimtimator is proposed. The dynamic state estimator for synchronous machines and the state estimator based on zero impedance characteristic are conducted in power plants and substations respectively. The estimation results are sent to the dispatch center where the power system state estimator is conducted. A novel approach for dynamic state estimator for synchronous machines in the electromachenical transient process based on PMU is proposed. The regulation effect of speed governors is considered. The model of dynamic state estimator for synchronous machines in the electromechanical transient process is built. The detailed calculation method of the system variance is given. The solving algorithm of the dynamic state estimator for synchronous machines based on the unscented Kalman filter using proportion symmetric sampling scheme is proposed. The simulation result shows that the precision of the proposed state estimator is higher than the method that the mechanical torque is assumed to be constant.
     (2) The PMU measurements experience bad data unavoidedly in the electromachenical transient process. Aiming at this problem, the robust dynamic state estimator for synchronous machines is proposed. A time-varying multidimensional scalar is introduced into the cubature Kalman filter, which regulate the measurements error in real time according to the innovation. Then, the regulated error is used to calculate the Kalman filtering scalar, which can accurately rectify the prediction of states under the condition that the PMU measurements experience bad data. The accurate estimation value of generator states can be obtained. If the time-vary multidimensional scalar is a non-diagonal matrix, the Kalman filter scalar will be a singular matrix, whose inverse matrix cannot be obtained. Aiming at this problem, the solving method is proposed. The detailed process of dynamic state estimator based on the robust cubature Kalman filter is presented. The simulation result shows that the robust dynamic state estimor can obtaine the accurate estimation results when PMU experiences bad data.
     (3) A novel approach for the substation state estimation based on PMU in the electromechanical transient process is proposed. In the approach, the redundancy of measurements is increased by taking the zero-impedance characteristic of circuit breakers as virtual measurements. At the same time, the state estimation model is built under the condition that the statues of the circuit breakers cannot be obtained in real time after a fault occurred in the system. By solving the model, the real status of circuit breakers can be obtained. The bad data identification method based on the non-quadratic rule state estimator is presented, and the method of choosing the threshold value is modified, which can identify the bad data effectively.
     (4) A state estimation method for the power system in the electromechanical transient process is proposed. Based on the direct solving method of machine-network interfacing, the calculation method of the pseudo measurement error of network voltage phasor transformed from the dynamic state estimation results for synchronous machines is given. The power system state estimator in the electromechanical transient process is proposed, in which the constraint of dynamic state estimator for synchronous machines is used to increase the accuracy.
引文
[1]王梅义.有感于美国西部电网大停电[J].电网技术,1996,20(9):43-46.
    [2]陈建业,王仲鸣.1996年夏季美国西部电力系统停电事故[J].国际电力,1998,3(2):52-56.
    [3]C. W. Taylor, D. C. Erickson. recording and analyzing the July 2 cascading outage[J]. IEEE Computer Applications in Power,1997,10(1):26-30.
    [4]D. Kosterev, S. Yirga, and V. Venkatasubramanian. Validation report of the August 10,1996 WSCC disturbance, Operating Capability Study Group, Western Systems Coordinating Council, March 1997.
    [5]何大愚.对于美国西部电力系统的1996年7月2日大停电事故的初步认识[J].电网技术,1996,20(9):35-39.
    [6]R. Aggarwal, R. Daschmans, R. Schellberg, V. Venkatasubramanian, and S. Yirga. Validation studies of the July 2,1996 WSCC system disturbance event, Operating Capability Study Group, Western Systems Coordinating Council, July 1997.
    [7]D. N. Kosterev, C. W. Taylor, W. A. Mittestadt. Model validation for the August 10,1996 WSCC outage[J]. IEEE Trans. on Power Systems, 1999,14(3):967-979.
    [8]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [9]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [10]U.S.-Canada power systems outage task force final report on the august 14, 2003 blackout in the United States and Canada[R/OL]. http://www.ferc.gov/, April,2004.
    [11]薛禹胜.综合防御由偶然故障演化为电力灾难—北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [12]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [13]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5.
    [14]王伟.“8.14”美加大停电突显EMS实用化的重要性[J].华北电力技术,2004,(7):35-36.
    [15]谢旭.从“8.14”美加大停电看电网调度自动化面临的挑战[J].华北电力技术,2004,(7):37-41.
    [16]曾鸣,李红林,薛松,曾博,王致杰.系统安全背景下未来智能电网建设关键技术发展方向—印度大停电事故深层次原因分析及对中国电力工业的启示[J].中国电机工程学报,2012,32(25):175-181+24.
    [17]薛禹胜,肖世杰.从印度大停电透视电力系统的广义阻塞[J].电力系统自动化,2012,36(16):1-8.
    [18]曾鸣,李娜,董军,曾博.基于大安全观的电网运行管理关键技术—关于印度大停电的思考[J].电力系统自动化,2012,36(16):9-13.
    [19]董新洲,曹润彬,王宾,施慎行,Dominik Bak印度大停电与继电保护的三大功能[J].电力系统保护与控制,2013,41(2):19-25.
    [20]方勇杰.用紧急控制降低由输电断面开断引发系统崩溃的风险对印度大停电事故的思考[J].电力系统自动化,2013,37(4):1-6.
    [21]A. G. Phadke, Synchronized phasor measurements in power systems[J]. IEEE Computer Applications in Power,1993,6(2):10-15.
    [22]R. O. Burnett, A. G. Phadke, et al. Synchronized phasor measurements of a power system event[J]. IEEE Trans on PS,1994(3):1643-1650.
    [23]K. E. Martin, G. Benmouyal, M. G. Adamiak, et al. IEEE standard for synchrophasors for power systems[J]. IEEE Transactions on Power Delivery, 1998,13(1):73-77.
    [24]F. J. Marin, F. G. Lagos, G. Joya. Genetic algorithms for optimal placement of phasor measurement units in electrical networks[J]. Electronics Letters, 2003,39(19):1403-1405.
    [25]B. Milosevic, M. Begovic. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J]. IEEE Trans. On Power Systems, 2003,18(1):69-75.
    [26]R. F. Nuqui, A. G. Phadke. Phasor measurement unit placement based on incomplete observability[C]. IEEE Power Engineering Society Summer Meeting,21-25 July 2002:2888-893.
    [27]A. G. Phadke. Synchronized phasor measurements-a historical overview[C]. IEEE/PES Transmission and Distribution Conference and Exhibition:Asia Pacific,2002, Vol.1:476-479.
    [28]B. Bhargava. Synchronized phasor measurement system project at Southern California Edison Co.[C]. IEEE Power Engineering Society Summer Meeting, July 1999, Vol.1:16-22.
    [29]秦晓辉,毕天妹,杨奇逊,马世英.基于WAMS动态轨迹的电力系统功角失稳判据[J].电力系统自动化,2008,32(23):18-22.
    [30]徐慧明,毕天姝,黄少锋,杨奇逊.基于WAMS的潮流转移识别算法[J].电力系统自动化,2006,30(14):14-19.
    [31]杨东俊,丁坚勇,邵汉桥,许汉平,黄家祺.基于WAMS的负阻尼低频振荡与强迫功率振荡的特征判别[J].电力系统自动化,2013,37(13):57-62.
    [32]宋洪磊,吴俊勇,郝亮亮,冀鲁豫.基于 WAMS和改进拉普拉斯特征映射的同调机群在线识别[J].电网技术,2013,37(8):2157-2164.
    [33]马世英,刘道伟,吴萌,等.基于WAMS及机组对的电网暂态稳定态势在线量化评估方法[J].电网技术,2013,37(5):1323-1328.
    [34]丁涛,董柏峰,顾伟,万秋兰.基于PMU的电压稳定动态线性化指标优化切负荷算法[J].电力系统保护与控制,2013,41(9):27-33.
    [35]宋方方,毕天姝,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法[J].中国电机工程学报,2006,26(16):38-45.
    [36]谢欢,张保会,沈宇,等.基于WAMS的电力系统暂态紧急控制启动方案[J].电网技术,2009,(20):59-64.
    [37]秦晓辉,毕天妹,杨奇逊.基于WAMS的电力系统机电暂态过程动态状态估计[J].中国电机工程学报,2008,28(7):19-25.
    [38]Z. Y. Huang, K. Schneider, J. Nieplocha. Feasibility studies of applying Kalman filter techniques to power system dynamic state estimation[C]//The International Power Engineering Conference. Singapore:IEEE,2007:376-382.
    [39]E. Farantatos, G. K. Stefopoulos, G. J. Cokkinides, A. P. Meliopoulos, PMU-based dynamic state estimation for electric power systems[C]. Power & Energy Society General Meeting,2009. PES'09. IEEE,26-30 July 2009.
    [40]E. Ghahremani, I. Kamwa. Dynamic state estimation in power system by applying the extended kalman filter with unknown inputs to phasor measurements[J]. IEEE Trans. Power System,2011,26(4):2556-2565.
    [41]E. Ghahremani, I. Kamwa. Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units[J]. IEEE Trans. Energy Conversion,2011,26(4):1099-1108.
    [42]S. B. Wang, W. Z. Gao, A. P. Sakis. An alternative method for power system dynamic state estimation based on unscented transform[J]. IEEE Transactions on Power System.2012,27(2):942-950.
    [43]Q. Yang, T. Bi, J. Wu, WAMS implementation in China and the challenges for bulk power system protection[C]. Proc. IEEE power Eng. Soc. General Meeting, Tampa, FL, Jun.24-28,2007.
    [44]A. P. Meliopoulos, G. J. Cokkinides, F. Galvan, et al. Distributed state estimator-advances and demonstration[C]//Proceedings of the 41st Hawaii International Conference on System Sciences. Hawaii:Hawaii International Conference on System Sciences,2008:163-163.
    [45]A. P. Meliopoulos, G. J. Cokkinides, F. Galvan, et al. Advances in the super calibrator concept-practical implementations[C]//Proceedings of the of the 40st Annual Hawaii International Conference on System Sciences. Hawaii: Hawaii International Conference on System Sciences,2007:1-10.
    [46]O. Alsac, N. Vempati, B. Stott, et al. Generalized state estimation[J]. IEEE Transactions on Power Systems,1998,13(3):1069-1075.
    [47]A. G. Exposito, V. J. Antonio. Reduced substation models for generalized state estimation[J]. IEEE Transactions on Power Systems,2001,16(4):839-846.
    [48]A. G. Exposito, V. J. Antonio. Implicitly constrained substation model for state estimation[J]. IEEE Transactions on Power Systems,2002:17(3): 850-856.
    [49]A. Monticelli. Testing equality constraints hypothesis in weighted least squares state estimators[J]. IEEE Transactions on Power Systems, 2000,15(3):950-954.
    [50]G. N. Korres, P. J. Katsikas, G. E. Chatzarakis. Substation topology identification in generalized state estimation[J]. Electric power energy systems, 2006,28:195-206.
    [51]T. Yang, H. B. Sun, B, Anjan. Two-level PMU-based linear state estimator[C]//Power System Conference and Exposition. Seattle:IEEE/PES, 2009:1-6.
    [52]Q. X. Li, H. B. Sun, J. Wand, et al. Substation three-phase nonlinear state estimation based on KCL[C]//Power Systems Conference and Exposition, Phoenix:IEEE,2011:1-5.
    [53]李青芯,汪德星,孙宏斌,等.变电站状态估计的工程实践与效益分析[J].电力系统保护与控制,2012,40(12):56-61.
    [54]李青芯,孙宏斌,王晶,张伯明,吴文传,郭庆来.基于零阻抗支路模型的变电站三相非线性状态估计方法[J].中国电机工程学报,2011,31(25):73-80.
    [55]邱家驹.分布式状态估计[J].电力系统自动化,1988,12(6):35-42.
    [56]李阳林,卫志农,万军彪.一种新的分布式电力系统状态估计算法[J].继电器,2007,35(20):13-16+22.
    [57]K. A. Clements, O. J. Denison, R. J. Ringlee. A multi-area approach to state estimation in power system networks[C]. IEEE PES SM, San Fransisco, USA. 1973:465-473.
    [58]Y. Wallach, E. Handschin. An efficient parallel processing method for power system state estimation[J]. IEEE Transactions on PAS, 1981,100(11):4402-4406.
    [59]T. V. Cutsem, J. L. Horwardand, M. R. Pavella. A two-level static state estimator for electric power systems[J]. IEEE Transactions on PAS, 1981,100(8):3722-3732.
    [60]W. Jiang, V. Vittal, G. T. Heydt. A distributed state estimator utilizing synchronized phasor measurements[J]. IEEE Transactions on PWRS, 2007,22(2):563-571.
    [61]王耀瑜,余贻鑫.分布式能量管理系统(DEMS)状态估计分布式异步迭代算法[J].中国电机工程学报,1996,15(3):160-164.
    [62]孙宏斌,张伯明,相年德.发输配全局状态估计[J].清华大学学报,1999,39(7):20-24.
    [63]R. Ebrahimian, R. Baldick. State estimation distributed processing[J]. IEEE Transactions on PWRS,2000,15(4):1240-1246.
    [64]A. Gomez-Exposito, A. de la Villa Jaen. Two-level state estimation with local measurement pre-processing[J]. IEEE Transactions on Power Systems, 2009,24(2):676-684.
    [65]T. Yang, H. B. Sun, A. Bose. Transition to a two-level linear state estimator: Part I architecture[J]. IEEE Transaction on Power Systems,2011,26(1):46-53.
    [66]T. Yang, H. B. Sun, A. Bose. Transition to a two-level linear state estimator: Part Ⅱ algorithm[J]. IEEE Transaction on Power Systems,2011,26(1):54-62.
    [67]李青芯,孙宏斌,王晶,等.变电站—调度中心两级分布式状态估计[J].电力系统自动化,2012,36(7):44-50.
    [68]R. E. Kalman. A new approach to linear filtering and Predietion theory[J]. Trans on ASME J of Basic Engineering,1960,82D:35-46.
    [69]R. E.Kalman, R. S. Bucy. New results in linear filtering and prediction theory[J]. Journal of Basie Eng(ASME),1961,83D:95-108.
    [70]A. H. Jazwinski. Stochastic processes and filtering theory[M]. New York: Academic,1970:235-237.
    [71]刘国海,施维,李康吉.插值改进EKF算法在组合导航中的应用[J].仪器仪表学报,2007,10:1897-1901.
    [72]安群涛,孙力,李波.永磁同步电动机转速的变参数EKF估算方法[J].电机与控制学报,2007,06:559-563.
    [73]王宏健,王晶,边信黔,傅桂霞.基于组合EKF的自主水下航行器SLAM[J]机器人,2012,34(1):56-64.
    [74]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-371.
    [75]S. Arulampalam, S. Maskell, N. Gordon, et al. A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking. IEEE Trans. on Signal Processing,2000,50(2):174-188.
    [76]N. J. Gordon, D. J. Salmond, A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proc. F, 1993,140(2):107-113.
    [77]S. J. Julier, J. K. Uhlmann. A general method for approximating nonlinear transformations of probability distributions[R]. Oxford:University of Oxford, Department of Engineering Science, Robotics Research Group,1996:202-229.
    [78]F. L. William, D. L. Aaron. Unscented Kalman filters for multiple target tracking with symmetric measurement equations[J]. IEEE Trans on Automatic Control,2009,54(2):370-375.
    [79]N. P. Michail, G. A. Emmanouil, K. U. Nikolaos. Solving the association problem for a multistatic range-only radar target tracker[J]. Signal Processing, 2008,88(9):2254-2277.
    [80]H. T. Hu, Z. L. Jing, S. Q. Hu. Unscented fuzzy-controlled current statistic model and adaptive filtering for tracking maneuvering targets[J]. Communications in Nonlinear Science and Numerical Simulation, 2006,11(3):961-972.
    [81]N. Z. Cui, L. Hong, J. R. Layne. A comparison of nonlinear filtering approaches with an application to ground target tracking[J]. Signal Processing, 2005,85(8):1469-1492.
    [82]K. C. Kim, W. K. Chung. Unscented fast SLAM:A robust and efficient solution to the SLAM problem[J]. IEEE Trans on Robotics, 2008,24(4):808-820.
    [83]H. E. Soken, C. Hajiyev. Pico satellite attitude estimation via robust unscented Kalman filter in the presence of measurement faults[J]. ISA Trans, 2010,49(3):249-256.
    [84]S. Patrick, K. Lasse, P. Christian. Design, geometry evaluation and calibration of a gyroscope-free inertial measurement unit[J]. Sensors and Actuators A: Physical,2010,162(2):379-387.
    [85]X. L. Ning, J. C. Fang. A new autonomous celestial navigation method for the lunar rover[J]. Robotics and Autonomous and Systems,2009,57(1):48-54.
    [86]G. Lachapelle. Sigma-point Kalman filtering for integrated GPS and inertial navigation[J]. IEEE Trans on Aerospace and Electronic Systems, 2006,42(2):750-756.
    [87]A. M. Murshed, B. Huang, K. Nandakumar. Estimation and control of solid oxide fuel cell system[J]. Computers and Chemical Engineering, 2010,34(1):96-111.
    [88]J. L. Wang, X. Y. Feng, L. Q. Zhao, et al. Unscented transformation based robust Kalman filter and its applications in fermentation process[J]. Chinese J of Chemical Engineering,2010,18(3):412-418.
    [89]J. S. Kim, D. R. Shin, E. Serpedin. Adaptive multiuser receiver with joint channel and time delay estimation of CDMA signals based on the square-root unscented filter[J]. Digital Signal Processing,2009,19(2):504-520.
    [90]D. Simon. A comparison of filtering approaches for aircraft engine health estimation[J]. Aerospace Science and Technology,2008,12(1):276-284.
    [91]R. R. Chen, B. Liu, X. L. Cheng. Pricing the term structure of inflation risk premia: Theory and evidence from TIPS[J]. J of Empirical Finance, 2010,17(4):704-721.
    [92]K. Wang, W. Wang, Y. Zhuang. An MAP approach for vision-based self-localization of mobile robot[J]. Acta Automatica Sinica, 2008,34(2):159-166.
    [93]潘泉,杨峰,叶亮,等.一类非线性滤波器—UKF综述[J].控制与决策,2005,20(5):481-489.
    [94]S. J. Julier, J. K. Uhlmann. A new extension of the Kalman filter to nonlinear systems[C]. Proc of Aerosense: The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls. Orlando:Society of Photo-Optical Instrumentation Engineers,1997:54-65.
    [95]S. J. Julier. The scaled unscented transformation[C]. Proc of American Control Conf. Anchorage:Institute of Electrical and Electronics Engineers Inc,2002: 4555-4559.
    [96]I. Arasaratnam, S. Haykin. Cubature Kalman filter[J]. IEEE Trans on Automatic Control,2009,54(6):1254-1269.
    [97]I. Arasaratnam, S. Haykin. Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J]. IEEE Trans on Signal Processing, 2010,58(10):4977-4993.
    [98]Anup. Bayesian filtering for dynamic systems with applications to tracking[M]. Universitat Politecnica de Catalunya,2010.
    [99]J. Bae, Y. Kim. Nonlinear estimation for spacecraft attitude using decentralized unscented information filter[C]. International Conference on Control Automation and systems,2010:1562-1566.
    [100]B. Jia, M. Xin, Y. Cheng. Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation[J]. Journal of Guidance Control and Dynamics,2011,34(2):367-379.
    [101]J. Liu, B. G. Cai, T. Tang, et al. A CKF based GNSS/INS train integrated positioning method[C]. International Conference on Mechatronics and Automation,2010:1686-1689.
    [102]H. Pesonen, R. Piche. Cubature based Kalman filters for positioning[C]. Workshop on Positioning Navigation and Communication,2010:45-49.
    [103]孙枫,唐李军.基于CKF的SINS大方位失准角初始对准[J].仪器仪表学报,2012,02:327-333.
    [104]Y. Geng, J. Wang, Adaptive estimation of multiple fading factors in Kalman filter for navigation application[J]. GPS Solutions,2008,12(4):273-279.
    [105]C. Hide, T. Moore, M. Smith. Adaptive Kalman filtering algorithms for integrating GPS and low cost INS[C]. Position Location and Navigation Symposium, Monterey, USA, April 26-29,2004.
    [106]周卫东,乔相伟,吉宇人,等.基于新息和残差的白适应UKF算法[J].宇航学报,2010,31(7):1798-1804.
    [107]C. Hajiyev. Adaptive filtration algorithm with the filter gain correction applied to integrated INS/Radar altimeter[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2007,221(5):2041-3025.
    [108]D. J. Jwo, F. C. Chung. Fuzzy adaptive unscented Kalman filter for ultra-tight GPS/INS integration[C]. International Symposium on Computational Intelligence and Design, Hangzhou, China, October 29-31,2010.
    [109]D. Jwo, T. Cho. A practical note on evaluating Kalman filter performance optimality and degradation[J]. Applied Mathematics and Computation, 2007,193(2):482-505.
    [110]张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法[J].机器人,2010,32(2):190-195.
    [111]K. Xiong, L. D. Liu, H. Y. Zhang. Modified unscented Kalman filtering and its application in autonomous satellite navigation[J]. Aerospace Science and Technology,2009,13(4):238-246.
    [112]杜航原,郝燕玲,高忠强,赵巍华.基于鲁棒非线性卡尔曼滤波的自适应SLAM算法[J].宇航学报,2012,33(5):620-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700