用户名: 密码: 验证码:
混凝土桥梁合理耐用结构构造的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构构造在混凝土桥梁的耐久性和受力性能方面发挥着重要作用,但一直没有得到充分的重视。本文依托交通运输部西部交通建设科技项目“混凝土桥梁合理耐用结构构造的研究”(200631822302-04),对影响混凝土桥梁结构耐久性的关键构造进行了研究,主要研究内容如下:
     1、针对结构构造对混凝土桥梁结构的使用性能及耐久性能的影响,提出了“合理耐用结构构造”的概念,对相应含义和影响因素进行了分析。应用层次分析法,分析了各主要结构构造所占的比重以及合理耐用性影响因素的权重。通过对耐久性及结构应力分析方法的总结,构建了合理耐用结构构造研究的方法体系,为混凝土桥梁合理耐用结构构造的研究奠定了基础。
     2、基于混凝土凝结硬化时的自收缩、碳化对钢筋的锈蚀作用、氯离子对钢筋的锈蚀作用等方面对混凝土结构保护层厚度的影响进行了分析,并结合现有桥梁及混凝土结构规范中关于混凝土保护层厚度的分析比较,提出了一般大气环境和氯离子环境下特定设计基准期的梁(板)最小合理保护层厚度和混凝土最低强度推荐值。
     3、通过数值分析与现场调研,对混凝土T梁横隔板构造和横隔板横向连接型式进行了深入探讨,提出了T梁横隔板及其横向连接的适宜构造形式,并对所确定构造的合理耐用性进行了分析。
     4、通过数值分析与现场调研,对混凝土T梁桥面板的构造和钢筋布置构造进行了深入探讨。确定了T梁桥面板适宜的宽度和厚度以及钢筋的适宜直径和间距,并对所确定构造的合理耐用性进行了分析。
     5、基于板桥铰缝静载及疲劳试验,分析了铰缝破坏机理,明确了疲劳荷载对铰缝性能的影响。通过对光纤光栅量测数据、电阻应变计量测数据以及数值分析结果的对比分析,验证了光纤光栅应变量测装置的有效性,创新了混凝土桥梁结构细部构造应变量测的方法和手段。
     6、在板桥铰缝试验的基础上,通过数值模拟,分析了铰缝深度和混凝土桥面铺装厚度对铰接板结构整体性能及铰缝内部受力性能的影响,明确了板桥结构铰缝破坏的原因,提出了铰接板桥的合理耐用结构构造形式。合理耐用结构构造的设计原则,给出了合理耐用结构构造设计的主要内容与方法,为混凝土桥梁合理耐用结构构造设计手册的编制奠定了基础。
Configurations played important roles in durability and mechanical performance of concrete bridges, but had not been taken sufficiently. Supported by the science and technology project of ministry of communication, several key configurations of concrete bridges in this paper had been studied, the main contents were as follows:
     1. Based on the impacts of service performance and durability of concrete bridges by configurations, the concept "applicable and durable configuration" was proposed, the meaning and impact factors of it were analysised. The proportions of main structures and weights of impact factors were analyzed by using AHP. The research methodology of applicable and durable configuration was also proposed, which laid a foundation of study of applicable and durable configurations of concrete bridge.
     2. The thickness of reinforcement covers were researched from three aspects:based on the autogenous shrinkage of concrete during condensation and hardening, corrosion of reinforcements caused by carbonization, corrosion of reinforcements caused by chloride. Compared with thickness of cover in criterions of bridge and concrete structure, the minimum thickness of reinforcement cover and the minimum strength of concrete on the specific design reference period were recommended.
     3. Based on the theory research and numerical analysis, the configurations of diaphragm plate of T beam and connection configurations of diaphragm plate were studied. The suitable construction size and the connection configurations of diaphragm plate were determined, and the applicability and durability of these configurations were also verified.
     4. Based on the theory research and numerical analysis, the configurations and reinforcement arrangements of bridge deck of concrete T beam were studied. The suitable width and thickness of bridge decks and the appropriate diameter and spacing of reinforcements were determined, and the applicability and durability of these configurations were also verified.
     5. Based on the experiments of hinge joints under static and fatigue loads, the mechanisms of hinge joints damage were analysised, the effects on the hinge joints performance by fatigue loading were definited. Based on the comparison and analysis of measurement data through the grating, the resistance strain gage and the numerical results, the validity of Fiber Bragg Grating Strain measuring device were verified, strain measurement methods and means of detailed configuration of the concrete bridge were innovated.
     6. Combined with hinge joints experiments, through numerical analysis, the integral mechanical behaviors of hinged plates and stress performances in hinge joints were studied, which were impacted by depth of hinge joints and thickness of concrete deck pavement. The reason of hinge joints destroy was definited, the applicable and durable configurations of hinged plate bridges were proposed.
     7. Based on the research and summary of applicability and durability of the main configurations of concrete bridge, the design principles and main contents of applicable and durable configurations of concrete bridge were proposed, which laid a foundation of design manual compilation of applicable and durable configurations of concrete bridge.
引文
[1]交通部《2006年公路养护统计年报》[R].中华人民共和国交通部,2006
    [2]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2002
    [3]张誉,蒋利学,张卫平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003
    [4]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(6):451-454
    [5]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [6]陈艾荣,吴海军.基于耐久性的桥梁设计的几个原则[J].上海市公路学会第六届年会学术论文集,116-121
    [7]张师定.桥梁建筑的结构构思与设计技巧[M].北京:人民交通出版社,2002
    [8]杨建江,郭学亮.混凝土保护层厚度的控制[J].低温建筑技术,2006,5:89-91
    [9]徐善华,牛荻涛,王庆霖.大气环境条件下混凝土保护层取值的研究[J].土木工程学报,2005,38(11):45-50
    [10]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2005,36(8):939-945
    [11]李维红,詹坤,林雪凌.钢筋保护层厚度对钢筋混凝土梁力学性能的影响[J].大连大学学报,2008,29(6):80-83
    [12]蒋东红.钢筋砼结构中钢筋保护层厚度控制的研讨[J].广西大学学报(自然科学版),2003,28(3):277-280
    [13]Rasheeduzzafar, Al-Saadoun, S.S., Al-Gahtani, A.S..Corrosion Cracking in Relation to Bar Diameter, Cover, and Concrete Quality [J]. Journal of Materials in Civil Engineering, 1992,4(4):327-342
    [14]Makhlouf H. M., Malhas F. A.. Effect of Thick Concrete Cover on the Maximum Flexural Crack Width Under Service Load[J]. ACI Structural Journal,1996,93(3): 257-265
    [15]Prabakar J., Chellappan A., Srinivasan P.. Effect of Concrete Grades, Cover Thickness and Surface Coating of RC on Durability [J]. Indian Concrete Journal,2007,81(2):15-22
    [16]Matsushima M., Tsutsumi T., Seki H., et al. Study of the Application of Reliability Theory to the Design of Concrete Cover[J]. Magazine of Concrete Research,1998,50 (1):5-16
    [17]C. S. Cai, Marcio Araujo, Anand Chandolu, et al. Diaphragm Effects of Prestressed Concrete Girder Bridges:Review and Discussion [J]. Practice Periodical on Structural Design and Construction,2007(8):161-167
    [18]吕玉匣,刘炎海.横隔板对多主梁结构受力行为的影响分析[J].兰州交通大学学报(自然科学版),2004,23(1):38-42
    [19]Tanya Green, Nur Yazdani P.E., Lisa Spainhour. Contribution of Intermediate Diaphragms in Enhancing Precast Bridge Girder Performance [J]. Journal of Performance of Constructed Facilities,2004(8):142-146
    [20]R. B. Fleischman, G. Wan. Appropriate Overstrength of Shear Reinforcement in Precast Concrete Diaphragms [J]. Journal of Structural Engineering,2007(11):1616-1626
    [21]于进学.混凝土简支梁横隔板裂损分析与加固措施[J].铁道建筑,2003,(8):3-4
    [22]刘润阳.T梁横隔板不同连接状态对主梁受力的影响[J].铁道建筑,2009,(3):46-48
    [23]梁志广.装配式T梁横隔板病害及加固[J].中国市政工程,2007,(5):92-93
    [24]李一红.铁路桥梁横隔板病害的预防与整治[J].太原铁道科技,2007,(1):25
    [25]周兴宇.混凝土桥梁横隔板断裂的加固[J].铁道建筑,2007,(10):25-27
    [26]庄先华,魏利刚.预应力桥梁横隔板的加固技术[J].铁道运营技术,1999,5(1):34-35,46
    [27]覃维祖.混凝土桥面板开裂的解决办法[J].世界桥梁,2003,3:53-56
    [28]Mohsen A. Issa. Investigation of Cracking in Concrete Bridge Decks at Early Ages[J]. Journal of Bridge Engineering,1999,5:116-24
    [29]Rambod Hadidi, M. Ala Saadeghvaziri. Transverse Cracking of Concrete Bridge Decks: State-of-the-Art[J]. Journal of Bridge Engineering,2005,9/10:503-510
    [30]M. Ala Saadeghvaziri, Rambod Hadidi. Transverse Cracking of Concrete Bridge Decks: Effects of Design Factors[J]. Journal of Bridge Engineering,2005.9/10:511-519
    [31]刘玉霞译.抗腐的无筋桥面板[J].国外公路,2000,20(6):28-29
    [32]余报楚,张哲,高潮,等.混凝土桥面板的非线性有限元分析[J].哈尔滨工业大学学报,2007,39(2):318-321
    [33]J. Paul Smith-Pardo, Julio A. Ramirez, Randall W. Poston. Distribution of Compressive Stresses in Transversely Posttensioned Concrete Bridge Decks[J]. Journal of Bridge Engineering,2006,1/2:64-70
    [34]Sonoda K., T. Horikawa. Fatigue Strength of Reinforced Concrete Slabs under Moving Loads, Proceedings of the IABSE Colloquium[J]. Fatigue of Steel and Concrete Structures,1982,37:455-462
    [35]Perdikaris P. C., M. F. Petrou, A. Wang. Fatigue Strength and Stiffness of Reinforced Concrete Bridge Decks [R]. Report of FHWA/OH-93/016,1993
    [36]易建国.混凝土简支梁(板)桥[M].北京:人民交通出版社,2006
    [37]刘培文,周卫,张君纬等.公路小桥涵设计示例[M].北京:人民交通出版社,2005
    [38]张永放.高速公路板式桥梁中铰缝构造的病害与处治[J].公路交通科技(应用技术版),2008,7:122-124
    [39]王铁成,徐辉,赵少伟.桥梁板结构优化试验研究[J].中南公路工程,2006,31(3):45-48
    [40]张丽芳,郭涛,吴文清,等.旧桥拓宽中拼接方式对旧桥受力状态的影响分析[J].公路交通科技,2006,23(2):102-105
    [41]魏洋,胡胜飞,张敏,等.环氧树脂在简支板梁桥铰缝加固中的应用研究[J].特种结构,2006,23(4):78-81
    [42]邹兰林,黄平明,王达.锚喷混凝土加固浅铰缝板桥研究[J].郑州大学学报(工学版),2007,28(3):44-47
    [43]魏洪涛.预应力空心板梁结构开裂病害的研究(硕士学位论文)[D].天津:河北工业大学,2007
    [44]Pullin, R., Holford, K.M.,Lark, R.J., et al. Acoustic Emission Assessment of Concrete Hinge Joints[J]. Key Engineering Materials,2003,245-346:323-330
    [45]Kogler Robert, Hartmann Joey. Waterproofing Membranes:A Vital Component of the Bridge of the Future [J]. Journal of Protective Coatings and Linings,2005,22(8):59-64
    [46]Wu Shaopeng, Wang Hong, Han Jun, et al. Research on Waterproof-adhesive Layer's Shearing Strength in Cement Concrete Bridge Pavement[J].Key Engineering Materials, 2010,417-418:849-852
    [47]Xu Qinwu, Zhou Qinghua, Medina Cesar, et al. Experimental and Numerical Analysis of a Waterproofing Adhesive Layer Used on Concrete-bridge Decks [J]. International Journal of Adhesion and Adhesives,2009,29(5):525-534
    [48]Andreas Hoernig,李伶,江永淋,等.德国高速铁路桥梁防水系统技术[J].新型建筑材料,2008,(9):55-58
    [49]高雪池,黄晓明,王松根.大跨径预应力混凝土桥梁防水粘结层的研究[J].公路交通科技,2005,22.(8):70-73
    [50]沈中治,张捷,黄顺禧.北京地区桥梁防水概述[J].城市道桥与防洪,2005,2:6-10
    [51]吴海军.桥梁结构耐久性设计方法研究[D].上海:同济大学,2006
    [52]穆祥纯.城市道路与桥梁防水技术的研究和应用[J].城市道桥与防洪,2004,4:2-16
    [53]吴轶娟.天津市海滨大道桥梁防水技术介绍[J].道路与桥梁防水,2010,5:22-25
    [54]崔习文.改进桥梁排水系统的建议[J].铁道设计标准,1996,4:15-17
    [55]Yazdani Nur, Eddy Scott, Cai C. S. Effect of Bearing Pads on Precast Prestressed Concrete Bridges[J]. Journal of Bridge Engineering,2000,5(3):224-232
    [56]叶爱君,胡世德,范立础.桥梁支座抗震性能的模拟分析[J].同济大学学报,2001,29(1):6-9
    [57]Green Tanya, Yazdani Nur, Spainhour Lisa, et al. Effect of Bearing Stiffness and Skew Angle on Performance of Precast Concrete Bridge [J]. Transportation Research Record, 2001,1770:27-33
    [58]Freire Luis M. R., De Brito Jorge. Relationship between Bearings Type and Their Most Common Anomalies[C]. Proceedings of the 3rd International Conference on Bridge Maintenance, Safety and Management, Life-Cycle Performance and Cost,2006:205-206
    [59]田真,周路舟.桥梁支座病害的整治方法[J].铁道建筑,2003,6:18-19
    [60]梁小光,齐雅敬,徐利军.桥梁支座更换施工新技术[J].公路,2006,5:96-99
    [61]Woodard M. J., Kuo S. S.. Evaluating Polymer Concrete Bridge Expansion Joints Using Acoustic Emission[J]. Proceedings of Engineering Mechanics,1992:409-412
    [62]Ghimire Jhabindra P., Matsumoto Yasunao, Yamaguchi Hiroki, et al. Numerical Investigation of Noise Generation and Radiation From an Existing Modular Expansion Joint between Prestressed Concrete Bridges[J]. Journal of Sound and Vibration,2009, 328(1-2):129-147
    [63]高伟生.桥梁伸缩缝装置损坏原因及修复[J].散装水泥,2006,1:56-57
    [64]张淼鑫.桥梁伸缩缝病害分析与处治浅议[J].西部探矿工程,2006,7:267-268
    [65]李扬海,程潮洋,鲍卫刚,等.公路桥梁伸缩装置[M].北京:人民交通出版社,2001
    [66]曹先星,李建军.浅谈公路桥梁伸缩缝改造施工质量控制[J].华东交通大学学报,2005,22(5):27-29
    [67]Keoleian Gregory A., Kendall Alissa, Dettling Jonathan E., et al. Life Cycle Modeling of Concrete Bridge Design:Comparison of Engineered Cementitious Composite Link Slabs and Conventional Steel Expansion Joints[J]. Journal of Infrastructure Systems,2005, 11(1):51-60
    [68]刘炳华,闫新勇,王廷臣.无伸缩缝技术在桥梁中的应用和发展[J].公路交通技术, 2006,4:79-83
    [69]彭大文.无伸缩装置桥梁的发展[J].福州大学学报(自然科学版),2001,29(2):70-75
    [70]彭大文,洪锦祥,郭爱民,等.无伸缩缝桥梁的动力特性计算与试验研究[J].地震工程与工程振动,2005,25(2):72-76
    [71]郭爱民.无伸缩缝桥梁桥台与主梁的结点构造设计[J].公路,2006,10:26-29
    [72]Kim Sang-Hoon, Shinozuka Masanobu. Effects of Seismically Induced Pounding at Expansion Joints of Concrete Bridges[J]. Journal of Engineering Mechanics,2003, 129(11):1225-1234
    [73]Walter Podolny. Durability of Post-tensioning Tendons, Technical Report, Bulletin 15, fib, 2001 [R]. International Concrete Association,2001
    [74]TR47, Durable Post-tensioned Concrete Bridges(Second Edition) [S]. British Concrete Society,2002
    [75]EN 445:1996, Grout for prestressing tendons-test methods[S]. European Standards,1996
    [76]EN 446:1996, Grout for prestressing tendons-Grouting procedure[S]. European Standards,1996
    [77]EN 446:1996, Grout for prestressing tendons-Specification for common grout[S]. European Standards,1996
    [78]2002, New Directions for Florida Post-tension Bridges[S]. Florida Department of Transportation,2002
    [79]CCES01-2004,混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社,2005
    [80]GB/T 50476-2008,混凝土结构耐久性设计规范[S].北京:中国建筑工业出版社,2008
    [81]周献祥.品味钢筋混凝土[M].北京:中国水利水电出版社/知识产权出版社,2006
    [82]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    [83]长安大学.混凝土桥梁合理耐用结构构造研究报告之分报告:混凝土桥梁耐久性状况调查报告[R].西安:长安大学,2010
    [84]唐先习,徐岳,姚晓飞.混凝土桥梁合理耐用结构构造研究方法浅析[J].建筑结构,2010,40(S2):722-725
    [85]覃维祖.混凝土耐久性研究的现状和发展动向[J].建筑技术,2001,32(1):12-15
    [86]徐岳,唐先习,薛倬昆,等.混凝土桥梁合理耐用结构构造研究探讨[J].建筑结构,2010,40(S2):726-730
    [87]陈艾荣.基于给定结构寿命的桥梁设计过程[M].北京:人民交通出版社,2009
    [88]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2002
    [89]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [90]王有志,王广洋,任锋,等.桥梁的可靠性评估与加固[M].北京:中国水利水电出版社,2002
    [91]山东省交通厅公路局,等.海潮影响区混凝土桥梁耐久性评价与防腐技术研究分报告:海潮影响区混凝土桥梁耐久性研究现状与发展[R].济南:山东省交通公路局,2007:19
    [92]甘应爱,田丰,李维铮,等.运筹学[M].北京:清华大学出版社,2005
    [93]许树柏.层次分析法原理[M].天津:天津大学出版社,1988
    [94]于繁华,刘寒冰.钢筋混凝土简支梁的多目标可靠性稳健优化设计[J].公路交通科技,2007,24(8):52-56
    [95]汪劲丰,吴光宇.桥梁结构仿真分析理论及其工程应用[M].杭州:浙江大学出版社,2007
    [96]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003
    [97]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [98]陈启飞,李爱群,赵大亮,等.预应力混凝土斜拉桥主梁局部应力子模型分析及试验[J].东南大学学报(自然科学版),2007,37(2):287-290
    [99]彭波,杜佳.子模型方法在桥梁横隔板加固中的应用[J].贵州工业大学学报(自然科学版),2007,36(3):67-70
    [100]张岗,王新敏,贺拴海.子模型技术在混凝土箱梁悬臂板分析中的应用[J].郑州大学学报(工学版),2007,28(3):28-32
    [101]徐岳,唐先习.基于混凝土自收缩的钢筋保护层厚度数值分析[J].广西大学学报(自然科学版),2010,35(1):6-11
    [102]国振喜,孙培生,刘玉阶.实用混凝土结构构造手册[M].北京:中国建筑工业出版社,2005
    [103]吕艳梅,刘立新,罗卫华.商品混凝土收缩性能的试验研究[J].郑州大学学报(工学版),2004,25(3):65-69
    [104]GB 50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [105]JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004
    [106]刘西拉,苗澎柯.混凝土结构中的钢筋腐蚀与其耐久性计算[J].土木工程学报,1990,23(4):69-78
    [107]长安大学,清华大学.混凝土桥梁合理耐用结构构造研究报告之分报告:合理耐用结构构造试验研究报告[R].长安大学/清华大学,2010
    [108]叶见曙.结构设计原理[M].北京:人民交通出版社,2003
    [109]袁承斌,张德峰,刘荣桂,等.混凝土在不同应力状态下的碳化[J].建筑结构,2004,34(4):32-34
    [110]CECS220:2007,混凝土结构耐久性评定标准[S].北京:中国建筑工业出版社,2007
    [111]杨小平,刘荣桂,吕志涛.裂缝对预应力混凝土结构耐久性影响的试验研究[J].江苏大学学报(自然科学版),2002,23(6):90-94
    [112]黄可信,吴兴祖,等.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983
    [113]Papadakis V. G, Vayenas C. G, Fardis M. N.. Fundamental Modeling and Experimental Investigation of Concrete Carbonation[J]. ACI Materials Journal,1991,88:363-373
    [115]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992,6:18-22
    [116]Lesage de Fontenay C. Deterioration and Repair[J]. Bahrain Proc,1995, (6):467-483
    [118]李积平,潘德强,田俊峰,等.海工高性能混凝土抗氯离子侵蚀耐久寿命预测[J].土建结构工程的安全性与耐久性,北京:2001
    [119]孙伟,余洪发.混凝土结构工程的耐久性与寿命研究进展[J].土建结构工程的安全性与耐久性,北京:2001
    [120]刘荣桂,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版),2005,26(6):525-528
    [121]袁承斌,张德峰,刘荣桂,等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版),2003,31(1):50-54
    [122]JTG/T B07-01-2006,公路工程混凝土结构防腐蚀技术规范[S].北京:人民交通出版社,2006
    [123]铁建设[2005]157号,铁路混凝土结构耐久性设计暂行规定[S].北京:中华人民共和国铁道部,2005
    [124]辛济平,等译.美国公路桥梁设计规范[S].北京:人民交通出版社,1998
    [125]唐先习,徐岳.混凝土T梁横隔板合理截面尺寸数值分析[J].郑州大学学报(工学版),2010,31(1):34-39
    [126]JTG D60-2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [127]姚玲森.桥梁工程[M].北京:人民交通出版社,2001
    [128]周兴宇.混凝土桥梁横隔板断裂的加固[J].铁道建筑,2007,(10):25-27
    [129]林拥军,钱永久,王振领.新旧混凝土结合面粘结强度计算方法研究[J].工业建筑(增刊),2006,36:844-846
    [130]宁作君,唐明.新旧混凝土粘结的断裂韧度数值模拟及分析[J].鞍山科技大学学报,2004,27(6):439-442
    [131]高剑平,潘景龙,王雨光.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报,2001,34(5):25-29
    [132]高剑平,潘景龙.检验新旧混凝土粘结强度合适的试件形式[J].哈尔滨建筑大学学报,2001,34(2):32-35
    [133]管大庆.界面处理对新老混凝土粘结性能的影响[J].混凝土,1994,(5):16-23
    [134]安静波,李连志.新旧混凝土粘结断裂韧度影响因素的显著性分析[J].黑龙江工程学院学报(自然科学版),2005,19(4):22-24,53
    [135]赵志方,赵国藩,黄承逵.新老混凝土粘结的研究[J].建筑结构学报,1999,20(6):26-31
    [136]张雷顺,郭进军.新旧混凝土植筋结合面剪切性能试验对比[J].工业建筑,2007,37(11):71-73
    [137]赵晓艳.新老混凝土机械连接结合性能研究[D].天津:河北工业大学,2004
    [138]彭旭民,李兴华,蔡登山.新老混凝土结合面剪切模型试验研究[J].桥梁建设,2001,(3):40-44
    [139]范立础.桥梁工程[M].北京:人民交通出版社,2001
    [140]李围,叶裕明,刘春山ANSYS土木工程应用实例(第二版)[M].北京:水利水电出 版社,2007
    [141]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006
    [142]孟宪宏,宋玉普.混凝土抗压疲劳剩余强度损伤模型[J].沈阳建筑大学学报(自然科学版),2009,25(1):12-16
    [143]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358
    [144]孟宪宏.混凝土疲劳剩余强度试验及理论研究[D].大连:大连理工大学,2006
    [145]易成,范永魁,朱红光,等.混凝土疲劳寿命的表征研究[J].建筑材料学报,2008,11(2):132-137
    [146]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报,1998,31(4):1-8
    [147]朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系[J].建筑材料学报,2005,8(6):609-614
    [148]Song Yupu, Wang Huailiang. Faigue Capacity of Plain Concrete Under Biaxial Fatigue Stresses with One Constant[J]. Proceedings of the International Offshore and Polar Engineering Conference,2009:499-504
    [149]Mohammadi Yaghoub, Kaushik S.K.. Flexural Fatigue-life Distributions of Plain and Fibrous Concrete at Various Stress Levels[J]. Journal of Materials in Civil Engineering. 2005,17(6):650-658
    [150]Saito M, Imai S.. Direct Tensile Fatigue of Concrete by the Use of Friction Girps[J]. Journal of the ACI, Proc.,1983,80 (5):431-438
    [151]Cornelissen H A W, Reinhardt H W. Uniaxial Tensile Fatigue Failure of Concrete Under Constant Amplitude and Program Loading[J]. Mag. of Concrete Research,1984, 36 (129):216-227
    [152]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D].大连:大连理工大学,2001
    [153]赵光仪,吴佩刚,詹巍巍.高强混凝土的抗拉性能[J].土木工程学报,1993,26(6):13-19
    [154]王时越,怅立翔,徐人平,等.混凝土疲劳刚度衰减规律试验研究[J].力学与实践,2003,25(5):55-57
    [155]刘立新,汪小林,于秋波,等.疲劳荷载作用下部分预应力混凝土梁的挠度研究[J].郑州大学学报(工学版),2007,28(4):4-7
    [156]左雷彬.双预应力混凝土梁的疲劳性能研究[D].天津:天津大学,2008
    [157]易伟建,孙晓东.锈蚀钢筋混凝土梁疲劳性能试验研究[J].土木工程学报,2007,40(3):6-10
    [158]汝海峰,张茜,梁春祥.CFRP加固钢筋混凝土梁疲劳刚度的试验研究[J].铁道工程学报,2008,(6):52-55
    [159]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱[J].土木工程学报.1997,30(5):20-27
    [160]王荣辉,池春,陈庆中,等.广州市高架桥疲劳荷载车辆模型研究[J].华南理工大学学报(自然科学版),2004,32(12):94-96
    [161]JTGD61-2005,公路圬工桥涵设计规范[S].北京:人民交通出版社,2005
    [162]唐先习,徐岳,薛倬昆,等.混凝土板梁桥合理构造数值分析[J].广西大学学报(自然科学版),2010,35(1):110-115
    [163]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700