用户名: 密码: 验证码:
飞秒激光在空芯带隙型微结构光纤中的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构光纤是近年来出现的一种新型光纤,其特点是包层具有规则或随机分布的波长量级的微结构。包层中的微结构使得这种光纤能够呈现出许多传统光纤不具备的特性,如:无截止的单模特性、可控的色散特性、高非线性、光子带隙特性等。具有这些特性的微结构光纤在通信、生物医学、传感探测、超短脉冲激光等领域都有极大的应用前景。空芯带隙型微结构光纤作为一种真正以光子带隙为导光原理的微结构光纤,其在传输超短脉冲激光上有着其它光纤不可比拟的优势,这在生物医学等领域中具有潜在的应用价值。本文从理论和实验上对空芯带隙型微结构光纤进行了研究。
     通过数值计算对空芯带隙型微结构光纤的特性进行了理论模拟。首先利用平面波展开法计算了空芯带隙型微结构光纤包层的光子带隙,分析了在这类光纤中存在空气导模的条件及其与晶格常数的关系,并与全固态微结构光纤的带隙特性进行了比较。然后利用有限元方法对空芯带隙型微结构光纤的有效模式折射率和色散特性进行了理论模拟。理论模拟为分析实验中所用光纤的带隙和色散特性奠定了基础。
     实验上研究了超短脉冲激光在一种大孔径空芯带隙型微结构光纤中的传输特性。实验测量得到了该光纤的透射谱及在800nm处的损耗。研究了光纤输出光谱特性与入射激光脉冲的中心波长、平均功率以及光纤长度的关系。实验结果表明该光纤能在频谱上几乎无失真的短距离传输纳焦量级的飞秒激光。结合理论计算的光纤色散特性分析得到了引起超短激光脉冲输出频谱变化的因素:经光纤传输后输出光谱主要受自相位调制效应影响;随着输入光功率的增大,由于自陡峭效应使频谱蓝侧边沿发生展宽;高阶色散导致了输出光谱的不对称性。此外,实验发现亚纳焦量级的飞秒激光脉冲能在空芯带隙型微结构光纤中不同的次芯上传输并产生多重频率转换。在零色散点为690nm的次芯中产生了450nm至1000nm的超连续激光谱。在零色散点为630nm的次芯中获得了源于四波混频效应的550nm附近的反斯托克斯光。
     据我们所知,本文工作首次证实和明确提出了空芯带隙型微结构光纤能同时实现超短脉冲激光传输和多重频率转换。这种既可以产生超连续光谱作为宽带光源,又可以传输超短脉冲激光的特性在生物光子等领域具有潜在的应用价值。
A new type of fiber, known as microstructure fiber, has emerged in the past several years. These fibers are characterized by wavelength-scale microstructures distributing regularly or randomly in the cladding region running along the entire fiber lengths, which have resulted in some unusual properties unattainable for conventional optical fibers, such as endless single mode, flexible dispersion, high nonlinear and photonic band gap. Therefore, microstructure fibers have great potential in the field of information communication, biomedicine, transducer and ultrashort pulse laser technology. Hollow core photonic band gap microstructure fiber is one kind of microstructure fibers which guide light by photonic band gap. However, this fiber has preponderance on delivery ultrashort pulse laser. which enable it in the field of biomedicine. The propagating properties of microstructure fibers are investigated theoretically and experimentally in the present dissertation.
     Hollow core photonic band gap microstructure fiber is simulated by using of theoretical method. Firstly, the photonic band gaps of microstructure fiber are calculated by using of full-vectorial plane-wave expansion method. The photonic band gaps of different crystal lattice constant and difference between hollow core and all solid PBG fibers are analysed. Secondly, we used the finite element method to simulate the effective mode index and dispersion properties of hollow-core photonic band gap microstructure fibers.
     Propagating of femtosecond laser pulse in a new structure hollow-core microstructure fiber is investigated. The transmission spectra and loss of microstructure fiber are measured on experiment. We researched the relations between the spectrum of output pulses through fiber core and laser central wavelength, laser power and fiber length. It is demonstrated that nanojoule femtosecond laser pulses coupled into the air core propagate with nearly preserved spectral profiles through the shorter length fiber. Combining to the property of dispersion, we give analysis as follows: The spectrum of output pulses is mainly affected by Four-wave Mixing; the role of self-steepening and higher order dispersion is more highlighted as the increment of average power. The secondary cores between air holes in the cladding of this fiber can be served as waveguide channels. These channels allow multiple frequency conversion for sub-nanojoule femtosecond laser pulses. Supercontinuum spectra with specific wavelength bands can be produced in some channels. A broadband continuum spectra extending with from 450nm to 1000nm generated with subnaojoule femtosecond laser pulses coupled into a secondary core with zero GVD wavelength of 690nm. A four wave mixing process with anti-Stokes emission around 540-560nm took place in one channel with zero GVD wavelength of 630nm. The results show that the microstructure fiber has potential applications in some domains where both frequency conversion and delivery of femtosecond laser pulses are required.
引文
[1] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489
    [2] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2061
    [3] E. Yablonovitch, T. J. Gmitter. Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett., 1989, 63(18): 1950-1953
    [4] E. Yablonovitch, T. J. Gmitter, R. D. Meade, et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 1991, 67(24): 3380-3383
    [5] Pierre R. Villeneuve, Michel Piche. Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B, 46(8): 4969-4972
    [6] T. A. Birks, P. J. Roberts, P. St. J. Russell, et al. Full 2-D photonic bandgaps in silica air structures. Electron. Lett., 1995, 31(22): 1941-1943
    [7] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19): 1547-1549
    [8] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997, 22(13): 961-963
    [9] N. G. R. Brodcrick, T. M. Monro, et al. Nonlincarity in holcy optical fibers: measurement and future opportunities. Opt. Lett., 1999, 24(20): 1395-1397
    [10] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett., 2003, 28(6): 393-395
    [11] Jens Limpert, T. Schreiber, S. Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp., 2003, 11(7): 818-823
    [12] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. 2000, Opt. Lett., 25(18): 1325-1327
    [13] A. Ferrando, J. J. Miret. Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers. Appl. Phys. Lett., 2001, 78(21): 3184
    [14] W. N. MacPherson, M. J. Gander, et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Opt. Comm., 2001, 193(1): 97-104
    [15] C. Knight, et al. Experimental study of dual-core photonic crystal fibre. Electron. Lett., 2000, 36(16): 1358-1359
    [16] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic Band Gap Guidance in Optical Fibers. Science, 1998, 282(5393): 1476-1478
    [17] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 1999, 285(5433): 1537-1539
    [18] P. J. Roberts, F. Couny, H. Sabert, et al. Ultimate low loss of hollow-core photonic crystal Fibres. Opt. Exp., 2004, 13(1): 236-244
    [19] Thomas Larsen, Anders Bjarklev, David Hermann, et al. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Exp., 2003, 11(20): 2589-2596
    [20] F. Luan, A. K. George, T. D. Hedley, et al. All-solid photonic bandgap fiber. Opt. Lett., 2004, 29(20): 2369-2371
    [21] Guobin Ren, Ping Shum, Liren Zhang, et al. Low-loss all-solid photonic bandgap fiber. Opt. Lett., 2007, 32(9): 1023-1025
    [22] F. Couny, F. Benabid, P. S. Light. Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 2006, 32(24): 3574-3576
    [23] Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Exp., 2001, 9(13): 748-779
    [24] W.J. Wadsworth, R.M. Percival, G. Bouwmans, et al. Very high numerical aperture fibers. IEEE Photo. Tech. Lett., 2004, 16(3): 843-845
    [25] Burak Temelkuran, Shandon D. Hart, Gilles Benoit, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002, 420(6916): 650-653
    [26] N. M. Litchinitser, A. K. Abeeluck, C. Headley, et al. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett., 2002, 27(18): 1592-1594
    [27] Kristian G. Hougaard, Anders Bjarklev, Erik Knudsen, et al. Coupling to Photonic Crystal Fibers. OFC, 2002. 627-628
    [28] K. Saitoh, M. Koshiba. Confinement losses in air-guiding photonic bandgap fibers. IEEE Photo. Tech. Lett., 2003, 15(2): 236-238
    [29] V. Finazzi, T.M. Monro, D.J. Richardson. The role of confinement loss in highlynonlinear silica holey fibers. IEEE Photo. Tech. Lett., 2003, 15(9): 1246-1248
    [30] Charlene M. Smith, Natesan Venkataraman, Michael T. Gallagher, et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003, 424(6949): 657-659
    [31] Stephane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B, 2002, 19(4): 753-764
    [32] William J. Wadsworth, Arturo Ortigosa-Blanch, Jonathan C. Knight, et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B, 2002, 19(9): 2148-2155
    [33] F. Benabid, J. C. Knight, P. St. J. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Exp., 2002, 10(21): 1195-1203
    [34] Damian Bird, Min Gu. Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt. Lett., 2003, 28(17): 1552-1554
    [35] G.. R. Boyer, M. A. Franco. Numberical and experimental comparison of spectral broadening of femtosecond optical asymmetric pulses in a monomode fiber. Opt. Lett., 1989, 14(9): 465-467
    [36] W. H. Knox, R. L. Fork, M. C. Downer, et al. Optical pulse compression to 8 fs at a 5-kHz repetition rate. Appl. Phys. Lett., 1985, 46(12): 1120-1121
    [37]贾亚青,阎培光,吕可诚等.高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.物理学报, 2006, 55(4): 1809-1814
    [38]胡明列,王清月,栗岩峰等.飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究.物理学报, 2005, 53(12): 4243-4247
    [39] Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li et al. Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a commashaped core. Opt. Exp., 2006, 14(5): 1942-1950
    [40] Dimitre G. Ouzounov, Faisal R. Ahmad, Dirk Mǔller et al. Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers. Science, 2003, 301(5640): 1702-1704
    [41] Guoqing Chang, Theodore B. Norris, Herbert G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression. Opt. Lett.,2003, 28(7): 546-548
    [42] Liu Zhaolun, Zhou Guiyao, Hou Lantian. Study on the photonic bandgaps of hollow-core microstructured fibers. Chinese Opt. Lett., 2006, 4(10): 566-568
    [43] D. G. Ouzounov, K. D. Moll, M. A. Foster et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 2002. 27(17): 1513-1515
    [44] Werner G?bel, Axel Nimmerjahn, Fritjof Helmchen et al. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. lett., 2004, 29(11): 1285-1287
    [45] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optics fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000, 25(1): 25-27
    [46] Coens, Baelterman M. Continuous- wave ultrahigh- repetition- rate pulse- traingeneration through modulational instability in a passive fiber cavity. Opt. Lett., 2001, 26(1): 39-41
    [47] A. A. Maradudin, A. R. McGurn. Out of plane propagation of electromagnetic waves in two-dimensional periodic dielectric medium. J. Mode. Opt., 1994, 41(2): 275-284
    [48] M. Qiu. Analysis of guided modes in photonic crystal fibers using the finite- difference time-domain method. Microwave and Optical technology Letters, 2001, 30(5): 327-330
    [49] T. P. White, R. C. McPhedran, C. M. DeSterke, et al. Confinement losses in microstructured optical fibers. Opt. Lett., 2001, 26(2): 1660-1662
    [50] J. C. Knight, P. St. J. Russell. New ways to guide light. Science, 2002, 296(5566): 276-277
    [51] F. Fogli, L. Saccomandi, P. Bassi. Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers. Opt. Exp., 2002, 10(1): 54-59
    [52] A. Ferrando, E. Silvestre, J. J. Miret, et al. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett., 1999, 24(5): 276-278
    [53] S. Stagira. Full vectorial analysis of cylindrical waveguides using Green functions. Opt. Comm., 2003, 225(4): 281-291
    [54]胡明列,王清月,栗岩锋.微结构光纤的有限元分析计算法.中国激光, 2004, 31(11): 1337-1342
    [55] Kunimasa Saitoh. Masanori Koshiba. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Exp., 2003, 11(23): 3100-3109
    [56] Jes Broeng, Stig E. Barkou, Thomas S?ndergaard, et al. Analysis of air-guiding photonic bandgap fibers. Opt. Lett., 2000, 25(2): 96-98
    [57] Theis P. Hansen, Jes Broeng, Christian Jakobsen, et al. Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling. J. Ligh. Tech., 2004, 22(1): 11-15
    [58] K. Saitoh, N. A. Mortensen, M. Koshiba. Air-core photonic band-gap fibers: the impact of surface modes. Opt. Exp., 2004, 12(3): 394-400
    [59] Douglas C. Allan, Nicholas F. Borrelli, Michael T. Gallagher, et al. Surface modes and loss in air-core photonic band-gap fibers. Proc. of SPIE, 2003, 5000: 161-174
    [60] Michel J. F. Digonnet, Hyang Kyun Kim, Jonghwa Shin, et al. Simple geometric criterion to predict the existence of surface modes in air-core photonicbandgap fibers. Opt. Exp., 2004, 12(9): 1864-1872
    [61] Hyang Kyun Kim, Jonghwa Shin, Shanhui Fan, et al. Designing Air-Core Photonic-Bandgap Fibers Free of Surface Modes. IEEE Journal of Quantum Electronics, 2004, 40(5): 551-556
    [62] P. J. Roberts, D. P. Williams, B. J. Mangan, et al. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Opt. Exp., 2005, 13(20): 8277-8285
    [63] Govind P. Agrawal著.非线性光线光学原理及应用. (第一版).贾东方,余震虹等译.北京:电子工业出版社, 2002. 71-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700