用户名: 密码: 验证码:
火灾下建筑结构构件时变可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各类现代建筑中,钢结构和钢筋混凝土结构占有非常大的比重。在火灾高温的作用下,建筑构件的材料性能会发生严重的劣化,严重削弱结构的承载性能,结构变形显著增加,甚至危及结构的安全。特别是对于钢结构来说,强度高、重量轻、抗震性能好和可靠性高等是其优点。但是由于钢材的耐火性能较差,当温度在400℃左右时,其屈服强度将降至室温下的一半,温度达到约600℃时,钢材将基本丧失全部强度和刚度。因此,建筑结构抗火性能的研究一直是近年来研究的热点,建筑结构抗火性能的提高十分必要和迫切。传统的建筑结构抗火分析,通常采用确定性的力学模型来进行。对于工程结构设计、施工和使用中客观存在的不确定性,传统方法对其中所蕴含的安全度不能给予科学的解释,安全系数的取值,则是根据工程事故率的高低不断进行调整的,这不免要付出过大的材料浪费和潜在的巨大损失为代价。本文从工程实际出发,通过结构可靠性设计分析火灾对结构的影响,在前人工作的基础上进行了以下一些方面的研究:
     1.讨论了火灾作用下影响钢筋混凝土构可靠性的因素。将火灾下钢筋混凝土构件极限承载力的变化与其抗力相联系,提出并论证了构件抗力随火灾时间变化的规律,并通过给出抗力随时间变化的确定性函数,建立了钢筋混凝土构件在火灾下的功能函数。采用规范推荐的一次二阶矩法描述了在火灾过程中结构可靠性指标的变化过程,并分析了保护层厚度、配筋率、混凝土标号等主要因素对钢筋混凝土构件抗火性能的影响。同时充分考虑到钢筋混凝土梁构件经常带裂缝工作,本文引入了裂缝对抗力影响的随机变量,并建立了相应的极限状态方程。
     2.采用全随机过程模型,求出了钢筋混凝土结构经过一定的受火时间后幸存的几率。考虑到可靠性指标计算困难,在工程上应用不便,将安全系数法引入可靠性研究,并提出了一种用可靠性意义下的安全系数近似分析计算火灾下钢筋混凝土结构可靠性的方法。该方法既保持了安全系数法简单明快的特点方便设计人员应用,同时又考虑到了应力和强度的变异性,以及结构设计可靠度目标等因素。
     3.分析了钢构件保护层厚度、导热系数、以及荷载比等因素对钢梁可靠性的影响。并通过算例对钢梁在ISO834标准升温曲线作用下的耐火极限进行了时变可靠性分析。
     4.在充分考虑到高温对于钢结构的强度、平面内稳定和平面外稳定的影响的基础上,建立了高温作用下钢结构柱的极限状态方程,并给出了考虑基本荷载组合时钢柱可靠性指标的求法。
     综上所述,本文针对各种类型的建筑结构构件在高温下的可靠性进行了较系统的研究。建立起多种建筑构件在火灾作用下可靠性分析的方法,希望能为工程设计提供参考和帮助。
Steel and reinforced concrete structure occupies a very large proportion in modern buildings, Under high temperature in the fire, the building elements of the material properties deteriorate seriously, which will severely weakened the structural bearing capacity, significantly increase structural deformation and even endanger the structural safety. Especially for steel structure, high strength, light weight, good seismic performance and reliability are its advantages. When the temperature reaches about 400℃, the yielding strength will be reduced to half of that at room temperature. When the temperature reaches about 600℃, the steel will almost lose all the strength and stiffness. Thus, structural fire resistance research has been a hot spot in recent years, in which fire resistance of building structures is necessary and urgent. The traditional fire resistance of building has usually been analyzed by the deterministic mechanical models. For the inherent uncertainty of engineering design, construction and use, the traditional methods can not give a scientific explanation on safety and the value of safety factor was adjusted by the accident rate, which would inevitably result in excessive material waste and the potential cost of loss. In this paper, based on practical engineering problems, the effects of fire on the structure have been analyzed through structural reliability design. Based on previous research, the following aspects are given in this paper.
     Firstly,under the impact of fire, the influencing factor on reinforced concrete structure reliability has been discussed. The fire bearing capacity of reinforced concrete and the resistance force have been linked together and the laws of resistance force changing with time have been given. By the certainty function of resistance force changing with time, the performance function has been built for steel concrete components under fire. With the use of standard first order second moment method recommended by the norm, the structural reliability factor change under fire has been described and analyzed the influence of protective layer thickness, reinforcement ratio, concrete grade, and other major factors on the fire resistance reliability of reinforced concrete structures. Meanwhile, with fully consideration of the existence of cracks in the beam components of reinforced concrete, the random variables concerning the influence of cracks on the resistance force has been introduced and the corresponding limit state equation has been given.
     Firstly, based on the theory of conical flow field, with shock angle, semi-spanwise angle, expansion angle, length-to-span ratio and function coefficient as design control parameters, cone-derived waverider configuration is generated under conditions of mach number 6 and 30km high atmosphere. On the basis of the analysis of the effect of the design control parameters on the performance of the lift-to-drag ratio of the waverider configuration, volume efficiency and etc., complex method is introduced to optimize and process the matching of lift to weight and top surface isentropic expansion of the generated waverider and the optimized shape of waverider is obtained under the design condition.
     Secondly, the surviving chance of reinforced concrete structures under fire in a certain time have been obtained by the all-random process model. With the calculation of difficulties on reliability index computation, which is inconvenient in engineering, the safety factor method has been introduced and the the approximate analysis has been used in calculating the reliability of reinforced concrete structures under fire by the safety factor, which maintains the simplicity and convenience of the safety factor method for designers and takes into account the variation of stress and strength, as well as structural design reliability goals.
     Thirdly, the influence of protective layer thickness of steel components, thermal conductivity, and the load ratio on the reliability of steel girder has been analyzed. Through the time variant reliability analysis, the fire resistance of steel girder under ISO834 standard temperature rising curves has been given.
     Finally, Through the mathematical derivation on reliability and with the consideration of high temperature on steel structure strength and in-plane and out-plane stability, the limit state equation of steel columns under high temperature has been established and the reliability index of steel columns has been given when considering basic load combination.
     In conclusion, reliabilities according to all kinds of structural building components under fire have been studied systematically. Reliability analysis methods have been obtained for building components under fire, which hopefully would provide useful reference to practical engineering problems.
引文
[1]李国强,韩林海,楼国彪,蒋首超.钢结构及钢—混凝土组合结构抗火设计.中国建筑工业出版社.2006
    [2]吴波,唐贵和.近年来混凝土结构抗火研究进展.建筑结构学报.2010,31(6):110-121页
    [3]李国强,吴波,韩林海.结构抗火研究进展与趋势.建筑钢结构进展.2006,8(1):1-13页
    [4]范维澄,王清安,姜冯辉,周建军等.火灾学简明教程.中国科学技术大学出版社.1995
    [5]章考思.高层建筑防火.中国建筑工业出版社.1985
    [6]屈立军.“9·11”世贸大楼坍塌原因数值分析.武警学院学报.2004,20(4):5-7页
    [7]贡金鑫.工程结构可靠度计算方法.大连理工大学出版社.2003
    [8]安伟光,蔡荫林,陈卫东.随机结构系统可靠性分析与优化设计.哈尔滨工程大学出版社.2005
    [9]何水清,王善.结构可靠性分析与设计.国防工业出版社.1993
    [10]建筑结构可靠度设计统一标准(GB50068—2001).中华人民共和国国家标准,2001
    [11]靳飞,李国强.全盛期室内火灾参数化模型的参数随机性.建筑科学与工程学报.2006,23(4):44-47页
    [12]International Standard ISO834. Fire-Resistance Test Elements of Building Construction. Amendment 1, Amendment 2.1980
    [13]金贤玉,钱在兹,金南国.混凝土受火时温度分布的研究.浙江大学学报.1996,30(3):286-293P
    [14]闵明保,李延和,高本立等.建筑物火灾后诊断与处理.南京:江苏科学技术出版社.1994
    [15]AH book NG, M.S.Mirza and T.T. Lie. Fire endurance analysis of reinforced concrete columns. Can.J.Civ.Eng.1989(16):290-299P
    [16]周新刚.火灾时钢筋混凝土板中钢筋的温度分析.工业建筑.1999,26(9):15-19P
    [17]李国强,殷颖智,蒋首超.火灾下组合楼板的温度场分析.工业建筑.1999,29(12):47-49P
    [18]霍然,胡源,李元洲.建筑火灾安全工程导论.中国科学技术大学出版社.1999
    [19]Khoury G A, Sullivan P J E. Research at imperial college on the effect of elevated temperatures on concrete. Fire Safety Journal.1988,13(1):69-72P
    [20]Schneider U. Concrete at high temperature-A general review. Fire Safety Journal. 1988,13(1):55-68P
    [21]James P H, Gamal N A. Validation and application of computer model for predicating the thermal response of concrete slabs subjected to fire. ACI Structural Journal, 1998,95(5):480-487P
    [22]Harmathy T Z. Thermal properties of concrete at elevated temperatures. ASTM Journal of Materials.1970,5(1):47-74P
    [23]Shirley T S, Burg G R, Fiorato E A. Fire endurance of high-strength concrete slabs. ACI Materials Journal.1988,85(2):102-108P
    [24]Kordina K, Ehm C, Schneider U. Effects of biaxial loading on the high temperature behavior of concrete. Proc. of 1st Int. Symposium on Fire Safety Science.1986: 281-290P.
    [25]Ellingwood B, James R S. Effects of fire on reinforced concrete members. Journal of the Structural Division Proceeding of the ASCE.1980,106(11):2151-2166P
    [26]Ahbook N G, Mirza M S, Lie T T. Fire endurance analysis of reinforced concrete columns. Canadian Journal Civil Engineering.1989(16):290-299P
    [27]Wang Y C. The effects of structural continuity on the fire resistance of concrete filled columns in non-sway frames. Journal of Constructional Steel Research.1999, 50(2):177-197P
    [28]Soares C G, Gordo J M, Teixeira A P. Elasto-Plastic Behaviour of Plates Subjected to Heat Loads. Journal of Constructional Steel Research.1998,45(2):179-198P
    [29]M. Saafi. Effect of Fire on FRP Reinforced Concrete Members. Composite Structures.2002,58(1):11-20P
    [30]Huang Z H, Burgess I W, Plank R J. Three-dimensional modeling of two full-scale fire tests on a composite building. Structures& Buildings.1999,134(3):243-255P
    [31]James G G. Developments in the application of the performance concept in building . Thirteen meeting of the UJNR panel on fire research and safety. Gaithersburg.1996,3:1-11P
    [32]Cox G. Fire research in the 21st century. Fire Safety Journal.1999,32 (3): 203-219P
    [33]Elghazouli A Y, lzzuddin B A, Richardson A J. Numerical modelling of the structural fire behaviour of composite. Fire Safety Journal,2000,35(4):279-297P
    [34]Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC at high temperature. Cement Concrete Res.2000,30(12):1915-1927P
    [35]Mohamad J, Terro. Numerical modeling of the behavior of concrete structures in fire. ACI Structural Journal.1998,95(2):183-193P
    [36]吴波,马忠诚,欧进萍.高温后混凝土的变形特性及本构关系的试验研究.建筑结构学报.1999,20(5):42-49页
    [37]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究.1990,(1):37-43页.
    [38]李卫,过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报.1993,14(1):8-16页
    [39]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析.清华大学博士学位论文,1992:6-72页
    [40]陆洲导,朱伯龙,周越华.钢筋混凝土简支梁对火灾反应的试验研究.土木工程学报.1993,26(3):47-54页
    [41]屈立军.火灾时钢筋混凝土受弯构件承载力计算.建筑技术.1996,23(12):828-830页
    [42]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析.土木工程学报.1995,28(6):18-27页
    [43]胡克旭,朱伯龙.结构受火灾作用的全过程分析方法.四川建筑科学研究.1996,(1),29-34,51页
    [44]王振清,朱大雷,韩玉来,乔牧.火灾下钢筋混凝土热弹塑性徐变本构方程研究.哈尔滨工程大学学报。2010,31(2):202-207页
    [45]王振清,朱大雷,韩玉来,乔牧.火灾下钢筋混凝土结构热弹塑性分析,土木建筑与环境工程学报.2010,32(1):78-83页
    [46]Zhenqing Wang, Dalei Zhu, Yulai Han, Mu Qiao. Nonlinear Numerical Simulation to Thermo-elastic-plastic Creep Constitutive Equation for Concrete Subjected to Fire, The Third International Conference on Computational Sciences and Optimization (CSO 2010).99-102P
    [47]朱大雷,王振清,乔牧,韩玉来.高温下内力重分布引起的钢筋混凝土连续梁弹塑性分析,哈尔滨工程大学学报.(录用)
    [48]Zhenqing Wang, Bing Liu, Dalei Zhu, Mu Qiao. Evaluation on Debonding along the Interface of Reinforced Concrete at Elevated Temperature. Fracture & Damage Mechanics (FDM2010)
    [49]王振清,苏娟,韩玉来, 朱大雷.火灾下钢筋混凝土受弯构件的弹塑性分析.武汉理工大学学报.2008,30(2):66-69页
    [50]王振清,韩玉来,苏娟,乔牧.钢筋混凝土梁火灾承载力及等效楼面荷载分析.武汉理工大学学报.2007,29(6):65-68页
    [51]韩玉来.建筑结构抗火性能研究.哈尔滨工程大学博士学位论文.2008:11-32
    [52]姜颖.钢筋混凝土简支梁的抗火性能研究.哈尔滨工程大学硕士学位论文.2006.12-43页
    [53]Xiao J Z, Gert K. Study on concrete at high temperature in China - an overview. Fire Safety Journal.2004,39(1):89-103P
    [54]Omer A. Effects of elevated temperatures on properties of concrete. Fire Safety Journal.2007,42(8):516-522P
    [55]Bailey, C G, Toh W S. Small-scale concrete slab tests at ambient and elevated temperatures. Engineering Structures.2007,29(10):2775-2791P
    [56]Hertz K D. Concrete strength for fire safety design. Mag. Concrete Res.2005, 57(8):445-453P
    [57]Lin M, Qian C X, Sun W. Mechanical properties of high strength concrete after fire. Cement and Concrete Research.2004,34(6):1001-1005P
    [58]Huang Z H, Burgess I W, Plank R J. Nonlinear Analysis of Reinforced Concrete Slabs Subjected to Fire. ACI Structural Journal.1999,96(1):127-135P
    [59]Elghazouli A Y, Izzuddin B A. Analytical assessment of the structural performance of composite floors subject to compartment fires . Fire Safety Journal.2001, 38(6):769-793P
    [60]Bailey C G. Efficient arrangement of reinforcement for membrane behaviour of composite floor slabs in fire conditions. Journal of Constructional Steel Research.2003,59(7):931-949P
    [61]陈礼刚,李晓东,董毓利.钢筋混凝土三跨连续板边跨受火性能试验研究.工业建筑,2004,34(1):66-75页
    [62]Foster S J, Bailey C G, Burgess I W, Plank R J. Experimental behaviour of concrete floor slabs at large displacements. Engineering Structures.2004,26(9): 1231-1247P
    [63]Foster S J, Burgess I W, Plank R J. Experimental behaviour of model-scale concrete floor slabs at large displacement and high temperatures . In. Proc.2nd international conference on steel and composite structures.2004:1268-1282P
    [64]Usmani A S, Cameron N J K. Limit capacity of laterally restrained reinforced concrete floor slabs in fire. Cement and Concrete Composites.2004,26(2):127-140P
    [65]Kodur V K R, Bisby L A. Evaluation of fire endurance of concrete slabs reinforced with fiber-reinforced polymer bars . Journal of Structural Engineering.2005, 131(1):34-43P
    [66]孙劲峰,时旭东,过镇海.三面受热钢筋混凝土梁在高温时和降温后受力性能的试验研究.建筑结构.2002,32(1):34-36页
    [67]Bratina S, Planinc I, Saje M, Turk G.. Non-linear fire-resistant analysis of reinforced concrete beams. Struct Eng Mech.2003,16(6):695-712P
    [68]Daniel D C, Antonio R M. Nonlinear analysis of reinforced concrete cross-sections exposed to fire. Fire Safety Journal,2007,42(2):139-149P
    [69]Sebastjan B, Miran S, Planinc I. The effects of different strain contributions on the response of RC beams in fire. Engineering Structures.2007,29(3):418-430P
    [70]Dotreppe J C, Franssen J M, Vanderzeypen Y. Calculation Method for Design of Reinforced Concrete Columns under Fire Conditions . ACI Structural Journal.1999,96(1):9-18P
    [71]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的受力性能试验研究.建筑结构学报.1997,18(4):13-22页
    [72]杨建平,时旭东,过镇海.高温下钢筋混凝土压弯构件极限承载力简化计算.建筑结构。2002,32(8):23-25页
    [73]Tan K H, Yao Y. Fire Resistance of Four-Face Heated Reinforced Concrete Columns. Journal of Structural Engineering.2003,129(9):220-1229P
    [74]宋晓勇,邹银生,涂文戈,邓济玉.受火钢筋混凝土柱截面极限承载力研究.建筑科学与工程学报.2005,22(4):61-64页
    [75]Sebastjan B, Bojan C, Miran S, Planinc I. Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode Ⅱ. International Journal of Solids and Structures.2005,42(3):5715-5733P
    [76]Chung J H, Gary R. Consolazio, Michael C M. Finite element stress analysis of a reinforced high-strength concrete column in severe fires. Computers and Structures.2006,84(21):1338-1352P
    [77]Jing Y, Zha X X, Li L Y. Fire resistance of axially loaded concrete filled steel tube columns. Journal of Constructional Steel Research.2006,62(7):723-729P
    [78]苏娟,王振清,白丽丽,韩玉来.四面受火钢筋混凝土柱抗火性能分析.哈尔滨工程大学学报.2007,28(12):1326-1330页
    [79]Huang Z F, Tan K H, Guan H P. Axial restraint effects on the fire resistance of composite columns encasing I-section steel. Journal of Constructional Steel Research.2007,63 (6):437-447P
    [80]侯晓萌,郑文忠.欧洲规范中混凝土结构抗火设计主要内容(1)——火灾下荷载 效应、抗力效应、材料性能与基于表格的抗火设计方法.工业建筑.2008,38(4):98-103页
    [81]侯晓萌,郑文忠.欧洲规范中混凝土结构抗火设计主要内容(2)——基于构件分析的简化抗火计算方法与火灾下混凝土爆裂简化判别方法.工业建筑.2008,38(6):110-116页
    [82]Design of Steel Structures, Part 1.2:General Rules, Structural Fire Design. British Standards Institution, London:2000.
    [83]Ltwilt. Strength and deformation properties of steel at elevated temperatures:some practical implications. Fire Safety Journal.1988,13(1):9-15P
    [84]Furumura F, Ave T. Creep buckling of steel columns at high temperatures. Part 2: Creep buckling tests and numerical analysis. Journal of Structural and Construction Engineering,1986,36(1):142-151P
    [85]Anderberg Y, Forson N E, Aasen B. Measured and predicted behaviour of steel beams and columns in fire. Proc. of 1st Int. Symposium on Fire Safety Science.1986,259-269P
    [86]Anderberg Y. Modelling steel behaviour. Fire Safety Journal.1988,13(1):17-26P
    [87]Cooke G M E. An instroduction to the mechanical properties of structural steel at elevated temperatures, Fire Safety Journal.1988,13(1):45-54P
    [88]Burgess I W, Eirimai J A, Plank R J. A secant stiffness approach to the fire analysis of steel beams. Journal of Constructional Steel Research.1988,11(2):105-120P
    [89]Mirambell E, Real E. On the calculation of deflections in structural stainless steel beams:an experimental and numerical investigation. Journal of Constructional Steel Research.2000,54(1):109-133P
    [90]Rubert A, Schaumann P. Critical temperatures of steel columns exposed to fire. Fire Safety Journal.1988,13(1):39-44P
    [91]Klingsch W. Fire resistance of solid steel columns. Fire Safety Journal.1981-1982,4(4):237-241P
    [92]Corradi L, Poggi C, Setti P. Interact domains for steel beam-columns in fire conditions. Journal of Construct Steel Research.1990,17(2):217-235P
    [93]Sakumoto Y, Yamaguchi T, Yoshida T O M, Tasaka S, Saito H. Fire resistance of fire resistance steel columns, ASCE, Journal of Structural Engineering.1994, 120(4):1103-1121P
    [94]Liu T H. Finite element modelling of behaviours of steel beams and connections in fire. Constructional Steel Research.1996,36(3):181-199P
    [95]Bailey C G. Computer modelling of the corner compartment fire test on the large-scale Cardington test frame. Journal of Constructional Steel Research,1998, 48(1):519-527P
    [96]Richard L J Y, Tang L K, Holmas T, Choo Y S. Advanced analysis for the assessment of steel frames in fire. Journal of Constructional Steel Research.1998, 47(1-2):19-45P
    [97]Robert A, Schaumann P. Structural steel and plane frame assemblies under fire action. Fire Safety Journal.1986,10(3):173-184P
    [98]Wang Y C, Moore D B. Steel frames in fire analysis . Engineering Structures.1995,17(6):462-472P
    [99]Wang Y C. An analysis of the global structural behaviour of the cardington steel-framed building during the two BRE fire tests. Engineering Structures.2000, 22(5):401-412P
    [100]Bailey C G, Lennon T, Moore D B. The behaviour of full scale steel framed building subjected to compartment fires. The Structural Engineer.1999,77(8):15-21P
    [101]Green M, Butterworth N A, Burgess I W, Plank R J. Practical Case Studies in Performance-Based Structural Fire Engineering Design . ASCE Specialty conference:Designing Structures for Fire, Baltimore.2003:259-266P
    [102]李国强,陈凯,蒋首超,殷颖智.高温下Q345钢的材料性能试验研究.建筑结构.2001,31(1):53-55页
    [103]李国强.钢梁抗火设计和计算的实用方法.工业建筑.1994,24(7):43-46页
    [104]李国强,杨明,王兆玺.钢柱抗火计算和设计的实用方法.工业建筑.1995,25(2),31-37,61页
    [105]李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社.1999:23-58页
    [106]赵金城.高温下钢结构压弯构件的整体稳定极限状态.钢结构.1998,13(4):31-34页
    [107]李国强,金福安.火灾时钢框架结构的极限状态分析.土木工程学报.1994,27(1):49-56页
    [108]赵金城,沈祖炎.局部火灾下钢框架结构整体性能的非线性分析.建筑结构学报.1997,18(4):30-36页
    [109]王振清,韩玉来,王永军,朱大雷.局部火灾场钢框架结构等效楼面活荷载分析.海军工程大学学报.2007,19(2):36-40页
    [110]李国强,黄宏伟,郑步全.工程结构荷载与可靠度设计原理.中国建筑工业出版社.2001,115-135页
    [111]Corneel C A. A probability based structural code. Journal of the Amercian Concrete Institute.1969,66(12):974-985P
    [112]Lind N C . The design of structural design norms . Journal of Structural Mechanics.1973,1(3):357-370P
    [113]Hasofer A M, Lind N C. Exact and invariant second-moment code format. Journal of the Engineering Mechanics.1974,100(1):111-121P
    [114]赵国藩,曹居易,张宽全.工程结构可靠性理论与应用.水利电力出版社.1983
    [115]混凝土结构设计规范(GB50010-2002).中华人民共和国国家标准,2002
    [116]钢结构设计规范(GB50017-2003).中华人民共和国国家标准,2003
    [117]Mori, Ellingwood. Reliability-based service-life assessment of aging concrete structures. Journal of Structural Engineering.1993,119(5):1600-1621P
    [118]Mori, Ellingwood. Maintaining reliability of concrete structures . Ⅰ:Role of inspection/repair. Journal of Structural Engineering.1994,120(3):824-846P
    [119]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析.建筑结构学 报.1998,19(5):34-43页
    [120]仲伟秋,贡金鑫.恶劣环境下结构可靠度的一种分析方法.吉首大学学报(自然科学版).2003,24(3):19-22页
    [121]金福安,徐伟.施工中钢筋混凝土结构可靠度的分析与控制.福建工程学院学报.2004,4(1):48-51页
    [122]王秀哲.建筑结构材料性能随机抽样调查与统计参数分析.江苏建筑.2006,(5):59-62页
    [123]贡金鑫,赵国藩,赵尚传.大气环境下锈蚀对钢筋混凝土结构可靠度的影响.大连理工大学学报.2000,40(2):210-213页
    [124]吴瑾.海洋环境下钢筋混凝土结构锈蚀损伤评估研究.河海大学博士学位论文.2003,54-101页
    [125]张俊芝,苏小卒.无粘结预应力混凝土梁的体系可靠性分析. 工业建筑.2004,34(1):36-38页
    [126]M. P. Enright, D. M. Frangopol. Reliability-based Condition Assessment of Deteriorating Concrete Bridges Considering Load Redistribution . Structural Safety.1999,21(2):159-195P
    [127]Animesh Dey and Sankaran Mahadevan. RELIABILITY ESTIMATION WITH TIME-VARIANT LOADS AND RESISTANCES. JOURNAL OF STRUCTURAL ENGINEERING.2000,126(5):612-620P
    [128]白丽丽,王振清,苏娟,乔牧.火灾后钢筋混凝土梁的抗弯可靠性.自然灾害学报.2009,18(1):95-99页
    [129]白丽丽,王振清,韩玉来,朱大雷.高温后RC梁剩余承载力与可靠性分析.哈尔滨工程大学学报.2007,28(10):1084-1087页
    [130]白丽丽,王振清,姜封国.火灾影响下RC梁的时变可靠性分析.武汉理工大学学报.2009,31(8):58-62页
    [131]白丽丽,王振清.综合考虑高温后RC柱失效路径的可靠性分析.武汉理工大学学报(交通科学与工程版).2009,33(5):868-870页
    [132]王振清,白丽丽,乔牧,吕红庆.四面受火后钢筋混凝土柱的可靠性分析.华中科技大学学报(自然科学版).2008,36(12):125-127页
    [133]靳飞.火灾下建筑室内空气升温的随机性研究.同济大学硕士学位论文.2007:1-63页
    [134]李国强,靳飞,王卫永.室内火灾升温过程的随机性研究.2008,28(3):261-267页
    [135]Zhenqing Wang, Mu Qiao, Dalei Zhu, Yulai Han. The Reliability Analysis of Reinforced Concrete Beams under High Temperature. The Third International Joint Conference on Computational Sciences and Optimization.2010:327-330P
    [136]Zhenqing Wang, Mu Qiao, Yulai Han, Dalei Zhu. A Time-variant Reliability Analysis of Steel Structures at High Temperature. The 14th International Symposium on Applied Electromagnetics and Mechanics.2009:607-608P
    [137]李田,刘西拉.混凝土结构的耐久性设计.土木工程学报.1994,27(2):47-55页
    [138]左永志,刘西拉.结构动态可靠性的全随机过程模型.清华大学学报(自然科学版).2004,44(3):395-405页
    [139]赵国藩,金伟良,贡金鑫.结构可靠度理论.中国建筑工业出版社.2000
    [140]李耀庄,李昀晖.火灾下四面受火钢筋混凝土柱极限承载力的简化计算.防灾减灾工程学报2007,27(3):323-329页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700