用户名: 密码: 验证码:
硫脲硫酸锌晶体成核特性、表面台阶形貌及其热、动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫脲硫酸锌(Zn[CS(NH2)2]3SO4,ZTS)晶体是一种性能优良的金属有机配合物型非线性光学晶体。它具有非线性系数高、激光损伤阈值高、光透过范围宽以及角度灵敏性低等优点,能够广泛应用于二次谐波激光发生器、电光调制器和高功率激光频率转换等高科技领域。另外,ZTS晶体还具有物理化学性质稳定、机械强度高且生长所需原料价格低廉等优点,因此ZTS晶体的生长和制备越来越受到人们的重视。
     目前,国内外学者对ZTS晶体的研究主要集中于对各种条件下(包括无机物、有机物的掺杂和pH值的改变等)生长出的晶体的性能的检测分析上,而对ZTS晶体微观生长过程方面的研究较少。虽然目前通过掺杂可以提高ZTS晶体的某些性能,但快速生长优质大尺寸ZTS晶体仍存在很多困难。因此,如何提高晶体的质量以及在保证晶体质量的前提下尽可能提高其生长速度,应引起研究人员的重视。众所周知,晶体的生长过程对晶体质量进而对晶体性能有重要影响,而晶体生长过程的实质就是生长基元通过生长界面进入晶格位置的过程,因而通过对ZTS晶体生长过程中晶体表面所发生的微观现象的观察研究,可以获得ZTS晶体生长过程方面的信息,加深对其微观生长过程的认识,了解其生长过程中的微观机理,从而指导人们控制晶体的生长过程,进行高质量的ZTS晶体生长。原子力显微镜(atomic force microscopy,AFM)正是这样一种可以帮助人们对微观现象进行观察的工具。AFM通过检测探针与样品表面的原子间的作用力可以获得样品的表面微观形貌,并且可在溶液环境下工作,因此可以利用AFM实时地研究晶体生长的表面形貌和生长机理。
     本文利用热科学的基础理论,通过开展ZTS晶体成核实验和ZTS晶体生长过程的AFM实时扫描实验等研究,对不同生长条件下,ZTS生长溶液的稳定性以及生长过程中晶体表面微观形貌的变化、晶体生长机制、缺陷形成等方面进行了深入探讨,主要内容为:
     ①研究了不同过饱和比下ZTS溶液的成核过程,测定了不同过饱和比下溶液的诱导期。根据经典均匀成核理论,针对ZTS过饱和溶液均匀成核的情况计算得到了固-液界面张力等热力学参数。通过对表面熵因子的计算,确定了诱导期实验中ZTS晶体的微观生长机制。
     ②利用AFM对不同生长条件下生长中的ZTS晶体(100)面表面微观形貌的实时变化过程进行研究,获得了不同条件下的界面微观形貌,并对台阶的运动进行了分析。ZTS晶体(100)面主要的形貌特征为台阶面,生长台阶分为基台阶、聚并台阶和“准聚并台阶”;台阶生成源不同,台阶高度不同,台阶的推移速度与台阶高度成反比。实时观察到一些未曾报道的现象:扇形台阶的推移;晶体从“生长死区”恢复生长的过程;聚并台阶的形成过程;各向异性的台阶推移。另外,对平行台阶列的稳定性进行了分析。
     ③通过AFM实时扫描实验研究了30℃下ZTS晶体(100)面微观形貌随过饱和度的变化,确定在低过饱和度下,刃位错处易于成核从而可反复提供单分子台阶,成核的刃位错具有“记忆功能”;较高的过饱和度下,多核生长为主要生长机制;二维核在[010]和[001]方向上的推移速度不同,呈现出明显的各向异性;计算得到了[010]和[001]方向上二维核台阶推移的台阶动力学系数和台阶活化能。同时发现,台阶边缘的不连续处往往优先生长。
     ④运用AFM实时扫描实验得到的微观数据,对30℃时低过饱和度(0.0150.025)下ZTS晶体(100)面的台阶动力学进行了研究,测算了ZTS晶体(100)面的水平推移速度和台阶的实际推移速度,发现此生长条件下ZTS晶体(100)面溶质边界层内的质量输运主要受体扩散机制控制。
     ⑤利用AFM实时研究了30℃时不同浓度L-丙氨酸掺杂下ZTS晶体(100)面的微观形貌,分析了掺杂对(100)面表面形貌和台阶运动的影响,计算得到不同掺杂浓度下台阶的推移速度和台阶动力学系数。利用AFM对过饱和度5%,掺杂浓度2mol%时ZTS晶体(100)面生长过程进行实时观察发现,优先成核位置的依次形成导致成核具有交替性,并且优先成核位置被覆盖后依然能保持其活性。
     ⑥利用光学显微镜和原子力显微镜,发现ZTS晶体中存在多种缺陷,主要包括位错、空洞、包裹体、开裂和楔化等;利用AFM观察到凹坑、包裹体等缺陷形成的实时过程,探讨了缺陷的形成机制,提出了减少晶体缺陷的相应措施。
Zinc tris(thiourea) sulphate (Zn[CS(NH2)2]3SO4, ZTS) crystal is an excellentmetaorganic coordination compound of the nonlinear optical crystal, which has highnonlinear optical coefficient, high laser damage threshold, wide range of lighttransmission and low angular sensitivity, eta. Due to its excellent properties, it can bebroadly used in many high technology fields, such as secondary harmonic lasergeneration, electro optics modulated, high-power laser frequency conversion and so on.In addition, ZTS crystal has some other significant advantages, such as stablephysicochemical properties, high mechanical strength, and the low expensive for rawmaterial synthesis, thus, the growth and preparation of ZTS crystal have been paid moreattention.
     Currently, the emphasis focus on analysising and testing of the performance ofZTS crystal grown under in variety of growth conditions (including kinds of inorganicor organic materials doping and different pH value and so on), while the micro growthprocesses of ZTS crystal was few studied. Although some performances of ZTS crystalcan be improved by doping, there are still many difficulties for growing large-size ZTScrystal with high-quality at a rapid growth speed. Therefore, how to improve the qualityand increase the growth rate of ZTS crystal should arouse attention of researchers. It iswell known that crystal growth process has significant influences on crystal quality andresultantly affect the performance of the crystal. The crystal growth process is indeed aprocess of growing units entering into the lattice position via the growth interface.Therefore, the study of crystal growth interface micromorphology should enableresearchers to achieve more information about the crystal growth process and deepenthe understanding of microscopic phenomena associated with crystal growth andunderstand the microscopic mechanism of the growth process so as to guide researchersto optimize the crystal growth process and ultimately produce high-quality ZTS crystals.The atomic force microscopy (AFM) is just a relatively new and powerful instrumentthat can help people to investigate the microscopic phenomenon of crystal growth. Theoperational principle of AFM is that a sensitive tip scanning over the surfaces to test theatomic force between the tip and the surfaces. For its ability of working in liquids, itprovides us an opportunity to observe in-situ the growth surfaces morphology andunderstand the growth mechanisms at a nanometer scale.
     In this paper, the nucleation and real-time growth process of ZTS crystal werestudied under different conditions based on the theory of thermal science. The solutionstability was discussed and the surface morphology of ZTS crystal (100) surface beinggrown under different conditions were recorded and analyzed. The main works can besummarized as flows:
     ①The effects of different supersaturations on the nucleation of ZTS solution werestudied. The induction periods with different supersaturations were measured.According to the classical homogeneous nucleation theory, nucleation parameters arecalculated by using the experimental results. By the calculation of the surface entropyfactor, the crystal surface growth model of ZTS in these experiments is confirmed.
     ②Through the investigating on the growth of (100) face of ZTS crystal by in situAFM under different growth conditions, the micro morphologies of the interface wereobtained and the movement of steps were analyzed. The (100) surface exhibits steppedsurface characteristics. The growth step patterns consist of three types, namely theelementary steps, macrosteps and quasi-macrosteps. Steps derived from differentsources have different heights and the step speed inversely proportional to the stepheight. A fan-shaped steps phenomenon which was never reported before was observedby in situ AFM. The growth process of recovering from the “dead zone” and stepbunching phenomenon were recorded. A phenomenon of step advancement showstypical anisotropy was observed. In addition, the stability of the parallel step trains wasanalyzed.
     ③Growth morphology of the (100) face of ZTS crystals, grown under differentsupersaturations at30℃were investigated by in situ AFM. It is found that at lowersupersaturations, nucleation easily occurred at the outcrops of edge dislocations whichcould act as persistent sources of monomolecular growth steps, and the edge dislocationsites appeared to exhibit a “memory function”. At higher supersaturations, however,poly-nucleation becomes the primary growth mechanism. The rates of step advancementin the [010] and [001] directions of the two-dimensional nuclei were different, as itensues from the symmetry anisotropy. The activation energy of the two-dimensionalnuclei along with the step kinetic coefficients in the [010] and [001] directions werecalculated. The result also showed that the position on the step edge where the edge isdiscontinuity is the preferential sites for growth.
     ④Through investigating on the kinetics of step flow of the (100) face of ZTScrystal by using in situ AFM at lower supersaturations at30℃, the horizontal direction growth velocities of the (100) face were estimated. The real step flowing rates of ZTSare also calculated, and we find that the mass transfer is controlled by bulk diffusion inthe growth of steps.
     ⑤The growth morphologies of the (100) face of ZTS crystals under differentconcentrations of L-alanine doped were investigation by using in situ AFM at the samesupersaturations at30℃. The effects of the dopant on step morphology and stepmovement were analyzed. The step velocity and step kinetic coefficients under differentdoping concentrations were calculated. The results of in situ AFM study on ZTS crystal(100) surface with supersaturation at5%with the doping concentration of2mol%showed that preferential nucleation sites sequentially formed which lead to thenucleation appears alternating, and the preferential nucleation sites still able to maintainits activity after it be covered.
     ⑥By optical microscope and atomic force microscopy,we found that there aremany kinds of defects in ZTS crystals. The main defects of ZTS crystals are growthdislocations, hollow cores, inclusions, cracks and tapering. The real-time process of theformation of pits and inclusions were recorded and the formation mechanisms werediscussed. According to the distinct formation mechanisms results, some methods wereproposed to decrease these defects.
引文
[1]肖学峰,杜懋陆.人工晶体材料的研究进展[J].科技创新导报,2009,(08):6-7.
    [2]张克从,王希敏.非线性光学晶体材料科学[M].北京:科学出版社,1996.
    [3]常新安,代美娟,臧和贵等. ZTS晶体生长及其非线性光学性质研究[J].人工晶体学报,2008,37(2):403-406.
    [4]常新安,臧和贵,陈学安等.金属有机配合物-硫脲硫酸锌晶体的生长探索[J].人工晶体学报,2007,36(4):780-783.
    [5] C.C.Frazier, M.A.Harvey, M.P.Cockerham, et al. Second-harmonic generation in transition-metal-organic compounds[J]. The Journal of Physical Chemistry,1986,90(22):5703-5706.
    [6]秦金贵,杨楚罗,刘道玉.金属有机非线性光学材料研究进展[J].化学通报,1996,(6):13-17+47.
    [7]孙海清,王淑峰. IIB族金属-硫脲配合物非线性光学晶体的研究进展[J].山东科技大学学报(自然科学版),2009,28(1):55-59.
    [8] H.O.Marcy, L.F.Warren, M.S.Webb, et al. Second-harmonic generation in zinc tris(thiourea)sulfate[J]. Applied Optics,1992,31(24):5051-5060.
    [9] G.D.Andreetti, L.Cavalca, A.Musatti. The crystal and molecular structure of tris (thiourea)zinc(II) sulphate[J]. Acta Crystallographica,1968, B24:683-690.
    [10] T.C.Sabari Girisun, S.Dhanuskodi. Linear and nonlinear optical properties of tris thiourea zincsulphate single crystals[J]. Crystal Research and Technology,2009,44(12):1297-1302.
    [11] G.Arunmozhi, E.M.De Gomes, S.Ganesamoorthy. Growth kinetics of zinc(tris)thioureasulphate (ZTS) crystals[J]. Crystal Research and Technology,2004,39(5):408-413.
    [12] U.B.Ramabadran, A.L.McPherson, D.E.Zelmon. Optical properties of deuterated zinc tristhiourea sulphate[J]. Journal of Applied Physics,1994.76(2):1150-1154.
    [13] U.B.Ramabadran, D.E.Zelmon, G.C.Kennedy. Electro-optic, piezoelectric, and dielectricproperties of zinc tris thiourea sulfate[J]. Applied Physics Letters,1992,60(21):2589-2591.
    [14] V.Venkataramanan, M.R.Srinivasan, H.L.Bhat. Vibrational spectroscopic study of zinctris(thiourea) sulfate, a new organometallic nonlinear-optical crystal[J]. Journal of RamanSpectroscopy,1994,25(10):805-811.
    [15] V.Venkataramanan, C.K.Subramanian, H.L.Bhat. Laser-induced damage in zinc tris(thiourea)sulfate and bis(thiourea) cadmium chloride[J].Journal of Applied Physics,1995,77(11):6049-6051.
    [16] P.Kerkoc, V.Venkataramanan, S.Lochran, R.T.Bailey, et al. Thermal properties of thenonlinear optical crystal zinc tris (thiourea) sulphate[J].Journal of Applied Physics,1996,80(12):6666-6669.
    [17] S.S.Gupte, C.F.Desai. Vickers Hardness Anisotropy and Slip System in Zinc (Tris) ThioureaSulphate Crystals[J]. Crystal Research and Technology,1999,34(10):1329-1332
    [18] S.S.Gupte, R.D.Pradhan, N.Melikechi, et al. Second harmonic generation and laser damagestudies in zinc (Tris) thiourea sulfate crystals[J]. Cleo,2002,229-230.
    [19] S.S.Gupte,R.D.Pradhan, A.Marcano O, ea al. Laser damage studies in zinc (tris) thioureasulfate: Nonlinear optical crystal[J]. Journal of Applied Physics,2002,91(5):3125-3128.
    [20] S.Ariponnammal, S.Radhika, R.Selva Vennila, et al. High pressure electrical resistivity studyon nonlinear single crystal zinc thiourea sulphate (ZTS)[J]. Crystal Research and Technology,2005,40(8):786-788.
    [21] R.Krupkova, J.Fabry, I.Cisarova, et al. Redetermination of sulfatotris(thiourea)zinc(II)[J].Acta Crystallographica Section E-Structure Reports Online,2007,63(Part12):M2863-M3177.
    [22] V.Venkataramanan, G.Dhanaraj, V.K.Wadhawan, et al. Crystal growth and defectscharacterization of zinc tris (thiourea) sulfate: a novel metalorganic nonlinear optical crystal[J]. Journal of Crystal Growth,1995,154(1-2):92-97.
    [23] J.Ramajothi, S.Dhanuskodi, K.Nagarajan. Crystal growth, thermal, optical and microhardnessstudies of tris (thiourea) zinc sulphate-a semiorganic NLO material[J]. Crystal Research andTechnology,2004,39(5):414-420.
    [24]代美娟. ZTS晶体生长与性能研究[D].北京工业大学,2008.
    [25] S.Dinakaran, T.C.Sabari Girisun. Thermal, anisotropic microhardness and laser inducedsurface damage studies on certain metal complexes of thiourea[J]. Journal of Crystal Growth,2011,330(1):43-48.
    [26] S.Dinakaran, S.Verma, S.J.Das, et al. Determination of crystalline perfection, opticalindicatrix, birefringence and refractive-index homogeneity of ZTS crystals[J]. AppliedPhysics B-Lasers and Optics,2011,103(2),345-349.
    [27] M.Iyanar, C.Muthamizhchelvan, J.Thomas Joseph Prakash, et al. Uniaxial growth of <100>zinc (tris) thiourea sulphate (ZTS) single crystal by Sankaranarayanan-Ramasamy (SR)method and its characterizations[J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2012,94(0):265-270.
    [28] P.M.Ushasree, R.Jayavel, C.Subramanian, et al. Growth and micromorphology of as-grownZTS single crystals and the etching studies[J]. Bulletin of Electrochemistry,1998,14(11):407-410.
    [29] C.Krishnan, P.Selvarajan, S.Pari. Synthesis, growth and studies of undoped and sodiumchloride-doped Zinc tris-thiourea sulphate (ZTS) single crystals[J]. Current Applied Physics,2010,10(2):664-669.
    [30] C.Krishnan, P.Selvarajan, T.H.Freeda, et al. Growth and characterization of pure andpotassium iodide-doped zinc tris-thiourea sulphate (ZTS) single crystals[J]. Physica B:Condensed Matter,2009,404(2):289-294.
    [31] C.Krishnan, P.Selvarajan, T.H.Freeda. Growth and studies of pure and potassiumiodide-doped zinc tris-thiourea sulphate (ZTS) single crystals[J]. Journal of Crystal Growth,2008,311(1):141-146.
    [32] C.Krishnan, P.Selvarajan, T.H.Freeda. Growth and characterization of pure and potassiumchloride-doped zinc tris-thiourea sulphate (ZTS) single crystals[J]. Materials Letters,2008,62(29):4414-4416.
    [33] C.Krishnan, P.Selvarajan, T.H.Freeda. Growth and studies of pure and lithium bromide-dopedzinc tris-thiourea sulphate (ZTS) Single Crystals[J]. Materials and Manufacturing Processes,2008,23(8):800-804.
    [34] P.Suveetha, T.Sathya, S.Sudha, et al. Growth and studies of halides doped zinc tris-thioureasulphate (HZTS) crystals[J]. International Journal of Advancements in Research&Technology,2012,1(5):1-7.
    [35] M.Selvapandiyan, S.Sudhakar, P.Sundaramoorthi. Crystal growth, structural, spectral andmechanical studies of pure and KI doped ZTS single crystals[J]. Journal of Alloys andCompounds,2012,523(0):25-29.
    [36] M.Selvapandiyan, J.Arumugam, P.Sundaramoorthi, et al. Effect of sodium chloride on theproperties of ZTS single crystals[J]. Journal of Alloys and Compounds,2013,558(0):34-38.
    [37] K.Muthu, S.P.Meenakshisundaram. Enhancement of second harmonic generation efficiency:Cs(I)-doped tris(thiourea)zinc(II) sulphate crystals[J]. Journal of Physics and Chemistry ofSolids,2012,73(9):1146-1150.
    [38] G.Bhagavannarayana, S.K.Kushwaha, S.Parthiban, et al. The influence of Mn-doping on thenonlinear optical properties and crystalline perfection of tris(thiourea)zinc(II) sulphatecrystals: Concentration effects[J]. Journal of Crystal Growth,2009,311(3):960-965.
    [39] K.Vasantha, P.A.Angeli Mary, S.Dhanuskodi. EPR and optical absorption studies ofVO(II)-doped zinc Tris thiourea sulfate[J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2002,58(2):311-316.
    [40] L.Kasthuri, G.Bhagavannarayana, S.Parthiban, et al. Rare earth cerium doping effects innonlinear optical materials: potassium hydrogen phthalate (KHP) and tris(thiourea)zinc(II)sulfate (ZTS)[J]. Cryst Eng Comm,2010,12(2):493-499.
    [41] S.K.Kushwaha, K.K.Maurya, D.Haranath, et al. The effect of Cr3+doping on the crystallineperfection and optical properties of zinc tris(thiourea)sulfate, a nonlinear optical material[J].Journal of Applied Crystallography,2011,44(5):1054-1061.
    [42] K.Kanagasabapathy, R.Rajasekaran. Growth, spectral, optical and thermal studies of rareearth neodymium(III)nitrate doped tristhiourea zinc(II)sulphate single crystals[J]. AdvancedMaterials Research,2012,584:37-41.
    [43] K.Muthu, G.Bhagavannarayana, S.P.Meenakshisundaram. Growth, structure, crystallineperfection and characterization of Mg(II)-incorporated tris(thiourea)Zn(II) sulfate crystals:Enhanced second harmonic generation (SHG) efficiency[J]. Journal of Alloys andCompounds,2013,548(0):201-207.
    [44] S.Meenakshisundaram, S.Parthiban, N.Sarathi, et al. Effect of organic dopants on ZTS singlecrystals[J]. Journal of Crystal Growth,2006,293(2):376-381.
    [45] S.Meenakshisundaram, S.Parthiban, G.Bhagavannarayana, et al. Influence of organic solventon tristhioureazinc(II)sulphate crystals[J]. Journal of Thermal Analysis and Calorimetry,2009,96(1):125-129.
    [46] S.P.Meenakshisundaram, S.Parthiban, R.Kalavathy, et al. Thermal and optical properties ofZTS single crystals in the presence of1,10-phenanthroline (Phen)[J]. Journal of ThermalAnalysis and Calorimetry,2010,100(3):831-837.
    [47] G.Bhagavannarayana, S.Parthiban, S.Meenakshisundaram. Enhancement of crystallineperfection by organic dopants in ZTS, ADP and KHP crystals as investigated byhigh-resolution XRD and SEM[J]. Journal of Applied Crystallography,2006,39(6):784-790.
    [48] Moitra Sweta, Kar Tanusree. A study on the growth and characteristic properties of ZTSsingle crystal[J]. Materials Chemistry and Physics,2007,106(1):8-10.
    [49] Moitra Sweta, Kar Tanusree. Growth and characterization of nonlinear optical crystal zinc tris(thiourea) sulphate in presence of l-arginine[J]. Optical Materials,2007,30(3):508-512.
    [50] N.R.Dhumane, S.S.Hussaini, V.G.Dongre, et al. Influence of glycine on the nonlinear optical(NLO) properties of zinc (tris) thiourea sulfate (ZTS) single crystal[J]. Optical Materials,2008,31(2):328-332.
    [51] Dr.J.Thomas Joseph Prakash, M.Lawrence. Growth and characterization of pure and L-lysinedoped zinc (tris) thiourea sulphate crystals[J]. International Journal of Computer Applications,2010,8(3):36-39.
    [52] K.Kanagasabapathy, R.Rajasekaran. Growth, structural, optical and thermal studies ofL-Threonine added zinc(tris) thiourea sulphate single crystals[J]. Optoelectronics andAdvanced Materials-Rapid Communications,2012,6(1-2):218-224.
    [53] Bincy Susan Samuel, R.Rajasekaran. Growth and characterization of pure and L-Glutamicacid doped zinc tris(thiourea) sulphate (ZTS) single crystals[J].2013, unpublished.
    [54] N.Balasundari, P.Selvarajan, S.Lincy Mary Ponmani, et al. Growth and characterization ofpicric acid mixed ZTS single crystals[J]. International Journal of Current Research andReview,2012,04(17):182-188.
    [55] K.Senthil Kannan, S.Gunasekaran, Seethalakshmi. KA. Growth and Spectroscopic studies ofPure and L-Proline doped ZTS crystal (with Taxol)[J]. International Journal of Scientific&Engineering Research,2013,4(2):1-5.
    [56] S.Verma, M.K.Singh, V.K.Wadhawan, et al. Growth morphology of zinc tris(thiourea)sulphate crystals[J]. Pramana-Journal of Physics,2000,54(6):879-888.
    [57] S.Dinakaran, S.Verma, S.Jerome Das, et al. Optical imaging of the growth kinetics and polarmorphology of zinc tris(thiourea) sulphate single crystals[J]. Crystal Research andTechnology,2010,45(3):233-238.
    [58]石航,李明伟,程旻等.硫脲硫酸锌晶体(100)面台阶生长动力学实时研究[J].功能材料,2011,42(12):2141-2145.
    [59]王永宝,李明伟,程旻等. L-精氨酸掺杂下ZTS溶液的稳定性研究[J].人工晶体学报,2011,40(9):1460-1466.
    [60]潘翠连,李明伟,程旻等. L-丙氨酸掺杂下ZTS晶体(100)面台阶动力学实时研究[J].人工晶体学报,2012,41(3):587-593.
    [61] N.P.Zaitseva, L.N.Rashkovich, S.V.Bogatyreva. Stability of KH2PO4and K(H,D)2PO4solutions at fast crystal growth rates[J]. Journal of Crystal Growth,1995,148(3):276-282.
    [62]张克从,王希敏,许实. ADP晶体快速生长及其相关性能研究[J].人工晶体学报,1994,23(1):33-38.
    [63]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [64] Muller Georg, Metois Jean Jacques, Rudolph Peter. Crystal Growth-From Fundamentals toTechnology[M]. Amsterdam: Elsevier B. V.,2005.
    [65] J.W.Mullin. Crystallization[M].4th ed. Oxford: Butterworth-Heinemann,2001.
    [66]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [67]张克从.近代晶体学基础上册[M].北京:科学出版社,1998.
    [68]王桂美.四钼酸铵晶体成核及结晶工艺条件的研究[D].福州大学,2005.
    [69]王全.溶液结晶的二次成核[J].纯碱工业,1983,(4):47-48.
    [70] E.P.K.Ottens, A.H.Janse, E.J.De Jong. Secondary nucleation in a stirred vessel coolingcrystallizer[J]. Journal of Crystal Growth,1972,13-14:500-505.
    [71] Noriaki Kubota, Kuokan Kubota. Secondary nucleation of magnesium sulphate from singleseed crystal by fluid shear in agitated supersaturated aqueous solution[J]. Journal of CrystalGrowth,1986,76(1):69-74.
    [72] I.Liszi, M Hasznosne-Nezdei, B.G.Lakatos, et al. Determination of crystal growth mechanismof KCl in ethanol-water system[J]. Journal of Crystal Growth,1999,198-199(2):1330-1334.
    [73] J.Franke, A.Mersmann. The influence of the operational conditions on the precipitationprocess[J]. Chemical Engineering Science,1995,50(11):1737-1753.
    [74] M.S.Joshi, A.V.Antony. Nucleation in supersaturated potassium dihydrogen orthophosphatesolutions[J]. Journal of Crystal Growth,1979,46(1):7-9.
    [75] Arne E.Nielsen, O.Sohnel. Interfacial tensions electrolyte crystal-aqueous solution, fromnucleation data[J]. Journal of Crystal Growth,1971,11(3):233-242.
    [76] A.E.Nielsen. Kinetics of precipitation[M]. Oxford: Pergamon,1964.
    [77] M.Shanmugham, F.D.Gnanam, P.Ramasamy. Nucleation studies in supersaturated potassiumdihydrogen orthophosphate solution and the effect of soluble impurities[J]. Journal ofMaterials Science,1984,(19):2837-2844
    [78] O.Sohnel, J.W.Mullin. Interpretation of crystallization induction periods[J]. Journal of colloidand Interface Science,1988,123(1):43-50.
    [79]蒋炜,刘代俊.氨水介质中硫酸钾结晶界面能对结晶的影响[J].四川大学学报(工程科学版),2002,34(01):51-55.
    [80] H.Madsen. Theroy of long induction periods[J]. Journal Of Crystal Growth,1987,80(1):371-377.
    [81] T.Balu, T.R.Rajasekaran, N.P.Rajesh, et al. Investigation on the nucleation kinetics ofantiferroelectric ADP admixtured ferroelectric TGS crystals[J]. Materials Letters,2007,61(26):4824-4827.
    [82] A.C.Zattlemoyer. Dekker.1969.
    [83] Hao Hongxun, Wang Jingkang, Wang Yongli. Determination of induction period and crystalgrowth mechanism of dexamethasone sodium phosphate in methanol-acetone system[J].Journal of Crystal Growth,2005,274(3-4):545-549.
    [84]张克从,张乐潓.晶体生长科学与技术-上册[M].2版.北京:科学出版,1997.
    [85]胡程耀,黄培.固体溶解度测定方法的近期研究进展[J].药物分析杂质,2010,30(4):761-765.
    [86] Liu X.J., Xu D., Ren M.J., et al. An examination of the growth kinetics of l-argininetrifluoroacetate (LATF) crystals from induction period and atomic force microscopyinvestigations[J]. Crystal Growth&Design,2010,10(8):3442-3447.
    [87] A.Mersmann. Calculation of interfacial tensions[J]. Journal of Crystal Growth,1990,102(4):841-847.
    [88] K.Sangwal. On the estimation of surface entropy factor, interfacial tension, dissolutionenthalpy and metastable zone-width for substances crystallizing from solution[J]. Journal ofCrystal Growth,1989,97(2):393-405.
    [89] P.Bennema, O.Sohnel. Interfacial surface tension for crystallization and precipitation fromaqueous solutions[J]. Journal of Crystal Growth,1990,102(3):547-556.
    [90] Kwang-Joo Kim, Seung-Kon Ryu. Nucleation of thiourea adduct crystals with cyclohexane-methylcyclopentane systems[J]. Chemical Engineering Communications,1997,159(1):51-54.
    [91] F.Manoli, E.Dalas. Spontaneous precipitation of calcium carbonate in the presence of ethanolisopropanol and diethylene glycol[J]. Journal of Crystal Growth,2000,218(2-4):261-359.
    [92] A.Packter. The precipitation of calcium sulphate dihydrate from aqueous solution: inductionperiods, crystal numbers and final size[J]. Journal of Crystal Growth,1974,21(2):191-194.
    [93] K.V.Rajendran, R.Rajasekaran, D.Jayaraman, et al. Experimental determination of metastablezonewidth, induction period, interfacial energy and growth of non-linear optical-HFB singlecrystals[J]. Materials Chemistry and Physics,2003,81(1):50-55.
    [94] Shnel Otakar. Electrolyte crystal-aqueous solution interfacial tensions from crystallizationdata[J]. Journal of Crystal Growth,1982,57(1):101-108.
    [95] B.W.Bunn. Chemical crystallography[M]. Oxford:Bllarendon Press,1961.
    [96] O.Sohnel, J.W.Millin, A.G.Jones. Crystallization and agglomeration kinetics in the batchprecipitation of strontium molybdate[J]. Industrial&Engineering Chemistry Research,1988,27(9):1721-1728.
    [97] R.J.Davey. The role of the solvent in crystal growth from solution[J]. Journal of CrystalGrowth,1986,76(3):637-644.
    [98]苗宇,金蔚青,潘志雷等.晶体生长三维实时观察技术研究[J].无机材料学报,2002,17(1):24-28.
    [99]殷之文,罗豪甦,仲维卓等.水溶液中晶体生长台阶运动的实时观察方法[J].人工晶体学报,1994.23(1):56-61.
    [100]金蔚青.微重力条件下晶体生长过程的实时观察[J].物理,1998,27(4):210-214.
    [101]李明,滕冰,钟德高等[J].快速生长KDP晶体表面的光学显微实时观察.人工晶体学报,2010,39(3):598-602.
    [102]赵朋,夏海瑞,孙大亮等.利用全息相衬干涉显微术研究EDTA对KDP晶体生长习性的影响[J].人工晶体学报,2003,32(1):31-34.
    [103]于锡玲,魏爱俭.研究晶体生长的全息相衬显微术[J].人工晶体,1987,16(2):165-169.
    [104]董金锠,于锡玲.用激光全息干涉术研究KDP晶体生长过程[J].山东工业大学学报,1988,18(3):74-77.
    [105]李文江,徐毓娴,董小满.休伦法在观测溶液浓度分布中的应用[J].光学技术,2002,28(04):343-344.
    [106]孙玉玲.激光散斑法研究温度场分布[J].青岛大学学报(自然科学版),1994,7(04):6-10.
    [107]唐鼎元,张雨东,郑瑜等.高温晶体生长过程的实时分子光谱测量[J].人工晶体学报,1997,(Z1):409.
    [108]段萌萌,陈长乐,雷松鹤.晶体生长实时观测技术研究进展[J].材料导报,2006,20(05):97-100.
    [109] H.J.Butt, B.Cappella, M.Kappl. Force measurements with the atomic force microscope:Technique, interpretation and applications[J]. Surface Science Reports,2005,59(1-6):1-152.
    [110]刘岁林,田云飞,陈红等.原子力显微镜原理与应用技术[J].现代仪器,2006,(6):9-12.
    [111]喻江涛,李明伟,曹亚超等. ADP晶体的生长丘、台阶微观形貌及台阶棱边能[J].功能材料,2009,40(02):335-337.
    [112] W.K.Burton, N.Cabrera, F.C.Frank. The growth of crystals and the equilibrium structure oftheir surfaces[J]. Philosophical Transactions of the Royal Society of London SeriesA-Mathematical and Physical Sciences,1951,243(866):299-358.
    [113] W.Kossel. uber Krystallwachstum[J]. Naturwise,1930,18:901.
    [114] Geng Y.L., Xu D., Sun D.L., et al. Atomic force microscopy studies on growth mechanisms ofLAP crystals grown in solution containing excessive amount of l-arginine[J]. MaterialsChemistry and Physics,2005,90(1):53-56.
    [115] Toshitaka Nakada, Gen Sazaki, Satoru Miyashita, et al. Direct AFM observations of impurityeffects on a lysozyme crystal[J]. Journal of Crystal Growth,1999,196(2-4):503-510.
    [116] Kandel Daniel, Weeks John D. Theory of impurity-induced step bunching[J]. Physical ReviewB,1994,49(8):5554-5564
    [117] V.I.Bredikhin. Mass-transport and step bunching in crystal growth from solutions[J].Transport Theory and Statistical Physics,2008,37(5-7):504-519.
    [118] Sato Masahide. Step bunching induced by flow in solution[J]. Journal of Crystal Growth,2011,318(1):5-9.
    [119] M.A.Zaluska-Kotur, F.Krzyzewski. Step bunching process induced by the flow of steps at thesublimated crystal surface[J]. Journal of Applied Physics,2012,111:114311.
    [120] A.A.Chernov. Step bunching and solution flow[J]. Journal of Crystal Growth,2003,5(3):575-587.
    [121] V.I.Bredikhin, O.A.Malshakova. Step bunching in crystal growth from solutions: Model ofnonstationary diffusion layer, numerical simulation[J]. Journal of Crystal Growth,2007,303(1):74-79.
    [122] B.J.Gibbons, S.Schaepe, J.P.Pelz. Evidence for diffusion-limited kinetics duringelectromigration-induced step bunching on Si(111)[J]. Surface Science,2006,600(12):2417-2424.
    [123] M.I.Larsson. Surface diffusion mechanism for step bunching[J]. Physical Review B,1997,56(23):15157-15166.
    [124] A.A.Chernov. Modern Crystallography III (Crystal Growth)[M]. Berlin: Springer-Verlag,1984.
    [125] C.M. Pina, D.Bosbach, M.Prieto, et al. Microtopography of the barite (001) face duringgrowth: AFM observations and PBC theory[J]. Journal of Crystal Growth,1998,187(1):119-125.
    [126] L.N.Rashkovich, N.V.Kronsky. Influence of Fe3+and Al3+ions on the kinetics of steps on the{100} faces of KDP[J]. Journal of Crystal Growth,1997,182(3-4):434-441.
    [127] T.A.Land, T.L.Martin, S.Potapenko, et al. Recovery of surfaces from impurity poisoningduring crystal growth[J]. Nature,1999,399(6735):442-445.
    [128]曹亚超,李明伟,程旻等. KDP晶体相变界面微观形貌及大台阶形成的AFM观察[J].功能材料,2013,44(17):2494-2499.
    [129]潘翠连. L-丙氨酸掺杂下ZTS晶体生长热、动力学研究[D].重庆大学,2012.
    [130]石航. ZTS晶体(100)面生长热、动力学及表面形貌研究[D].重庆大学,2011.
    [131] X.N.Jiang, D.Xu, D.R.Yuan, et al. Distinct growth phenomenon observed on zinc cadmiumthiocyanate crystals by atomic force microscopy[J]. Crystal Resarch&Technology,2002,37(6):564-569.
    [132] A.J.Malkin, Yu.G.Kuznetsov, A.McPherson. In situ atomic force microscopy studies ofsurface morphology, growth kinetics, defect structure and dissolution in macromolecularcrystallization[J]. Journal of Crystal Growth,1999,196(2-4):471-488.
    [133]小松启,罗豪苏,仲维卓等.晶体的台阶生长及稳定性[J].人工晶体学报,1994,23(3):211-214.
    [134]殷之文,罗豪甦,仲维卓等. CdI2晶体生长机制的实时观察研究[J].人工晶体学报,1994.23(4):299-304.
    [135] N.Cabrera, M.M.Levine. On the dislocation theory of evaporation of crystals[J]. PhilosophicalMagazine,1956,1(5):450-458.
    [136]罗豪甦,仲维卓,殷之文等.晶体生长的台阶列运动的一个基本特点[J].人工晶体学报,1995,24(1):41-44.
    [137] F.C.Frank.The influence of dislocations on crystal growth[J]. Discussions of the FaradaySociety,1949,5:48-54.
    [138] J.J.De Yoreo, T.A.Land, B.Dair. Growth morphology of vicinal hillocks on the {101} face ofKH2PO4: From step-flow to layer-by-layer growth[J]. Phys. Rev. Lett.,1994,73(6):838-841.
    [139] J.C.Brice. The growth of crystals from the liquids[M]. Amsterdam: North-Holland,1973.
    [140] A.A.Chernov. Present-day understanding of crystal growth from aqueous solutions[J].Progress in Crystal Growth and Characterization of Materials,1993,26:121-151.
    [141] A.A.Chernov, L.N.Rashkovich, A.A.Mkrtchan. Solution growth kinetics and mechanism:Prismatic face of ADP[J]. Journal of Crystal Growth,1986,74(1):101-112.
    [142] E.Bauser, H.Strunk. Analysis of dislocations creating monomolecular growth steps[J]. Journalof Crystal Growth,1981,51(2):362-366.
    [143]闵乃本.非完整晶体的生长机制与动力学[J].人工晶体学报,1997,26(3-4):187.
    [144]闵乃本,砂川一郎,男塚本.晶体生长的层错机制及其生长动力学[J].物理学报,1988,37(5):789-795.
    [145]闵乃本.晶体生长的缺陷机制[J].人工晶体学报,2000,(S1):4.
    [146]闵乃本.实际晶体的生长机制[J].人工晶体学报,1992,21(3):217-229.
    [147] A.J.Malkin, Yu G Kuznetsov, T.A.Land, et al. Mechanisms of growth for protein and viruscrystals[J]. Nature Structural Biology.,1995,2(11):956-959.
    [148] X.L.Yu, Sun Y., Hou W.B., et al. Interface kineties and crystal growth mechanism of a neworganometallic coordination compound: triallylthiourea mercury bromide[J]. Journal ofCrystal Growth,1997,182(3-4):428-433.
    [149]于锡玲,孙毅,侯文博等.新型非线性光学晶体台阶动力学与生长机理:ATMB[J].人工晶体学报,1998,27(3):195-200.
    [150] C.A.Verschuren, M.R.Leys, T.Marschner, et al. A modified BCF model to quantitativelydescribe the (100) InP growth rate in chemical beam epitaxy[J]. Journal of Crystal Growth,1998,188(1–4):11-16.
    [151] F.C.Frank.“Edge” dislocations as crystal growth sources[J]. Journal of Crystal Growth,1981,51(2):367-368.
    [152] Matthias Kellermeier, Josef Eiblmeier, Emilio Melero-García, et al. Evolution and Control ofComplex Curved Form in Simple Inorganic Precipitation Systems[J]. Crystal Growth&Design,2012,12(7):3647-3655.
    [153] J.N.Sherwood, T.Shripathi. Evidence for the role of pure edge dislocations in crystalgrowth[J]. Journal of Crystal Growth,1988,88(3):358-364.
    [154] M.Abadier, R.A.Berechman, P.G.Neudeck, et al. Nucleation of3C-SiC associated withthreading edge dislocations during chemical vapor deposition[J]. Journal of Crystal Growth,2012,347(1):45-48.
    [155] I.Kamata, M.Nagano, H.Tsuchida, et al. Investigation of character and spatial distribution ofthreading edge dislocations in4H-SiC epilayers by high-resolution topography[J]. Journal ofCrystal Growth,2009,311(5):1416-1422.
    [156] Toshinori Taishi, Xinming Huang, Ichiro Yonenaga, et al. Behavior of the edge dislocationpropagating along the growth direction in Czochralski Si crystal growth[J]. Journal of CrystalGrowth,2005,275(1–2): e2147-e2153.
    [157] Ivan V Markov. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growthand Epitaxy[M]. Singapore: World Science,1995.
    [158] Geng Y.L., Xu D., Wang X.Q., et al. Investigation of nucleation growth mechanism of MMTCcrystal by AFM[J]. Journal of Crystal Growth,2005,280(1-2):266-270.
    [159]曾丹苓.工程非平衡热力学[M].北京:科学出版社,1991.
    [160] Etsuro Hirano, Tomoya Ogawa. Measurements of the concentration gradient around agrowing crystal in an aqueous solution by moiré fringes[J]. Journal of Crystal Growth,1981,51(1):113-118.
    [161] Serge Yu Potapenko. Morphological instability of steps during crystal growth from solutionflow[J]. Journal of Crystal Growth,1996,158(3):346-358.
    [162] G.Subramania, K.Constant, R.Biswas, et al. Optical photonic crystals fabricated fromcolloidal systems[J]. Applied Physics Letters,1999,74(26):3933-3935.
    [163] C.F.Desai, Sonal Gupte. Crystal growth and surface anisotropy in microhardness of zinc (tris)thiourea sulphate, an NLO crystal[J]. Surface Review and Letters,1999,06(01):23-26.
    [164] K.Sangwal. Etching of Crystals: Theory, Experiment and application[M]. Amsterdam:North-Holld,1987.
    [165] J.R. Bourne, R.J.Davey. The role of solvent-solute interactions in determining crystal growthmechanisms from solution: I. The surface entropy factor[J]. Journal of Crystal Growth,1976,36(2):278-286.
    [166] Pal Tanusri, Kar Tanusree. Studies on surface micromorphology and growth mechanism ofnonlinear optical crystal: l-arginine hydrochlorobromo monohydrate[J]. Journal of CrystalGrowth,2006,289(1):202-206
    [167] J.J.De Yoreo, T.A.Land, L.N.Rashkovich, et al. The effect of dislocation cores on growthhillock vicinality and normal growth rates of KDP {101} surfaces[J]. Journal of CrystalGrowth,1997,182(3-4):442-460.
    [168] K.Sangwal, F.Sanz. On the formation of dislocation hollow cores on cleaved {100} faces ofL-arginine phosphate monohydrate single crystals[J]. Crystal Resesrch and Technology,1997,32(2):261-270.
    [169] A.J.Malkin, T.A.Land, Y.G.Kuznetsov, et al. Investigation of virus crystal growth mechanismsby in situ atomic force microscopy[J]. Physical Review Letters.,1995,75(14):2778-2781.
    [170] D.Durbin Stephen, E.Carlson Warren. Lysozyme crystal growth studied by atomic forcemicroscopy[J]. Journal of Crystal Growth,1992,122(1–4):71-79.
    [171] S.D.Durbin, W.E.Carlson, M.T.Saros. In situ studies of protein crystal growth by atomic forcemicroscopy[J]. Journal of Physics D: Applied Physics,1993,26: B128.
    [172]喻江涛,李明伟,王晓丁. ADP晶体相变界面微观形貌及其推移的实时AFM研究[J].工程热物理学报,2008,29(5):721-725.
    [173] Cheng Min, Li MingWei, Guo JinLi, et al. Ex situ and in situ AFM investigations on thegrowth of the (100) face of KDP with different pH values[J]. Science China-TechnologicalSciences,2010,53(6):1554-1561.
    [174] J.P.Astier, D.Bokern, L.Lapena, et al. α-amylase crystal growth investigated by in situ atomicforce microscopy[J]. Journal of Crystal Growth,2001,226(2-3):294-302.
    [175] Noriaki Kubota, J.W.Mullin. A kinetic model for crystal growth from aqueous solution in thepresence of impurity[J]. Journal of Crystal Growth,1995,152(3):203-208.
    [176] I.Ristic Rile, James J.De Yoreo, M.Chew Chun. Does impurity-induced step-bunchinginvalidate key assumptions of the Cabrera Vermilyea model?[J]. Crystal Growth&Design,2008,8(4):1119-1122.
    [177] NIE Qiang, WANG Jingkang, WANG Yongli, et al. Effects of solvent and impurity on crystalhabit modification of11α-Hydroxy-16α,17α-epoxyprogesterone[J]. Chinese Journal ofChemical Engineering,2007,15(5):648-653.
    [178] N.Cabrera, D.A.Vermilyea. The growth of crystals from solution. in Growth and perfection ofcrystals, eds. R.H.Doremus, B.W.Robers, and V.Turnbull. Newyork:John Wiley&Son,1958:393-410.
    [179] Liu X.J., Wang P.J., Xu D., et al. Observation of the kinetic roughening of L-argininetrifluoroacetate (LATF) crystals[J]. Crystal Growth&Design,2011,11(3):791-795.
    [180] F.C.Frank.On the kinetic theory of crystal growth and dissolution process. in Growth andperfection of crystals, eds.R.H.Doremus, B.W.Robers, and V.Turnbull. Newyork:John Wiley&Son,1958:411-419.
    [181]王耀水,朱锐,叶桂芬等. KDP晶体缺陷形成机理的研究[J].无机材料学报,1989,4(2):108-111.
    [182] P.Bennema, J.B.Shaar, W.H.van der Linden, et al. KDP晶体中散射颗粒的成因研究[J].人工晶体,1985,(Z1):115.
    [183]孙洵,许心光,王正平等. KDP晶体中散射的研究[J].无机材料学报,2002,17(1):40-44.
    [184] I.Smolski, J.J.De Yoreo, N.P.Zaitseva, et al. Oriented liquid inclusions in KDP crystals[J].Journal of Crystal Growth,1996,169(4):741-746.
    [185]孙洵,孙大亮,许心光等. KDP(DKDP)晶体中液相包裹散射的形成[J].中国科学E辑:技术科学,2002,32(4):447-451.
    [186]刁立臣,黄炳荣. KDP晶体中包裹体形成机制的探讨[J].人工晶体学报,2003,32(6):631-635.
    [187] N.Zaitseva, L.Carman, I.Smolsky, et al. The effect of impurities and supersaturation on therapid growth of KDP crystals[J]. Journal of Crystal Growth,1999,204(4):512-524.
    [188] R.Janssen-van Rosmalen, P.Bennema. The role of hydrodynamics and supersaturation in theformation of liquid inclusions in KDP[J]. Journal of Crystal Growth,1977,42:224-227.
    [189] W.J.P.Van Enckevort, R.Janssen-van Rosmalen, W.H.Van der Linden. Evidence for spiralgrowth on the pyramidal faces of KDP and ADP single crystals[J]. Journal of Crystal Growth,1980,49(3):502-514.
    [190] W.J.P.Van Enckevort, R.Janssen-Van Rosmalen, H.Klapper, et al. Growth phenomena of KDPcrystals in relation to the internal structure[J]. Journal of Crystal Growth,1982,60(1):67-78.
    [191] J.Krasinsk.Mariusz. Ex situ investigation of the step bunching on crystal surfaces by atomicforce microscopy[J]. SPIE,1997,3178:94-99.
    [192] J.P.van der Eerden, H.Müller-Krumbhaar. Formation of macrosteps due to time dependentimpurity adsorption[J]. Electrochimica Acta,1986,31(8):1007-1012.
    [193] J.P.Vandereerden, H.Müller-Krumbhaar, Dynamic coarsening of crystal-surfaces by formationof macrosteps[J]. Physical Review Letters,1986,57(19):2431-2433.
    [194] A. A. Chernov. The spiral growth of crystals[J]. Physics-Uspekhi,1961,4(1):116-148.
    [195] Liu Xiaojing, Wang Peiji, Xu Dong, et al. Observation of the kinetic roughening of l-argininetrifluoroacetate (LATF) crystals[J]. Crystal Growth&Design,2011,11(3):791-795.
    [196] Dr.M.S.Joshi, A.V.Antony. Oriented inclusions in single crystals of potassium dihydrogenphosphate[J]. Kristall und Technik,1979,15(5):527-530.
    [197]胡小波,徐现刚,王继扬等.6H-SiC单晶的生长与缺陷[J].硅酸盐学报,2004,32(03):248-250.
    [198]洪慧聪,路治平,赵天德等. BBO晶体中包裹物的研究[J].人工晶体学报,1992,21(04):388-394.
    [199]洪慧聪,路治平,赵天德等. β-BaB2O4晶体中包裹物和负晶结构[J].人工晶体学报,1991,(Z1):221.
    [200]曹亚超,李明伟,潘翠连等. ZTS晶体法向生长动力学及化学侵蚀研究[J].功能材料,2013,已录用.
    [201]孙洵,傅有君,高樟寿等.杂质对KDP晶体结晶习性的影响[J].科学通报,2001,46(3):251-253.
    [202]唐鼎元,林斯太,贺友平等.生长条件对KDP晶体楔化的影响[J].人工晶体,1986,15(3):186-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700