用户名: 密码: 验证码:
自适应组合RBF滤波器理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径向基函数神经网络具有结构简单、学习能力快、收敛速度快、逼近性能强、无局部极小、便于实现以及鲁棒性较强等优点,在很多领域都得到了非常广泛的应用。针对目前径向基函数神经网络的研究现状,在深入地分析RBF神经网络基本理论的基础上,针对径向基函数神经网络在非线性信号处理应用中存在的问题,提出了两种基于RBF网络凸组合的新型网络结构。进一步研究其学习算法及其改进算法,并探讨了在非线性信道均衡、混沌时间序列预测、非线性系统辨识等方面的应用,主要内容如下:
     (1)系统地研究了径向基函数神经网络的基本理论及其在非线性信号处理领域的应用,重点研究径向基函数神经网络非线性自适应滤波器的应用。针对RBF网络自适应学习算法中固定学习步长对收敛速度和稳态误差的影响(即大的步长加快收敛速度但会产生更大的稳态误差,小的步长虽可降低稳态误差,但却减慢了收敛速度),结合凸组合的相关理论,提出了一种新型的基于两层RBF网络凸组合(CRBF)的非线性自适应滤波器。这种非线性自适应滤波器由两个不同步长的RBF网络的凸组合构成,每个RBF网络的参数(包括权值系数,基函数中心和扩展常数)的更新策略都是单独通过SG学习算法实现的。通过凸组合中的混合参数的方式,CRBF滤波器中两个RBF网络的优点都得以保留,即:大步长自适应RBF滤波器的快速收敛和小步长自适应RBF滤波器的低稳态误差。
     (2)针对前面提出的CRBF非线性自适应滤波器,推导出一种该新型结构适用的学习算法。该自适应算法能自动调整RBF网络的网络参数以及连接两个RBF网络的凸组合的混合参数。通过对其在非线性信道均衡、非线性系统辨识、混沌时间序列预测等三方面的应用进行评估,仿真结果表明,所提出的CRBF结构不仅能够缓解RBF网络收敛速度和稳态误差之间的矛盾,而且具有更好的跟踪能力。
     (3)针对提出的CRBF结构中凸组合的混合参数进行了详细的分析和研究,给出了相对应的自适应算法。该算法利用梯度下降的原理,对这些混合参数进行自适应的调整,使得最后组合的网络具有最优的特性。随后对其稳定性能进行了详细的分析,研究表明,这种RBF网络的凸组合的方式可以达到和最好的RBF网络组合同样好的性能,并且具有更好的鲁棒性和跟踪能力,更重要的是,这种组合结构和自适应算法,非常适合在线学习的方法。
     (4)对前面提出的CRBF网络的学习算法进行进一步的改进,提出了一种基于最小指数平方误差的学习算法。这种算法将原CRBF网络学习算法中小步长的RBF网络的误差代价函数替换为具有高阶统计量的指数平方误差代价函数,并利用梯度下降算法原理来对该网络的参数进行自适应调整。通过在非线性自适应信道均衡、混沌时间序列预测和非线性系统辨识等方面的应用和仿真,证明了这种算法无论是在收敛速度还是精度上都优于传统的RBF滤波算法及前面提出的CRBF滤波算法。
     (5)将基于两层RBF网络凸组合的结构进一步扩展,提出了一种基于多层RBF网络凸组合(MCRBF)的非线性自适应滤波器。这种非线性滤波器允许任意数量的独立RBF滤波器进行组合,每个滤波器使用不同的学习步长,通过自适应算法可以将不同的自适应步长调整到最理想的状态,这样可以克服收敛速度和精度所带来的局限性。通过这种方法,每个RBF网络将对非线性系统中的某种频率的变化有很好的跟踪能力,而所有的RBF网络的凸组合将对任何形式的变化都有很好的跟踪能力,从而提高整个MCRBF网络的滤波性能。本文将该结构应用到非线性动态系统的辨识中,针对不同的系统模型做了详细的研究和分析。仿真结果证明了MCRBF滤波器的有效性,同时表明它在收敛速度,稳态误差和跟踪能力等方面的整体性能都得到了提高。此外,自适应非线性滤波器的凸组合的应用给实际应用提供了进一步的合乎逻辑的研究方向。MCRBF滤波器也可以应用在其他的非线性信号处理领域。
Radial basis function neural network has been widely used in many areas because of its advantages such as simple structure, fast learning ability, fast convergence speed, strong approximation performance, no local minimum, easy implementation and strong robustness. Based on the recent research status of radial basis function (RBF) neural network, this dissertation intends to present a in-depth analysis on the basic theory of RBF neural network. In view of the problems existing in the applications of nonlinear signal processing, this dissertation proposes two types of new structure of network based on the convex combination of radial basis function neural network, studies the learning algorithm and improved algorithm, and probes into the application of the nonlinear channel equalization, chaotic time series prediction and nonlinear system identification, etc. The main contents are as follows:
     This dissertation studies the basic theory of radial basis function neural network systematically and its applications in the field of nonlinear signal processing, and focuses on the applications of the nonlinear filter based on the radial basis function neural network. In view of the impacts on the fixed learning step in the adaptive learning algorithm of RBF network on the convergence speed and steady-state error, that is, big learning step will speed up the convergence rate, but produce more steady-state error. Contrarily, small learning step can reduce the steady-state error, but has to slow down the rate of convergence. Combining the relevant theory of convex combination, we propose a novel nonlinear adaptive filter based on the convex combination of two layers RBF network (CRBF). This nonlinear adaptive filter is composed of the convex combination of two RBF networks with different learning step. Parameters (including the weight coefficients, centers of basis function and spread constants) of each RBF network are updated by SG learning algorithm individually. The advantages of both of the CRBF filter are reserved through the hybrid parameters of the convex combination, so that, fast convergence of the RBF adaptive filter can work with large learning step and low steady-state error of the small one.
     Based on the novel CRBF nonlinear adaptive filter proposed above, we present an applicable learning algorithm. This adaptive algorithm can automatically adjust the parameters of each of the RBF network and the hybrid parameters of the convex combination that connect the two RBF networks. We have assessed the application of the combinational network in the field of nonlinear channel equalization, nonlinear system identification and chaotic time series prediction and the results of simulation indicate that this type of CRBF network we proposed can not only alleviate the contradiction between convergence speed and steady-state error of the RBF network, but also has better tracking ability.
     With the detailed and intensive research, this dissertation analyzes the hybrid parameter of the convex combination of two RBF networks and corresponding adaptive algorithm we proposed and presented above. This algorithm uses the principle of gradient descent and adjusts these hybrid parameters adaptively to guarantee that the final combination network possess optimal characteristic with the satisfied. Stability performance is also analyzed in details. Studies show that the convex combination of the RBF network has the best performance on the optimized combination of the RBF network, and has better robustness and tracking ability. More importantly, this combination structure and its adaptive learning algorithm are suitable for online learning.
     An improved learning algorithm of CRBF network based on minimum index square error was proposed. This algorithm replaces the error cost function of the small step size CRBF network that we proposed above with an index square error cost function with high order statistics, and adjusts the parameters of the network adaptively by using gradient descent rule. This improved learning algorithm is applied to nonlinear adaptive channel equalization, nonlinear system identification and chaotic time series prediction in this dissertation. Simulation results show that the improved learning algorithm outperforms the traditional RBF algorithm with better convergence speed and accuracy.
     With the improvement on the convex combination of two layers RBF network further, we propose the convex combinations of multiple radial basis function network (MCRBF) nonlinear adaptive filter. This type of filter can be combined by convex combination with any number of independent RBF filter. Each filter has different learning step and can be adjusted to the ideal state by the respective adaptive learning algorithm, so that it can overcome the limitation of the convergence speed and accuracy. In this way, each of the RBF networks of the nonlinear system can follow the tracks of the change of some frequency, and the convex combination of all RBF networks can follow the tracks of various change of any frequency, so it can improve the performance of the whole MCRBF network. In this dissertation, this structure is applied to the nonlinear dynamic system identification, and the detailed research and analysis is made according to different forms of nonlinear system. The results of simulation prove the validity of the MCRBF filter and shows that the overall performance such as convergence speed, steady-state error and tracking ability has been all improved. Moreover, the convex combination of adaptive nonlinear filters that we proposed provides a logical research direction to practical application and can also be used in other nonlinear signal processing field.
引文
[1]W. S. Mcculloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of mathematical biology.1943,5(4):115-133
    [2]F. Rosenblatt. The perceptron:a probabilistic model for information storage and organization in the brain. Psychological review.1958,65(6):386-408
    [3]M. Minsky, S. Papert. Perceptrons. MIT Press,1969
    [4]J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. USA:Proceedings of the National Academy of Sciences. 1982,79:2554-2558
    [5]J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. USA:Proceedings of the National Academy of Sciences,1984:3088-3092
    [6]J. J. Hopfield. Learning algorithms and probability distributions in feed-forward and feed-back networks. USA:Proceedings of the National Academy of Sciences.1987, 84:8429-8433
    [7]J. J. Hopfield. Networks, computations, logic, and noise. IEEE International Conference on Neural Networks,1987:107-141
    [8]G. E. Hinton, T. J. Sejnowski, D. H. Ackley. Boltzmann machine:constraint satisfaction networks that learn,1984
    [9]D. H. Ackley, G. E. Hinton, T. J. Sejnowski. Learning algorithm for boltzmann machines. Cognitive Science.1988,9:147-169
    [10]K. Fukushima, S. Miyake. Neocognitron:a new algorithm for pattern recognization tolerant of deformations and shifts in position. Pattern Recognization.1982, 15(6):455-469
    [11]K. Fukushima. Neocognitron:a self-organizating neural network model for a mechanism of pattern recognization unaffected by shift in position. Biological Cybernetics.1980,36(4):193-220
    [12]K. Fukushima. Neocognitron:a hierarchical neural network capable of visual pattern recognization. Neural Networks.1988, 1(2):119-130
    [13]S. A. Grossberg. Some network that can learn, remember and reproduce any number of complicates spacetime pattern. Journal of Math. and Mech.1969(19):53-91
    [14]S. Grossberg. Adaptive pattern classification and universal recoding:parallel development and coding of neural feature detectors. Biological Cybernetics.1976, 23:121-134
    [15]T. Kohonen. Associative memory:a system theory approach. Springer,1977
    [16]T. Kohonen. Self-organization and associative memory. Springer,1984
    [17]D. E. Rumelhart, J. L. Mcclelland. Parallel distributed processing. MIT Press,1986
    [18]D. O. Hebb. The organization of behavior. Wiley,1949
    [19]B. Widrow, M.E. Hoff. Adaptive switching circuits.1960 IRE WESCON Convention Record.1960, IRE Part 4:96-104
    [20]D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propageting errors. Nature(London).1986,323:533-536
    [21]S. Haykin. Neural networks and learning machines. Third.机械工业出版,2009
    [22]J. Moody, C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural Comput.1989, 1(2):281-294
    [23]E. J. Hartman, J. D. Keeler, J. M. Kowalski. Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput.1990,2(2):210-215
    [24]T. Poggio, F. Girosi. Networks for approximation and learning. Proceedings of the IEEE.1990,78(9):1481-1497
    [25]J. Park, I. W. Sandberg. Approximation and radial-basis-function networks. Neural Comput.1993,5(2):305-316
    [26]N. M. Duy, T. T. Cong. Approximation of function and its derivatives using radial basis function networks. Applied Mathematical Modelling.2003,27(3):197-220
    [27]R. S. Govindaraju, B. Zhang. Radial-basis function networks. Springer,2000
    [28]H. Yu, T. Xie, S. Paszczynski, M. Bogdan. Wilamowski. Advantages of radial basis function networks for dynamic system design. IEEE Transactions on Industrial Electronics.2011,58(12):5438-5450
    [29]H. Khosravi. A novel structure for radial basis function networks-WRBF. Neural processing letters.2012,35(2):177-186
    [30]J. Platt. A resource-allocating network for function interpolation. Neural Comput. 1991,3(2):213-225
    [31]Y. Lu, N. Sundararajan, P. Saratchandran. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997,9(2):461-478
    [32]Y. Lu, N. Sundararajan, P. Saratchandran. Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proceedings-Control Theory and Applications,1997:202-208
    [33]S. Chen, C. F. N. Cowan, P. M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks.1991, 2(2):302-309
    [34]S. Chen, E. S. Chng, K. Alkadhimi. Regularized orthogonal least squares algorithm for constructing radial basis function networks. International Journal of Control. 1996,64(5):829-837
    [35]G. B. Huang, P. Saratchandran, N. Sundararajan. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2004,34(6):2284-2292
    [36]G. B. Huang, P. Saratchandran, N. Sundararajan. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks.2005,16(1):57-67
    [37]M. Bortman, M. Aladjem. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks.2009,20(6):1039-1045
    [38]R. Zhang, G. B. Huang, N. Sundararajan, P. Saratchandran. Improved GAP-RBF network for classification problems. Neurocomputing.2007,70(16):3011-3018
    [39]李彬,赖晓平.改进的GGAP-RBF算法及其在函数逼近中的应用.模式识别与人工智能.2007,20(2):230-235
    [40]韩红桂,乔俊飞,薄迎春.基于信息强度的RBF神经网络结构设计研究.自动化学报.2012,38(7):1083-1090
    [41]J. Lian, Y. Lee, S. D. Sudhoff, S. H. Zak. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. IEEE Transactions on Neural Networks.2008,19(3):460-474
    [42]H. M. Feng. Self-generation RBFNs using evolutional PSO learning. Neurocomputing.2006,70(1):241-251
    [43]武方方,赵银亮.一种基于蚁群聚类的径向基神经网络.西安交通大学学报.2006,40(4):386-389
    [44]J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, A. F. Diaz. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks.2003,14(6):1478-1495
    [45]V. D. Sanchez. Searching for a solution to the automatic RBF network design problem. Neurocomputing.2002,42(1):147-170
    [46]J. Tao, N. Wang. Splicing system based genetic algorithms for developing RBF networks models. Chinese Journal of Chemical Engineering.2007,15(2):240-246
    [47]S. Hyontai. Generating better radial basis function network for large data set of census. Int J Softw Eng Appl.2010,4(2):15-22
    [48]X. Fu, L. Wang. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2003,33(3):399-409
    [49]Y. Lu, N. Sundararajan, P. Saratchandran. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on Neural Networks.1998,9(2):308-318
    [50]Z.Y. Liu, J. H. Lu, L. J. Chen. A novel RBF neural network and its application in thermal processes modeling. Proceedings of the CSEE.2002,22(9):118-122
    [51]R. Savitha, S. Suresh, N. Sundararajan. A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst.2009,19(4):253-267
    [52]D. S. Broomhead, D. Lowe. Multi-variable functional interpolation and adaptive networks. Complex Systems.1988,2:321-355
    [53]C. Bishop. Improving the generalization properties of radial basis function neural networks. Neural Comput.1991,3(4):579-588
    [54]J. B. Gomm, D. L. Yu. Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Transactions on Neural Networks.2000, 11(2):306-314
    [55]K. Z. Mao. RBF neural network center selection based on Fisher ratio class separability measure. IEEE Transactions on Neural Networks.2002,13(5):1211-1217
    [56]B. Scholkopf, K. K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, V. Vapnik. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing.1997,45(11):2758-2765
    [57]D. Shi, D. S. Yeung, J. Gao. Sensitivity analysis applied to the construction of radial basis function networks. Neural Networks.2005,18(7):951-957
    [58]J. X. Peng, K. Li, D. S. Huang. A hybrid forward algorithm for RBF neural network construction. IEEE Transactions on Neural Networks.2006,17(6):1439-1451
    [59]臧小刚,宫新保,常成,凌小峰,唐斌.一种基于免疫系统的RBF网络在线训练 方法.电子学报.2008,36(7):1396-1400
    [60]宫新保,周希朗,胡光锐.基于免疫进化算法的径向基函数网络.上海交通大学学报.2003,37(10):1641-1644
    [61]S. Chen, Y. Wu, B. L. Luk. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks.1999,10(5):1239-1243
    [62]D. L. Yu, D. W. Yu. A new structure adaptation algorithm for RBF networks and its application. Neural Computing & Applications.2007,16(l):91-100
    [63]王凌,郑大钟.径向基函数神经网络结构的混合优化策略.清华大学学报自然科学版.1999,39(7):50-53
    [64]A. M. S. Barreto, H. J. C. Barbosa, N. F. F. Ebecken. GOLS-Genetic orthogonal least squares algorithm for training RBF networks. Neurocomputing.2006, 69(16):2041-2064
    [65]M. Kubat. Decision trees can initialize radial-basis function networks. IEEE Transactions on Neural Networks.1998,9(5):813-821
    [66]D. Wettschereck, T. Dietterich. Improving the performance of radial basis function networks by learning center locations. Advances in neural information processing systems,1993:1133-1140
    [67]M. Bianchini, P. Frasconi, M. Gori. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks.1995,6(3):749-756
    [68]S. A. Billings, G. L. Zheng. Radial basis function network configuration using genetic algorithms. Neural Networks.1995,8(6):877-890
    [69]J. Nie, D. A. Linkens. Learning control using fuzzified self-organizing radial basis function network. IEEE Transactions on Fuzzy Systems.1993, 1(4):280-287
    [70]A. Sherstinsky, R. W. Picard. On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Transactions on Neural Networks.1996,7(1):195-200
    [71]F. Schwenker, H. A Kestler, G. Palm. Three learning phases for radial basis function networks. Neural Networks.2001,14(4):439-458
    [72]M. J. Orr. Regularization in the selection of radial basis function centers. Neural Comput.1995,7(3):606-623
    [73]W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks.1998,9(4):601-612
    [74]张志华,郑南宁.径向基函数(RBF)神经网络的一种极大熵学习算法.计算机学报.2001,24(5):474-479
    [75]潘立登,吴宁川.径向基函数神经网络正交最小二乘改进算法的实现.北京化工大学学报.2002,29(4):82-84
    [76]孙健,申瑞民,韩鹏.一种新颖的径向基函数(RBF)网络学习算法.计算机学报.2003,26(11):1562-1567
    [77]赵志刚,单晓虹.一种基于遗传算法的RBF神经网络优化方法.计算机工程.2007,33(6):211-212
    [78]王洪斌,杨香兰,王洪瑞.一种改进的RBF神经网络学习算法.系统工程与电子技术.2002,24(6):103-105
    [79]V. Fathi, G. A. Montazer. An improvement in RBF learning algorithm based on PSO for real time applications. Neurocomputing.2013,111:169-176
    [80]H. Zayandehroodi, A. Mohamed, M. Farhoodnea, A. Heidari. New training strategies for RBF neural networks to determine fault location in a distribution network with DG units.2013 IEEE 7th International Power Engineering and Optimization Conference, Langkawi, Malaysia,2013:450-454
    [81]K. Chaowanawatee, A. Heednacram. Improved cuckoo search in RBF neural network with Gaussian distribution.8th IASTED International Conference on Advances in Computer Science, Phuket, Thailand,2013:379-386
    [82]Z. Liu, H. Zhang. Optimal design of RBF NN based on QPSO algorithm. Journal of Central South University (Science and Technology).2013,44(1):27-30
    [83]A. Sanchez, V. David. Robustization of a learning method for RBF networks. Neurocomputing.1995,9(1):85-94
    [84]刘妹琴,廖晓听.RBF神经网络的一种鲁棒学习算法.华中理工大学学报.2000,28(2):8-10
    [85]C. C. Lee, P. C. Chung, J. R. Tsai, C. I. Chang. Robust radial basis function neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics. 1999,29(6):674-685
    [86]何振亚.自适应信号处理.科学出版社,2002
    [87]S. Haykin. Adaptive filter theory.4th. englewood cliffs,2001
    [88]岳天爽等.通信中的自适应信号处理.电子工业出版社,2000
    [89]莫玮.神经网络在自适应均衡中的应用研究.西安电子科技大学.2000
    [90]T. Chen, H. Chen. Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks. IEEE Transactions on Neural Networks.1995,6(4):904-910
    [91]M. Casdagli. Nonlinear prediction of chaotic time series. Physica D:Nonlinear Phenomena.1989,35(3):335-356
    [92]E. S. Chng, S. Chen, B. Mulgrew. Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Transactions on Neural Networks.1996,7(1):190-194
    [93]R. Zemouri, D. Racoceanu, N. Zerhouni. Recurrent radial basis function network for time-series prediction. Engineering Applications of Artificial Intelligence.2003, 16(5):453-463
    [94]M. R. Cowper, B. Mulgrew, C. P. Unsworth. Nonlinear prediction of chaotic signals using a normalised radial basis function network. Signal Processing.2002, 82(5):775-789
    [95]H. Leung, T. Lo, S. Wang. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Transactions on Neural Networks.2001, 12(5):1163-1172
    [96]R. Katayama, Y. Kajitani, K. Kuwata, Y. Nishida. Self generating radial basis function as neuro-fuzzy model and its application to nonlinear prediction of chaotic time series. Second IEEE International Conference on Fuzzy Systems,1993:407-414
    [97]Y. F. Sun, Y. C. Liang, W. L. Zhang, H. P. Lee, W. Z. Lin, L. J. Cao. Optimal partition algorithm of the RBF neural network and its application to financial time series forecasting. Neural Computing & Applications.2005,14(1):36-44
    [98]Z. J. Yu. RBF Neural networks optimization algorithm and application on tax forecasting. Telkomnika.2013, 11(7):3491-3497
    [99]L. S. Yin, Y. G. He, X. P. Dong, Z. Q. Lu. Adaptive chaotic prediction algorithm of RBF neural network filtering model based on phase space reconstruction. Journal of Computers.2013,8(6):1449-1455
    [100]S. Chen, S. A. Billings, P. M. Grant. Recursive hybrid algorithm for non-linear system identification using radial basis function networks. International Journal of Control. 1992,55(5):1051-1070
    [101]W. Yu, X. O. Li. System identification using adjustable RBF neural network with stable learning algorithms. Advances in Neural Networks.2004:21-22
    [102]X. P. Zeng, H. Q. Zhao, W. D. Jin. Adaptive convex combination of two RBF networks and its application to nonlinear system identification. Advanced Materials Research.2012,562:1697-1701
    [103]H. Peng, T. Ozaki, Y. Toyoda, H. Shioya, K. Nakano, V. H. Ozaki, M. Mori. RBF-ARX model-based nonlinear system modeling and predictive control with application to a NO decomposition process. Control Engineering Practice.2004, 12(2):191-203
    [104]W. Chai, J. Qiao. Non-linear system identification and fault detection method using RBF neural networks with set membership estimation. International Journal of Modelling, Identification and Control.2013,20(2):114-120
    [105]X. D. Wang, H. H. Shao. The theory of RBF neural network and its application in control. Information and Control.1997,26(4):272-284
    [106]王学雷,邵惠鹤,李亚芬.一种径向基函数神经网络在线训练算法及其在非线性控制中的应用.信息与控制.2001,30(3):249-252
    [107]S. H. Luo. Adaptive RBF network control for uncertain system of dual arm robot.2nd International Conference on Mechanical Engineering, Materials and Energy, Dalian, China,2013:37-40
    [108]C. X. Li, Z. Liu, Z. H. Gao. RBF network inverse control method for MIMO nonaffine system. System Engineering Theory and Practice.2013,33(6):1601-1607
    [109]I. Cha, S. A. Kassam. Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications.1995, 13(1):122-131
    [110]S. Chen, B. Mulgrew, P. M. Grant. A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Transactions on Neural Networks.1993,4(4):570-590
    [111]S. Chen, S. Mclaughlin, B. Mulgrew. Complex-valued radial basis function network, part Ⅱ:Application to digital communications channel equalisation. Signal Processing.1994,36(2):175-188
    [112]Y. Tan, J. Wang, J. M. Zurada. Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks.2001,12(1):124-134
    [113]M. J. Er, S. Q. Wu, J. W. Lu, H. L. Toh. Face recognition with radial basis function (RBF) neural networks. IEEE Transactions on Neural Networks.2002,13(3):697-710
    [114]M. Rosenblum, Y. Yacoob, L. S. Davis. Human expression recognition from motion using a radial basis function network architecture. IEEE Transactions on Neural Networks.1996,7(5):1121-1138
    [115]C. B. Yu, J. Tan, L. Yu, Y. L. Tian. A finger vein recognition method based on PCA-RBF neural network.2nd International Conference on Manufacturing Engineering and Process, Vancouver, BC, Canada,2013:1653-1658
    [116]J. Ye, L. Ge, Y. Wu. An application of improved RBF neural network in modulation recognition. Acta Automatica Sinica.2007,33(6):652-654
    [117]R. N. Mahanty, P. B. D. Gupta. Application of RBF neural network to fault classification and location in transmission lines. IEE Proceedings-Generation, Transmission and Distribution,2004:201-212
    [118]C. Boukis, D. P. Mandic, A. G. Constantinides. A class of stochastic gradient algorithms with exponentiated error cost functions. Digital Signal Processing.2009, 19(2):201-212
    [119]J. A. Leonard, M. A. Kramer. Radial basis function networks for classifying process faults. Control Systems.1991, 11(3):31-38
    [120]K. G. Narendra, V. K. Sood, K. Khorasani, R. Patel. Application of a radial basis function (RBF) neural network for fault diagnosis in a HVDC system. IEEE Transactions on Power Systems.1998,13(1):177-183
    [121]E. Amini, M. Aliyari, H. Tolouei, M. Mansouri. Model-based fault detection using RBF networks and extended Kalman filter.1st RSI/ISM International Conference on Robotics and Mechatronics, Tehran, Iran,2013:242-247
    [122]Q. Wu, Y. H. Wang, L. Zhang, L. Shen. The research on fault diagnosis of building electrical system based on RBF neural network.2013 Chinese Intelligent Automation Conference, Yangzhou, Jiangsu, China,2013:9-19
    [123]X. Wang, J. Xu, G. D. Zhang, R. M. Qi. Fault diagnosis of cascaded converter based on wavelet packet RBF neural network.2nd International Conference on Innovation Manufacturing and Engineering Management, Chongqing, China,2013:300-304
    [124]M. J. D. Powell. Radial basis functionals for multivariable interpolation:A review. IMA conference on algorithms for the approximation of functions and data, RMCS,Shrivenham,England,1985:143-167
    [125]史智忠.神经网络.高等教育出版社,2009
    [126]C. A. Micchelli. Interpolation of scattered data:distance matrices and conditionally positive definite functions. Constructive Approximation.1986,2(1):11-22
    [127]A. N. Tikhonov. On solving incorrectly posed problems and method of regularization. doklady akademii nauk USSR.1963,151:501-504
    [128]焦李成,杜海峰,刘芳.免疫优化计算、学习和识别.科学出版社,2006
    [129]靳海水,朱士明.基于遗传算法的径向基网络学习及其应用.同济大学学报(自然科学版).2003,31(5):610-613
    [130]Y. S. Chen, C. J. Chang, Y. L. Hsieh. A channel effect prediction-based power control scheme using PRNN/ERLS for uplinks in DS-CDMA cellular mobile systems. IEEE Transactions on Wireless Communications.2006,5(1):23-27
    [131]王军锋.小波和神经网络在自适应均衡中的算法研究.西安电子科技大学.2003
    [132]张贤达.现代信号处理.清华大学出版社,2002
    [133]Y. Pao. Adaptive pattern recognition and neural networks. Addison-Wesley Pub,1989
    [134]V. J. Mathews, G. L. Sicuranza. Polynomial Signal Processing, wiley,2000
    [135]P. S. R. Diniz. Adaptive filtering:algorithms and practical implementation. Springer, 2008
    [136]S. D. Singh, A. Chatterjee. A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters. Measurement.2011,44(10):1915-1923
    [137]J. Park, I. W. Sandberg. Universal approximation using radial-basis-function networks. Neural Comput.1991,3(2):246-257
    [138]S. A. Kassam, I. Cha. Radial basis function networks in nonlinear signal processing applications. Conference record of the asilomar conference of signals,systems and computers,1993:1021-1025
    [139]J. Lee, C. Beach, N. Tepedelenlioglu. A practical radial basis function equalizer. IEEE Transactions onNeural Networks.1999,10(2):450-455
    [140]Q. Gan, P. Saratchandran, N. Sundararajan, K. R. Subramanian. A complex valued radial basis function network for equalization of fast time varying channels. IEEE Transactions on Neural Networks.1999,10(4):958-960
    [141]I. Cha, S. A. Kassam. Time-series prediction by adaptive radial basis function networks. IEEE 26th Annu. Conf. Inform. Sci. Syst.,1993:818-823
    [142]F. H. F. Leung, H. K. Lam, S. H. Ling, P. K. S. Tam. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks.2003,14(1):79-88
    [143]V. Kadirkamanathan, M. Niranjan. A function estimation approach to sequential learning with neural networks. Neural Comput.1993,5(6):954-975
    [144]J. A. Garcia, A. R. F. Vidal. Adaptive combination of normalised filters for robust system identification. Electronics Letters.2005,41(15):874-875
    [145]J. A. Garcia, A. R. F. Vidal, A. H. Sayed. Mean-square performance of a convex combination of two adaptive filters. IEEE Transactions on Signal Processing.2006, 54(3):1078-1090
    [146]M. M. Ramon, J. A. Garcia, A. N. Vazquez, A. R. F. Vidal. An adaptive combination of adaptive filters for plant identification.2002 14th International Conference on Digital Signal Processing,2002:1195-1198
    [147]L. A. A. Ruiz, A. R. F. Vidal, J. A. Garcia. A normalized adaptation scheme for the convex combination of two adaptive filters. IEEE International Conference on Acoustics, Speech and Signal Processing,2008:3301-3304
    [148]J. A. Garcia, A. R. F. Vidal. Adaptive combination of proportionate filters for sparse echo cancellation. IEEE Transactions on Audio, Speech, and Language Processing. 2009,17(6):1087-1098
    [149]J. A. Garcia, A. R. F. Vidal. Improved blind equalization via adaptive combination of constant modulus algorithms.2006 IEEE International Conference on Acoustics, Speech and Signal Processing,2006:756-759
    [150]J. A. Garcia, A. F. Vidal, A. Sayed. Steady state performance of convex combinations of adaptive filters. IEEE International Conference on Acoustics, Speech, and Signal Processing,2005:33-36
    [151]H. Q. Zhao, X. P. Zeng, X. Q. Zhang, J. S. Zhang, Y. G. Liu, T. Wei. An adaptive decision feedback equalizer based on the combination of the FIR and FLNN. Digital Signal Processing.2011,21(6):679-689
    [152]L. A. A. Ruiz, M. Zeller, A. R. F. Vidal, J. A. Garcia, W. Kellermann. Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech, and Language Processing.2011, 19(1):97-110
    [153]M. Zeller, L. A. A. Ruiz, J. A. Garcia, W. Kellermann. Adaptive Volterra filters with evolutionary quadratic kernels using a combination scheme for memory control. IEEE Transactions on Signal Processing.2011,59(4):1449-1464
    [154]H. Q. Zhao, J. S. Zhang. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel. IEEE Transactions on Neural Networks.2009,20(4):665-674
    [155]P. Andersson. Adaptive forgetting in recursive identification through multiple models(?). International Journal of Control.1985,42(5):1175-1193
    [156]M. Niedzwiecki. Multiple-model approach to finite memory adaptive filtering. IEEE Transactions on Signal Processing.1992,40(2):470-473
    [157]S. S. Kozat, A. C. Singer. Multi-stage adaptive signal processing algorithms. Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop,2000:380-384
    [158]Vovk, Volodya. Competitive on-line statistics. International Statistical Review.2001, 69(2):213-248
    [159]D. E. Rumelhart, G. E. Hintont, R. J. Williams. Learning representations by back-propagating errors. Nature.1986,323(6088):533-536
    [160]J. A. Garcia, V. G. Verdejo, A. R. F. Vidal. New algorithms for improved adaptive convex combination of LMS transversal filters. IEEE Transactions on Instrumentation and Measurement.2005,54(6):2239-2249
    [161]H. Q. Zhao, J. S. Zhang. Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network. Neurocomputing.2009, 72(13):3046-3054
    [162]尹成,伍志明,邓怀群.高阶统计量方法在地震勘探中的应用.地球物理学进展.2003,18(3):546-550
    [163]王树勋.高阶统计量在系统理论中的应用.自动化学报.1994,20(6):710-716
    [164]E. Walach, B. Widrow. The least mean fourth (LMF) adaptive algorithm and its family. IEEE Transactions on Information Theory.1984,30(2):275-283
    [165]O. Tanrikulu, A. G. Constantinides. Least-mean kurtosis:a novel higher-order statistics based adaptive filtering algorithm. Electronics Letters.1994,30(3):189-190
    [166]J. A. Chambers, O. Tanrikulu, A. G. Constantinides. Least mean mixed-norm adaptive filtering. Electronics Letters.1994,30(19):1574-1575
    [167]J. Chambers, A. Avlonitis. A robust mixed-norm adaptive filter algorithm. Signal Processing Letters,1997,4(2):46-48
    [168]D. R. Mandic, E. V. Papoulis, C. G. Boukis. A normalized mixed-norm adaptive filtering algorithm robust under impulsive noise interference.2003 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP2003), 2003:333-336
    [169]A. K. Barros, J. Principe, Y. Takeuchi, C. H. Sales, N. Ohnishi. An algorithm based on the even moments of the error.2003 IEEE 13th Workshop on Neural Networks for Signal Processing(NNSP2003),2003:879-885
    [170]H. Q. Zhao, J. S. Zhang. A novel adaptive nonlinear filter-based pipelined feedforward second-order Volterra architecture. IEEE Transactions on Signal Processing.2009,57(1):237-246
    [171]A. Rahrooh, S. Shepard. Identification of nonlinear systems using NARMAX model. Nonlinear Analysis:Theory, Methods & Applications.2009,71:1198-1202
    [172]P. J. Antsaklis. Neural networks for control systems. IEEE Transactions on Neural Networks.1990, 1(2):242-244
    [173]M. Alci, M. H. Asyali. Nonlinear system identification via Laguerre network based fuzzy systems. Fuzzy Sets and Systems.2009,160(24):3518-3529
    [174]K. S. Narendra, K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks.1990, 1(1):4-27
    [175]X. F. Ni, S. J. R. Simons. Nonlinear dynamic system identification using radial basis function networks. Proceedings of the 35th IEEE Decision and Control, 1996:935-936
    [176]Y. Li, N. Sundararajan, P. Saratchandran. Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems. IEE Proceedings-Control Theory and Applications,2000:476-484
    [177]J. C. Patra, R. N. Pal, B. N. Chatterji, G. Panda. Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.1999,29(2):254-262
    [178]J. C. Patra, A. C. Kot. Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2002,32(4):505-511
    [179]H. Q. Zhao, J. S. Zhang. Functional link neural network cascaded with Chebyshev orthogonal polynomial for nonlinear channel equalization. Signal Processing.2008, 88(8):1946-1957
    [180]J. C. Patra, C. Bornand. Nonlinear dynamic system identification using Legendre neural network. The 2010 International Joint Conference on Neural Networks (IJCNN).2010:1-7
    [181]H. Lee, Y. Park, K. Mehrotra, C. Mohan, S. Ranka. Nonlinear system identification using recurrent networks.1991 IEEE International Joint Conference on Neural Networks.1991:2410-2415
    [182]A. Thammano, P. Ruxpakawong. Nonlinear dynamic system identification using recurrent neural network with multi-segment piecewise-linear connection weight. Memetic Computing.2010,2(4):273-282
    [183]J. Bilski, L. Rutkowski. A fast training algorithm for neural networks. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing.1998, 45(6):749-753
    [184]H. G. Han, J. F. Qiao. Adaptive Computation Algorithm for RBF Neural Network. IEEE Transactions on Neural Networks and Learning Systems.2012,23(2):342-347
    [185]A. H. Sayed. Fundamentals of adaptive filtering. Wiley-IEEE Press,2003
    [186]S. K. Zhao, Z. Man, S. Y. Khoo, H. R. Wu. Variable step-size LMS algorithm with a quotient form. Signal Processing.2009,89(1):67-76
    [187]S. K. Zhao, Z. H. Man, S. Khoo, H. R. Wu. Stability and convergence analysis of transform-domain LMS adaptive filters with second-order autoregressive process. IEEE Transactions on Signal Processing.2009,57(1):119-130
    [188]S. K. Zhao, Z. H. Man, S. Khoo. A generalized data windowing scheme for adaptive conjugate gradient algorithms. Signal Processing.2009,89(5):894-900
    [189]J. A. Garcia, M. M. Ramon, V. G. Verdejo, A. R. F. Vidal. Multiple plant identifier via adaptive LMS convex combination.2003 IEEE International Symposium on Intelligent Signal Processing.2003:137-142
    [190]张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测.物理学报.2007,56(2):713-719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700