用户名: 密码: 验证码:
非线性微分方程的若干解析解方法与可积系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于计算机数学机械化思想和‘'AC=BD"统·理论模式,借助于现有的理论及相应的符号计算软件,本论文主要研究了孤子方程的AC=BD模式与卦理论,非线性微分方程的(Binary)Darboux与Backlund变换、微分变换及Hamiltonian可积簇,非线性微分方程的非局部分析,非线性微分方程、超对称和超离散方程的有限高亏格解与可积系统问题等.
     第一章介绍计算机数学及计算机代数,孤子理论,非线性方程、超对称与超离散方程的机械化求解方法与可积系统问题等在国内外的历史发展概况,并介绍本论文的选题和主要工作.
     第二章基于AC=BD模式及其C-D可积系统与C-D对,我们做了两方面的工作.在代数几何解中:推出了Dubrovin型方程,Its-Matveev公式及Super-Its-Matveev公式;在Sato理论中:分别给了Lax方程与Sato方程、Lax方程与反散射框架、Lax方程与Zarharov-Shabat方程、Sato方程与Hirota双线性方程等之间的关系,并揭示了这些方程解的统一模式可由Tau函数表示.另一方面,为了揭示可积系统的一般性结构,我们首次系统地提出了“卦理论”,包括“卦结构”和“卦恒等式”,并分别给出了一些内分解-和外分解-卦恒等式:Wronskian、Grammian、Pfaffian、Young图的Schur函数和特征多项式、Clifford-和Heisenberg-代数的Fock表示空间等,并首次阐明Clifford-(Heisenberg-)代数的Fock表示空间均为卦(同构卦)空间.最后给出了构造Tau函数与Theta函数之间关系的新方法,间接地建立了卦结构与代数几何解之间的联系.
     第三章基于Lax谱理论、Painleve奇异流形理论,分别给出了一类微分方程的三类N-重Darboux变换,Auto-Backlund不(?)Binary Darboux变换,及其相应的周期波解和Grammian解.利用离散Lax谱问题,通过选取合适的谱Vn(m),给出了一类新的Hamiltonian Lattice簇的一些经典Lattice约化、multi-Hamiltonian(?)结构在对合意义下的可积性质、离散Darboux变换及其解析解.基于¨Sato理论框架并借助于限定的mKP方程,提出了一类自溶源rnKP (mKPESCSs)方程及其Lax谱问题;利用共轭Lax对,进而研究其向前、向后和N重Binary Darboux变换,其中Binary Darboux变换提供了两个不同次数的mKPESCSs之间的一个非自治Backlund变换;借助于这些变换可以得到mKPESCSs的一些新典型解如孤立子解、有理解、呼吸子解和指数解等.通过研究微分变换与Pade逼近理论,获得了著名的浅水波Camassa-Holm方程波峰连续与非连续解析近似解;与解析解比较,研究了其计算的有效性和高精度.
     第四章借助于守恒律乘子,获得了一类微分方程的非局部分析其中包括非局部相关PDE系统、树形结构、非局部对称与守恒律等.借助于非局部对称,进而研究了原PDE系统的非局部线性化,并提出了广义不变解的一套新方法.对某一类PDE系统,给出了其非局部对称与Nonclassical方法在求解方而的关系
     与George W. Bluman(?)教授等的合作中给出了著名的非线性Kompaneets(NLK)(?)方程的非局部分析;与近期(?)Ibragimov教授的工作相比,利用非局部分析中已得到的结论获得了NLK方程的更广义类型的解;这些新解不能由NLK方程局部对称的不变解所得到,并打破了NLK方程自1956年以来只有唯一一类局部平凡解析解的状况.特别地,得到了以前未知的五类涉及两参数的精确时间独立解析.有趣的是,这些解都可以用初等函数所表示,并且其中两类在有限时间内表现出爆破行为,另外三类则表现出静止行为.最后证明了所有的非平凡稳态解都具有不稳定性,并且他们相对于Dubinov教授所给出的隐式解是新的.
     第五章基于超空间,利用Hirota双线性和Riemann theta(?)函数的性质,分别研究了一类非线性微分方程和超对称方程的有限高亏格(?)的Riemann theta函数周期波解及其极限特性分析,并将其分别应用到了CDGSK方程、(2+1)-维DBS方程和超对称KdV-Burgers方程等.借助于theta函数的有理恒等式提出了求解一类离散方程的N-theta周期波解的方法:并将这类结论推广到了离散方程和(?)heta(?)函数的超离散化空间上,进而分别获得了相同亏格(?)的Ud-Riemann theta(?)函数周期波解.做为这种方法的应用,分别研究了离散修改的Korteweg-de Vires(mKdV)方程和广义的Toda lattice方程等
     第六章借助于多维的Bell与super Bell多项式,分别研究了一类非线性微分方程和超对称方程的可积性分析,同时给出了可积判定条件,使此类方程(组)成为一类可积系统,并将其分别应用到了一类广义变系数的KP方程、5-阶KdV方程(?)IsKdV-Burgers方程等,获得了一些新的可积性结论.借助于超离散的‘'max-plus"代数理论及其Lax(?)(?)性系统的相容条件,提出了一般超离散方程的Lax可积定理和可解性定理:通过研究有限高亏格(?)的Riemann theta (?)函数的超离散化,进而获得了一类超离散化方程相同亏格(?)的Ud-Riemann theta函数解.最后将这一般的超离散化及其可积性理论分别应用到了离散的Lattice Krichever-Novikov方程、离散的mKdV方程和离散的Painleve方程等.
Based on the idea of computer mathematical mechanization and the unified theoretical of the model AC=BD, and by virtue of existing theories and some symbolic computation soft-wares, in this dissertation, we mainly focus on some topics from the view points of algebra and geometry, including the model AC=BD and "Trigram" structures of the soliton theory, the (Binary) Darboux and Backlund transformations、differential transform and nonlocal analysis of nonlinear differential equations and Hamiltonian integrable hierarchy, the finite genus so-lutions and integrable systems of nonlinear differential equations、supersymmetric equations and ultra-discrete equations, etc.
     In Chapter1, we introduce the history and development of computer mathematics and computer algebra, soliton theory, the mechanical algorithm and integrable system of nonlin-ear differential equation、supersymmetric equation and ultra-discrete equation in summary at home and abroad. At last, we present an outline of this dissertation.
     In Chapter2, based on the model AC=BD, the integrable system and the pair of C-D, we do some work in algebraic-geometry solution and Sato theory. Tn algebraic-geometry so-lution:we systematically derive the Its-Matveev formula, super-Its-Matveev formula. In Sato theory:we present the relationship between Lax equation and Sato equation, Lax equation and Zakharov-Shabat equation, Lax equation and inverse scattering scheme, Sato equation and Hirota's bilinear equation, respectively, which can be used to construct a unified model of solv-ing soliton equation by using Tau function. To construct a unified and fundamental structure of soliton equations, it is the first time to introduce our "Trigram theory" including "Trigram structures" and "Trigram identities", which present some exterior-and interior-decomposition Trigram identities, respectively, to reveal some integrable systems generated by Wronskian, Grammian, Pfaffian, Schur functions and characteristic polynomials of Young diagram, Fock representation of Clifford-and Heisenberg-algebra, etc, from which the Fock spaces of Clifford (Heisenberg) algebra is a (isomorphism) Trigram space. Finally, we present a new approach to construct the relationship between Tau function and Theta function, which indirectly present the relationship between Trigram structure and algebraic-geometry solution.
     In Chapter3, based on the theories of Lax spectral problem and painleve singular-manifold method, we present three new kinds of N-fold Darboux transformations, auto-Backlund and bi-nary Darboux transformations, the corresponding periodic wave solutions and grammian solu-tions for a kind of differential equations. Using the discrete Lax spectral problem and choosing the appropriate spectral Vn(m), we present a new kind of Hamiltonian Lattice hierarchy, and fur-ther investigate some classical Lattice reductions, integrable in involutory Lax's sense of the multi-Hamiltonian structure, discrete Darboux transformation and its analytic solutions. Based on the framework of Sato's theory, a mKP equation with self-consistent sources (mKPFSC-Ss) and its Lax pairs are structured by virtue of the constrained mKP equation. Using the conjugate Lax pairs, we construct the forward, the backward and the N-fold binary Darboux transformation for the mKPESCSs which offers a non-auto-Backlund transformation between two mKPFSCSs with different degrees of sources. With the help of these transformations, some new classical solutions for the mKPFSCSs such as soliton solutions, rational solutions, breather type solutions and exponential solutions are found. Through research the theories of the dif-ferential transformation and the Pade approach technique method, we investigate the solutions with and without continuity at crest of Camassa-Holm equation. Compared to exact solutions, we also research the computational efficiency、high accuracy of the method.
     In Chapter4, by virtue of conservation law multiplier, we present the nonlocal analysis for a kind of differential equations, which include nonlocally related PDF systems, tree structure, nonlocal symmetry and conservation law etc. By virtue of the nonlocal symmetry, we further investigate the nonlocal linearization and propose a new generalized algorithm of solving in-variant solution. For special kind of PDEs, the relationship between nonlocal symmetry and nonclassical method on solving solutions are presented.
     We investigate the nonlocal analysis of famous nonlinear Koinpaneets equation(NLK) joint work with Professor George. W. Bluman etc. Using the result obtained in nonlocal analysis, we obtain a wider classes of previously unknown solutions of the NLK equation beyond those ob-tained by Professor Ibragimov solution. These new solutions do not arise as invariant solutions of the NLK equation with respect to its local symmetries, which are breaking the status of ex-isting only one class of trivial local solution for NLK equation since1956. In particular, for live classes of initial conditions, each involving two parameters, previously unknown explicit time-dependent solutions are obtained. Interestingly, each of these solutions is expressed in terms of elementary functions. The two classes exhibit blow up behavior in finite time, and the other three classes exhibit quiescent behavior. As a consequence, it is shown that the corresponding nonlrivial stationary solutions are unstable. The nontrivial stationary solutions are also beyond those obtained by Professor Dubinov.
     In Chapter5, based on the theories of superspace, and by means of the properties be-tween Hirota bilinear and Riemann theta function, we present some Riemann theta function periodic wave solutions with the finite genus (?) and the analysis of limiting characteristics for a kind of nonlinear differential equations and supersymmetry equations, respectively. Us-ing these methods, we investigate Caudrey-Dodd-Gibbon-Sawada-Kotera(CDGSK) equation,(2+1)-dimensional breaking soliton(DBS) equation and supersymmetric Korteweg-de Vries-Burgers(sKdV-Burgers) equation, etc. By virtue of the rational identities of theta functions, we present some N-theta function periodic wave solutions of a kind of discrete soliton equations. This method can be extended to the ultra-discrete space of the discrete equations and the theta functions, based on which, we can further obtain Ud-Riemann theta function periodic wave solutions with the same genus (?) for the corresponding udtra-discrete equations. As its applica-tion, we investigate a discrete modified Korteweg-de Vires(mKdV) equation and a generalized Toda lattice equation, etc.
     In Chapter6, by virtue of multi-dimensional Bell polynomials and super Bell polynomials, we present the integrability analysis of a kind of nonlinear differential equations and supersym-metry equations, respectively. While we also present the judgment conditions of integrability to these equation(s) to make be a kind of integrable system(s). Using these methods, we inves-tigate a kind of generalized variable-coefficient Kadomtsev-Petviashvili equation, fifth-order Korteweg-de Vries equation and sKdV-Burgers equation, etc, and further obtain some new re-sults of integrability. Moreover, using the theory of "max-plus" algebra and the compatibility condition of Lax pair system, we propose the ultra-discrete equation and its Lax integrability theorem and solvability theorem. Through researching the ultra-discrete process of Riemann theta function with finite genus (?) we further present the same genus of Ud-Riemann theta function solutions of a kind of ud-discrete equations. Finally, the generalized theories of Ultra-discretization and its integrability are applied to discrete Lattice Krichever-Novikov equation, discrete mKdV equation and discrete Painleve equation, etc.
引文
[1]WU W J. On the decision problem and the mechanization of theorem-proving in elementary geometry [J].Sci.Sinica,1978,21(2):159-172.
    [2]吴文俊.几何定理机器证明的基本原理[M].北京:科学出版社, 1994.
    [3]吴文俊.关于代数方程组的零点-Ritt原理的一个应用[J] .科学通报,1985, 12: 981-883.
    [4]RITT J F. Differential Algehra[M]. New York:American mathematical Society,1950.
    [5]WU W T. On the foundation of algebraic differential geometry[J]. Systems Sci. & Math. Sci.,1989, 2(4):289-312.
    [6]高小山.数学机械化进展综述[J].数学进展,2001,30(5): 385-404.
    [7]GAO X S, ZHANG J Z, CHOU S C. Geometry Expert (in Chinese)[M]. Taiwan:Nine Chapters Pub, 1998.
    [8]CHOU S C, GAO X S, ZHANG J Z. Machine Proofs in Geometry[M]. Singapore:World Scientific, 1994.
    [9]WANG D M, GAO X S. Geometry theorems proved mechanically using Wu's method-Part on Euclidean geometry[J]. Math. Mech. Res. Preprints,1987,2:75-106.
    [10]LI H B, CHENG M T. Proving theorems in elementary geometry with Clifford algebraic method[J]. Adv. in Math. (China),1997,26(4):357-371.
    [11]SHI H. On Solving the Yang-Baxter Equations[C]. The International Workshop on Mathematics Mech-anization, Beijing, China,1992:79.
    [12]WANG S K, WU K, SUN X D. Solutions of Yang-Baxter equation with spectral parameters for a six-vertex model [J]. Acta Phys. Sinica(Chinese),1995,44(1):1-8.
    [13]李志斌.非线性数学物理方程的行波解[M].北京:科学出版社,2007.
    [14]LI Z B, LIU Y P. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations[J]. Comput. Phys. Comm.,2002,148(2):256-266.
    [15]FAN E G. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method [J]. J. Phys. A 2002,35:6853-6872.
    [16]YOMBA E. The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations[J]. Phys. Lett. A,2005,336:463-476.
    [17]BALDWIN D, HEREMAN W, GOKTAS R S, et al. Symbolic computation of exact solutions express-ible in hyperbolic and elliptic functions for nonlinear PDEs [J]. J. Symb. Comput.2004,37:669-705.
    [18]张鸿庆.弹性力学方程组一般解的统一理论[J].大连理工大学学报,1978,18:23-47.
    [19]张鸿庆.偏微分方程组一般解与完备性[J].现代数学与力学,1991,Ⅳ.
    [20]张鸿庆.冯红.构造弹性力学位移函数的机械化算法[J].应用数学和力学,1995, 16: 315-322.
    [21]ZHANG H Q. C-D integrable system and computer aided solver for differential equations[C]. Proceed-ing of the 5rd ACM, World Scientific Press,2001,221-226.
    [22]张鸿庆.数学机械化中的AC=BD模式[J].系统科学与数学,2008,28(8): 1030-1039.
    [23]ZHANG H Q, DING Q一类非线性偏微分方程组的解析解[J].Analytic solutions of a class of nonlinear partial differential equation. Appl. Math. Mech.2008,29:1-12.
    [24]FAN E G, ZHANG H Q. Backlund transformation and exact solutions for Whitham-Broer-Kaup equa-tions in shallow water[J]. Appl. Math. Mech., 1998, 19: 713-716.
    [25]YAN Z Y, ZHANG H Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water[J]. Phys. Lett. A. 2001, 285: 355-260.
    [26]范思贵.可积系统与计算机代数[M].北京:科学出版社,2004.
    [27]闫振亚.非线性波与可积系统[D].大连:大连理工大学,2002.
    [28]闫振亚.复杂非线性波的构造性理论及其应用[M].北京:科学出版社, 2006.
    [29]朝鲁.吴微分特征列法及其在PDEs对称和力学中的应用[D].大连:大连理工大学,1997.
    [30]朝鲁.基于吴方法的确定和分类(偏)微分方程古典和非古典对称新算法理论[J].中国科学A辑,2010,40: 331-348.
    [31]陈玉福,高小山.微分多项式系统的对合特征集[J].中国科学A辑,2003.33: 97-113.
    [32]夏铁成,曹丽娜,张鸿庆.关于偏微分方程解的规模,恰当解,形式幂级数和序的优化[J].系统科学与数学,2005.52:752-760.
    [33]陈勇.孤立子理论中的若干问题的研究及机械化实现[D].大连:大连理工大学,2003.
    [34]谢福鼎. Wu-Ritt消元法在偏微分代数方程中的应用[D].大连:大连理工大学,2002.
    [35]李彪.孤立子理论中若干精确求解方法的研究及应用[D].大连:大连理工大学,2005.
    [36]ABLOWITZ M J, CLARKSON P A. Solitons, nonlinear evolution equations and inverse scatiering[M]. Cambridge: Cambridge University Press, 1991.
    [37]NEWELL A C. Soliton in mathematics and physics[M]. Philadelphia: SIAM, 1985.
    [38]BABELON O, BHRNARD D,TALON M. Introductionto Classical Inlegrable Systems[M]. Cambridge: Cambridge University Press, 2003.
    [39]RUvSSKLL J S. Report on waves, Fourteen meeting of the British association for the advancement of science[C]. John Murray, London, 1844: 311-390.
    [40]KORTEWEG D J, DH VRIES G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. Phil. Mag., 1895, 39(5): 422-433.
    [41]PFRRING J K, SKYRMF.T H R. A model unified field equation[J]. Nuclear Phys., l962, 31: 550-555.
    [42]ZABUSKY N J, KRUSKAL M D. Interaction of "Solitons" in a Collisionless Plasma and the Recur-rence of Initial States[J]. Phys. Rev. Lett., 1965, 15(6): 240-243.
    [43]ZAKHAROV V E. What is integrability? [M]. Springer series in non-linear dynamics. Springer-Verlag, Berlin (1991).
    [44]HITCHIN N J, SEGAL G B, WARD R S. Intefrable systems: Twistors, Loop groups, and Riemann surfaces [M]. Oxford University Press, Oxford (1997).
    [45]BABELON O, BERNARD D, TALON M. Introduction to classical integrable systems [M]. Cambridge University Press, Cambridge (2009).
    [46]ABLOWITZ M J, SEGUR H. Solition and the Inverse Scattering Transformation [M]. SIAM, Philadel-phia, (1981)
    [47]FLASEHKA H. Proe. OF RIMS Symp. On Nonlinear integrable system-Classical Theory and Quantum theory [C|. Singapore: World Science Publishing Co, 1983: 219-240.
    [48]CAO C W, GENG X G. Research Reports in Physics [M]. Berlin: Sprlinger-Verlag, 1990.
    [49]ZENG Y B, LI Y S. The constraints of potentials and finite-dimensional integrability from the infinite dimensional integrate systems [J]. J. Math. Phys., 1989, 30: 1679-89.
    [50]MA W X. New finite-dimensional integrablesystems by symmetry constraint of the KdV equation [J]. J. Phys. Soc. Jpn., 1995,64: 1085-91.
    [51]NOVIKOV. A periodic problem for the Korteweg-de Vries equation [J].I. Funct. Anal. Appl., 1974, 8: 236-246.
    [52]DUBROVIN B A. The inverse scattering problem for periodic finite-zone potentials [J]. Funct. Anal. Appl., 1975,9: 61-62.
    |53] BELOKOLOS E, BOBENKO A. ENOL'SKIJ V, ITS A, MATVEEV V. Algebra-geometrical approach to nonlinear integrablc equations equations [J]. Russian Math. Surveys, 1977, 32: 185-213
    [54]MATVEEV V B. 30 years of finite-gap integration theory [J]. Phil. Trans. R. Soc. A, 2008, 366: 837-875.
    [55]GESZTESY F, HOLDEN H. Solilon equations and their algebro-geometric solutions Ⅰ: (1 + 1)- dimen-sional continuous models [M]. Cambridge University Press ,New York.2003.
    [56]CAO C W , GENG X G, WANY H Y. Algebro-geometric solutions of 2+1-dimensional Burgers equa-tion with a discrete variable [J]. J. Math. Phys., 2002, 43: 621-643.
    [57]GENG X G, WU Y T, CAO C W. Quasi-periodic solutions of the modified Kadomtsev-Petviashviii equation[J]. J. Phys. A, 1999, 32: 3733-3742.
    [58]ZHOU R G. The finite-band solution of the jaulent-Miodek equation [J]. J. Math. Phys., 1997, 38: 2535-2546.
    [59]QIAO Z J. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold [J]. Commun. Math. Phys., 2003, 239: 309-41.
    [60]DAI H H, FAN E G. Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov e-quation [J]. Chaos, Solitons & Fractals, 2004, 22:93-101.
    [61]FAN E G ,Hon Y C. Quasi-periodic solutions for modified Toda lattice equation [J]. Chaos, Solitons & Fractals, 2009, 15:1297-308.
    [62]FAN E G. The positive and negative Camassa-Holm-y Hierachies, zero curature representations, bi-Hamiltonian structures, and algebro-geometric solutions [J]. J.Math.Phys., 2009, 50:1-23.
    [63]NAKAMURA A. A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution [J]. J. Phys. Soc. Japan, 1979, 47: 1701-1705.
    [64]DAI H H, FAN E G , GENG X G. Periodic wave solutions of nonlinear equations by Hirota's bilinear method [J]. 2006 Preprint nlin.SI/0602015.
    [65]ZHANG Y, YE L Y, LV Y N , et al. Periodic wave solutions of the Boussinesq equation [J]. J. Phys. A: Math. Theor., 2007, 40: 5539-5549.
    [66]HON Y C, FAN E G, QIN Z Y. A Kind of Explicit Quasi-Periodic Solution and Its Limit For The TODA Lattice Equation [JJ. Modern Physics Letters B, 2008, 22: 547-553.
    [67]FAN E G. Supersymmetric KdV-Sawada-Kotera-Ramani equation and its quasi-periodic wave solutions [J]. Phys. lett. A, 2010, 374: 744-749.
    [68]GARDNER C S, GREENE C S, KRUSKAL M D, Miura R M. Korteweg-de Vries and generalizations. Ⅵ. Methods for exact solution[J]. Commun. Pure Appl. Math., 1974, 27: 97-133.
    [69]LAX P D. Integrals of nonlinear equations of evolution and solitary waves[J]. Commun. Pure Appl. Math., 1968, 21: 467-490.
    [70]ABLOWITZ M J, KAUP Z J, NEWELL A C, et al. Nonlinear-evolution equations of physieal signili-canee[J]. Phys. Rev. Lett., 1973, 31: 125-127.
    [71]李翀神.孤子与可积系统[M].上海:上海科技出版社, 1999.
    [72]曹策间.孤立子与反散射[M].郑州:郑州大学出版社,1983.
    [73]ROGERS C. SCHIF.F W K. Biicklund and Darboux Transformations: Geometry and Modern Applica-tions in Solilon Theory[M]. Cambridge: Cambridge University Press, 2002.
    [74]WAHLQUIST H D. ESTABROOK F B. Prolongation struetures and nonlinear evolution qquations[J]. J.Math.Phys., 1975, 17: 1403-1411.
    [75]DARBOUX G. Sur une Proposition Relative aux Equations Lineaires[J]. C. R. Acad. Sci. Paris, 1882, 94: 1456-1459.
    [76]MATVFFV V B, SALLE M A. Darboux transformation and Solitons[M]. Berlin: Springer, 1991.
    [77]谷超豪,胡和生,周子翔.孤立子理论中的(?)Darboux变换及其几何应用[M].上海:上海科技出版社,1999.
    [78]ZENG Y B. ZHU Y, XIAO T. Canonical explicit Biicklund transformations with spectrality for con-strained flows of .soliton hierarchies[J]. Physica A, 2002, 303: 321-338.
    [79]LIU Q P. Darboux transformations for supersymmetric korteweg-de vries equalions[J]. Lett. Math. Phys., 1995,35(2): 115-122.
    [80]胡星标,李勇.DJKM方程的Backlund变换及非线性叠加公式[J].数学物理学报,1991,11:164-172.
    [81]HIROTA R. The direct method in soliton theory[M]. New York: Cambridge University Press, 2004.
    [82]HU X B. Rational solutions of intcgrablc equations via nonlinear superposition formule[J].J. Phys. A: Math. Gen., 1997, 30: 8225-8240.
    [83]HU X B, ZHU Z N. Some new results on the Blaszak-Marciniak lattice:Backlund transformation and nonlinear superposition formula[J]. J. Math. Phys., 1998, 39: 4766-4772.
    [84]LIU Q P, HU X B, ZHANG M X. Supersymmetric modified Korleweg-de Vries equation.bilinear ap-proach[J]. Nonlinearily, 2005, 18: 1597-1603.
    [85]LIU Q P, HU X B. Bilinearization of N = 1 supersymmetric Korteweg-de Vries equation revisited[J]. J. Phys. A: Math. Gen., 2005, 38: 6371-6378.
    [86]陈登远.孤子引论[M].北京:科学出版社, 2006.
    [87]CHEN D Y, ZHANG D J, DENG S F. The novel multisoliton solutions of the mKdV sinegordon equa-tiont[J]. J. Phys. Soc. Japan, 2002, 71: 658-659.
    [88]ZHANG D J, CHEN D Y. Ncgatons, positons, rational-likc solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms[J]. J. Phys. A: Math. Gen., 2003, 36: 1-15.
    [89]NAKAMURA A. A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. Exact Two-Periodic Wave Solution [J]. J. Phys. Soc. Jpn. 1979, 47: 1701-1705.
    [90]CHOW K W. Periodic solutions for a system of for coupled nonlinear Schrodinger equations [J|. Phys. Lett. A 2001, 285: 319-326.
    [91]CHOW K W. MAKA C C. ROGERS C. Doubly periodic and inulliplc pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamics [J]. J. Commput. Appl. Math. 2006, 190: 114-126.
    [92]LIE S. Begriindung einer Invariantcn-Thcorie der Beruhrungs-Transformationen[J]. Math. Ann., 1874, 8(2): 215-303.
    [93]NOETHER E. Invariante variations prohleme[J|. Nachr. Konig. Gesell. Wissen. Gottingen, Math. Phys Kl., 1918, 1(3): 235-257.
    [94]BLUMAN G, COLE J. The general similarity solution of the heat equation[J]. J. Math. Mcch., 1969, 18: 1025-1042.
    [95]BLUMAN G, KUMEI S. On invariance properties of the wave cquation[J]. J. Math. Phys., 1987, 28: 307-318.
    [96]BLUMAN G W, KUMEI S. Symmetries and differential equationsfM]. New York: Springer-Verlag, 1989.
    [97]BLUMAN G W, ANCO S C. Symmetries and integration methods for differential equationsfM]. New York: Springer-Verlag, 2002.
    [98]BLUMAN G W, TEMUERCHAOLU, SAHADEVAN R. Local and nonlocal symmetries for nonlinear telegraph equations [J]. J. Math. Phys., 2005, 46: 023505.
    [99]GANDARTAS M L. New symmetries for a model of fast diffusion[J]. Phys. Lett. A, 2001, 286: 153-160.
    [100]OLVER P J, ROSENAU P. The construction of special solutions to partial differential equations[J]. Phys. Lett. A, 1986, 114(3): 107-112.
    [101]PUCCI E, SACCOMANDT G. On the weak symmetry groups of partial differential equations[J]. J. Math. Anal. Appl., 1992, 163(2): 588-598.
    |102] LIE S. Die theorie der integral invarianten 136 ein korolar der differential invariant[J]. Gesammelte Abhand lungen, 1927, 6: 649-663.
    [103]OLVER P J. Application of Lie groups to differential equations[M]. New York: Springer-Verlag, 1986.
    [104]田畴.Burgers方程的新的强对称、对称和李代数[J].中国科学A, 1987, 30: 1009
    [105]LOU S Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation[J]. Phys. Lett. A, 1993, 175: 23-26.
    [106]MAHOMED F M, QU C. Approximate conditional symmetries for partial differential equations[J]. J. Phys. A: Math. Gen., 2000, 33: 343-356.
    [107]CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq equation[J]. J. Math. Phys., 1989,30: 2201.
    [108]LOU S Y. A note on the new similarity reductions of the Boussinesq equation[J]. Phys. lett. A, 1990, 151(3-4): 133-135.
    [109]PUCCI E. Similarity reductions of partial differential equations[J]. J. Phys. A: Math. Gen., 1992, 25: 2631-2640.
    [110]NUCCI M C, Clakson P A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation[J]. Phys. Lett. A, 1992, 164(1): 49-56.
    [111]LOU S Y. TANG X Y. LIN J. Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct mcthod[J].J. Math. Phys., 2000, 41(12): 8286-8303.
    [112]范恩贵,齐次平衡法、Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间关系[J].物理学报,2000,49(8):1409-1412.
    [113]RFID G J. Algoruthms for reducing a system of PDF.s to standard form, determining the dimension of its solutions space and calculating Its Taylor sires solution[J]. Eum. J. Appl. Math., 1991, 2: 293-318.
    [114]SCHWARZ F. Algorulhms Lie theory for solving ordinary differential equations[M]. Chapman & Hall/CRC, 2007.
    [115]HHREMAN W. Review of symbolic software for Lie symmetry analysis[J]. Math. Comput. Modelling, 1997,25:115-132.
    [116]张善卿.微分方程精确解及李对称符号计算研究[D].上海:华东师范大学,2004.
    [117]ZAKHAROV V E, SHABAT A B. Integrable system of nonlinear equations in mathematical physic-s[J]. Fund. Anal. Appl., 1974, 8: 43-53.
    [118]FOKAS A S, MANAKOV S V. The dressing method, symmetries, and invariant solulions[J]. Phys. Lett. A, 1990, 150,369-374.
    [119]FOKAS A S, ZAKHAROV V F. The dressing method and nonlocal Riemann-Hilbert problems [J], Nonlinear Sci., 1992,2(1): 109-134.
    [120]WANG M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett. A, 1995, 199: 169-172.
    [121]FAN F. G. Extended tanh-function method and its applications to nonlinear equations[J]. Phys. Lett. A, 2000, 277: 212-218.
    [122]LOU S Y, RUAN H Y, HUANG G X. F.xacl solitary waves in a convening fluid[J].J. Phys. A, 1991, 24: 587-590.
    [123]CONTE R, MUSF.TTE M. Link between solitary waves and projective Riccati equations[J].J. Phys. A: Math. Gen., 1992, 25: 5609-5623.
    [124]LIU S K, FU ZT, LIU S D, etal. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys. Lett. A, 2001, 289: 69-74.
    [125]YAN Z Y, ZHANG H Q. New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics[J]. Phys. Lett. A, 1999, 252: 291-296.
    [126]TIAN B, GAO Y T. Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics[J]. Fur. Phys. J. B, 2001, 22: 351-360.
    [127]CHENG Y, LI Y S. The constraint of the Kadomtsev-Petviashvili equation and its special solutions[J). Phys. Lett. A, 1991, 157: 22-26.
    [128]QU C Z, ZHANG S L, LIU R C. Separation of variables and exact solutions to quasilinear diffusion equations with the nonlinear source[J|. Phys. D, 2000, 44: 97-123.
    [129]楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006.
    [130]ZENG Y B, LI Y S. Integrable Hamiltonian systems related to the polynomial eigenvalue problem[J]. J. Math. Phys., 1990, 31: 2835-2839.
    [131]RAMOND P. Dual Theory for Free Fermions[J]. Phys. Rev. D 1971, 3: 2415-2418.
    [132]WKSS J. ZUMINO B. Supergauge transformations in four dimcnsiuns[J]. Nucl. Phys. B 1974, 70:39-50.
    [133]KUPERSHMIDT B. A super Korteweg-de Vries equation: An integrable syslem[J]. Phys. Lett. A 1984, 102: 213-215.
    [134]MANIN YU I, RADUI, A O. A supersymmetrie extension ol'the Kadomtsev-Peiviashvili hierarchy[J]. Commun. Math. Phvs. 1985, 98:65-77.
    [135]MCARTHUR I N. YUNG C M. Hirota bilinear fform for the super KdV hierarchy[J]. Mod. Phys Letts. A 1993, 8: 1739-1746.
    [136]CARSTEA A S. Extension of the bilinear formalism to supersymmetrie KdV-type equations|J]. Non-linearity 2000, 13: 1645-1656.
    [137]CARSTEA A S. RAMANI A, GRAMMATICOS B. Construction of the soliton solution for the N=1 supersymmetrie KdV hierarchy[J]. Nonlinearity 2001,14: 1419-1423.
    [138]GHOSH S. SARMA D. Bilinearization of N=1 supersymmetrie modified KdV equation[J]. Nonlin-earity 2003, 16: 411-418.
    [139]LIU Q P, HU X B. ZHANG M X. Supersymmetrie modified Korteweg-de Vries equation: Bilinear approach[.IJ. Nonlinearity 2005, 8: 1597-1603.
    [140]LIU Q P, HU X B. Bilineari/ation of N=1 supersymmetrie Korteweg-de Vries equation revisited[J].J. Phys. A: Math. Gen. 2005, 38: 6371-6378.
    [141]LTU Q P. Darboux transformations for supersymmetrie Korteweg-de Vries equations[J]. Lett. Math. Phys. 1995, 35: 115-122.
    [142]PARK K, STEIGLITZ K, THURSTON W P. Soliton-like behavior in automata[J]. Phys. D, 1986, 19D: 423-432.
    [143]TAKAHASHI D, SATSUMAJ. A soliton cellular automaton[J]. J. Phys. Soc. Japan, 1990. 59: 3514-3519.
    [144]TAKAHASHI D, MATSUKIDAIRA J. Constructing solutions to ultradiscrete Painleve equations [J]. J. Phys. A: Math. Gen., 1997, 30: 7953-7966.
    [145]TAKAHASHI D, HIROTA R. Ultradiscrete soliton solution of permanent type [J]. J. Phys. Soc. Japan, 2007, 76: 104007-104012.
    [146]NEUGEBAUER G, MEINEL R. General N-soliton solution of the AKNS class on arbitrary back-ground [J]. Phys. Lett. A, 1984, 100: 467-470.
    [147]ZHANG D J. Grammian solution to a non-isospectral Kadomtsev-Petviashvili equation [J]. Chin. Phys. Lett., 2006; 23:2349-2351.
    [148]DENG S F, QIN Z Y. Darboux and Backlund transformations for the nonisospectral KP equation [J]. Phys. Lett. A 2006; 357: 467-474.
    [149]WEISS J, TABOR M, CARNEVALE G. The Painleve property for partial differential equations [J]. J. Math. Phys. 1983; 24: 522-526.
    [150]TU G Z. A trace identity and its applications to the theory of discrete integrable systems [J]. J. Phys. A: Math. Gen. 1990; 23: 3903-3922.
    [151]MA W X, XU X X. Positive and Negative Hierarchies of Integrable Lattice Models Associated with a Hamiltonian Pair [J]. Int. J. Theor. Phys. 2004; 43: 219-235.
    [152]MA W X, FUCHSSTEINER B. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations [J]. J. Math. Phys. 1999; 40: 2400-2418.
    [153]ZHU Z N, TAM H W. Nonisospectral negative Volterra Hows ami mixed Volterra flows: Lax pairs infinitely many conservation laws and integrable time discretization [J].J. Phys. A: Math. Gen. 2004; 37: 3175-3187.
    [154]ZHANG D J, CHEN D Y. Hamiltonian structure of discrete soliton systems [J].J. Phys. A: Math. Gen. 2002; 35; 7225-7241.
    [155]DENG S F. Darboux transformations for the isospeclral and nonisospectral mKP equation [J]. Physica A 2007; 382:487-493.
    [156]SATO M, SATO Y. Nonlinear Partial Differential Equations in Applied Science, ed H. Fujita, P. D. Fax and G. Strang [M]. Kinokuniya/North-Holland. Tokyo 1983.
    [157]OHTA Y, SATSUMA J, TAKAHASHI D, TOKIHIRO T. An elementary introduction to Sato theory [J]. Progr. Theoret. Phys. Suppl. 1988; 94: 210-241.
    [158]ZOU J K. Differential Trans form and Its Applications for Flectrical Circuits [M]. Huazhong University Press, Wuhan, China, 1986.
    [159]ABDEF-HALIM HASSAN I H. Comparison differential transformation technique with Adomian de-composition method for linear and nonlinear initial value problems [J]. Chaos, Solitons Fractals 2008; 36: 53-65.
    [160]CAMASSA R, HOLM D. An integrable shallow water equation with peaked solitons [J]. Phys. Rev. Lett. 1993; 71:1661-1664.
    [161]BOYER T H. Continuous symmetries and conserved currents [J]. Ann. Physics 1967. 42: 445-466.
    [162]SOPHOCFEOUS C, WILTSHIRE R J. Linearsation and potential symmetries of certain systems of diffusion equations [J]. Physica A, 2006; 370: 329-345.
    [163]QU C Z. Potential symmetries to systems of nonlinear diffusion equations [J]. J. Phys. A: Math. Theor. 2007;40: 1757.
    [164]BLUMAN G W, KUMEI S. On invariance properties of the wave equation [J].J. Math. Phys. 1987; 28: 307(12pp).
    [165]AKHATOV I S, GAZIZOV R K, IBRAGIMOV N H. Group classification of the equations of nonlinear filtration [J]. Sov. Math. Dokl. 1987; 35: 384-386.
    [166]KOMPANEETS A S. The establishment of thermal equilibrium between quanta and electrons [J|. 7.h. Eksp. Teor. Fiz 1956;31:876-885.
    [167]CHEVIAKOV A F. An extended procedure for finding exact solutions of partial differential equations arising from potential symmetries. Applications to gas dynamics [J]. J. Math. Phys. 2008; 49: 083502.
    [168]ROSENAU P, HYMAN J M. Plasma diffusion across a magnetic field [J]. Physica D 1986; 20: 444-446.
    [169]IBRAGIMOV N H. Time-dependent exact solutions of the nonlinear Kompaneets equation [J]. J. Phys. A: Math. Theor. 2010: 43: 502001 (7pp).
    [170]DUBINOV A E. Exact stationary solution of the Kompaneets kinetic equation [J]. Pis' ma v JTF 2009; 35:25-30.
    [171]SAWADA K, KOTERA T. A Method for Finding N-Soliton Solutions of the K.d.V. Equation and K.d.V.-Like Equation [J]. Prog. Theor. Phys., 1974, 51: 1355-1367.
    [172]DODD R K, GIBBON J D. The prolongation structure of a higher order Korteweg-de. Vrics equation [J]. Proc. R. Sue. Lond. A 1977, 358: 287-296.
    [ 173]LOU S Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation [J]. Phys. Lett. A 1993, 175: 23-26.
    [174]MURATA M, ISOJIMA S, NOBK A, SATSUMA J. Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball syslems[J].J. Phys. A: Math. Gen. 2006, 39: L27-L34.
    [175]HIROTA R, ITO M, KAKO F. Two-Dimensional Toda Lattice Equations[ J]. Prog. Theor. Phys. Suppl. 1988, 94: 42-58.
    [176]NAGAI A etal. Two-dimensional soliton cellular automaton of deautonomized Toda-type [J]. Phys. Lett. A, 1997,234: 301-309.
    [177]BELL E T. Exponential polynomials [J]. Ann. Math., 1934, 35: 258-277.
    [178]GILSON, C, LAMBERT, F., NIMMO, J. etal. On the combinatorics of the Hirota D-operators [J]. Proc. R. Soc. Lond. A, 1996, 452: 223-234.
    [179]LAMBERT, E, LORIS, I., SPRINGAEL, J. Classical Darboux transformations and the KP hierarchy [J]. Inverse Probl. 2001, 17: 1067-1074.
    [180]LAMBERT, E, SPRINGAEL, J. Soliton equations and simple combinatorics [J]. Acta Appl. Math., 2008, 102: 147-178.
    [181]FAN E G. The integrability of nonisospcctral and variable-coefficient KdV equation with binary Bell polynomials [J]. Phys. Lett. A, 2011, 375: 493-497.
    [182]FAN E G. New Bilinear Backlund Transformation and Lax Pair for the Supersymmetric Two-Boson Equation [J]. Stud. Appl. Math., 2011, 2: 00520.
    [183]HEREMAN W, ZHUANG W. Symbolic Software for Soliton Theory [J]. Acta Appl. Math., 1995, 39: 361-378.
    [184]HIROTA R, HU X B, TANG X Y. A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs [J]. J. Math. Anal. Appl., 2003, 288: 326-348.
    [185]KADOMTSEV B B, PETVIASHVILI V I. On the stability of solitary waves in weakly dispersive media [J]. Sov. Phys. Dokl. 1970, 15: 539-541.
    [186]JOHNSRO N S. Water waves and Kortewcg-de Vries equations [J]. J . Fluid Mech., 1980, 97: 701-709.
    [187]DAVID D, LEVI D, WINTERNITZ P. Integrable nonlinear equations for water waves in straits of varying depth and width [J]. Stud. Appl. Math. 1987, 76: 133-168.
    [188]DAVID D, LEVI D, WINTERNITZ P. Painleve property, Backlund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation [J]. Phys. Lett. A, 1993, 182: 277-281.
    [189]CLARKSON P A. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation [J]. IMA J. Appl. Math, 1990, 44: 27-53.
    [190]MATHIEU P. Supersymetric extension of the Korteweg-de Vries equation [J]. J. Math. Phys., 1988, 29: 2499-2506.
    [191]OEVEL W, POPOWICZ Z. The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems [J]. Commun. Math. Phys., 1991, 139: 441-460.
    [192]CARSTEA A S. RAMANI A, GRAMMATICOS B. Constructing the soliton solulions for the N=1 supersymmetric KdV hierarchy [J]. Nonlinearity. 2001, 14: 1419-1423.
    [193]CARSTEA A S. Extension of the bilinear fonualisiu to supersymmetrie KdV-type equations [J]. Non-linearitv, 2000, 13: 1645-1656.
    [144]CARSTEA A S. Hirota bilinear formalism and Supersymmeiry [J]. arXiv:nlin/0006032.
    [195]ARNOLD V I. Mathematical methods of classical mechanics[M].Berlin: Springer, 1989.
    [196]AUDIN M. Spinning tops[M].Cambridge: Cambridge University Press, 1996.
    [197]NIJHOFF F W, CAPEL H W. The direct linearisation approach lo hierarchies of integrable PDEs in 2+1 dimensions: Lattice equations and the differential-difference hierarchies [J]. Inverse Problems, 1990,6: 567-590.
    [198]QUISPEL G R W et al. Integrable mappings and solilon equations [J]. Physica D, 1989, 34: 183-192.
    [199]BRUSCHI M etal Integrable symplectic maps [J]. Physica D, 1991,49: 273-294.
    [200]TAKAHASHI D, SATSUMA J. A soliton cellular automaton [J]. J. Phys. Soc. Japan. 1990. 59: 3514-3519.
    [201]TOKIHIRO T etal. From soliton equations lo inlegrable Cellular automata through a limiting proce-dure [J]. Phys. Rev. Lett., 1996,76: 3247-3250.
    [202]QUISPEL G R W et al. Pieeewise-linear solilon equations and pieeewise-linear integrable maps [J].J. Phys. A: Math. Gen., 2001, 34: 2491-2503.
    [203]JOSHI N et al. Lax pairs for ultra-discrete Painleve cellular automata [J]. J. Phys. A: Malh. Gen., 2004, 37: L559-L565.
    [204]OCHIAI T. NACHF.R J C. Inversible Max-Plus algebras and integrable systems [J]. J. Math. Phys.. 2005, 46: 063507.
    [205]INOUE R, TAKENAWA T Tropical geometry and inlegrable cellar automata [J]. Int. Math. Res. Not., 2008, 19: 19.
    [206]INOUE R, TAKENAWA T. A Tropical analogue of Fay's Trisecanl identity and the Ultra-discrete periodic Toda Lattice[J]. Commun. Math. Phys., 2009, 289: 995-1021.
    [207]NIJHOFF F, CAPEL H. The discrete Korteweg-de Vries equation [J]. Acta Appl. Math. 1995, 39: 133-158.
    [208]NOBE A Periodic multiwave solutions to the Toda-type cellular automaton [J]. J. Phys. A: Math. Gen., 2005,38: L715-L723.
    [209]NOBE A. Ultradiscretization of elliptic functions and its applications to integrable systems [J].J. Phys A: Math. Gen., 2005, 39: L335-L342.
    [210]IWAO S, TOKIHIRO T. Ultradiscretization of the theta function solution of pd Toda [J]. J. Phys. A: Math. Gen., 2007, 40: 12987-13021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700