用户名: 密码: 验证码:
光子晶体光纤中超连续谱形成机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据飞秒激光脉冲在光子晶体光纤中传输所满足的广义非线性薛定谔方程,采用解析分析和数值计算两种方法,从研究啁啾的角度,试图解释超连续谱在光子晶体光纤中的形成过程中,高阶非线性和高阶色散对其所产生的作用。以初始入射脉冲为双曲正割为例,推导出了自相位啁啾、脉冲内拉曼散射啁啾和自陡啁啾的表达式,用分步傅立叶方法数值模拟了自陡啁啾、群速度色散啁啾、三阶色散啁啾的演变图以及综合各效应所得的总啁啾(高阶色散精确到四阶)的演变图,详细分析了高阶非线性和高阶色散以及综合各效应对超连续谱的产生所起的作用,所得结论如下:
     1)对非线性效应而言,自相位啁啾是对称传输,相应的频谱也是对称展宽;脉冲内拉曼散射啁啾发生了两个变化,一是啁啾中心向后沿漂移,二是前沿的负啁啾峰值的绝对值大于后沿正啁啾的峰值,可见,脉冲内拉曼散射效应使得频谱的中心向长波长处移动,并且红移的谱宽大于蓝移的谱宽;自陡啁啾随着传输的延长,啁啾中心快速平移且啁啾整体向后沿提升,尤其是后沿的正啁啾明显变得陡峭起来,啁啾主体渐渐集中在后沿,可见,自陡效应对频谱蓝移贡献很大。
     2)对高阶色散效应而言,不管是在正常色散区还是在反常色散区,正的三阶色散所致的啁啾在后沿产生大幅振荡,负的三阶色散所致的啁啾在前沿产生大幅振荡,这种振荡打破了频谱的对称性。四阶色散所致啁啾与三阶色散啁啾相比,形状并没有明显的改变。
     3)当综合各效应时,在反常色散区,传输初期,啁啾对称传输,自相位和群速度色散效应使得脉冲压缩产生高阶孤子,脉冲的峰值功率逐渐变高,故使得脉冲内拉曼散射效应和自陡效应开始起明显作用,脉冲内拉曼散射效应使得频谱中心红移,而自陡效应则引起了频谱的蓝移,随着传输的延长,三阶色散作用渐渐凸显,终于在高阶非线性和高阶色散的综合作用下,啁啾的前后沿发生严重的不对称变化,最后导致高阶脉冲分裂,正是高阶孤子的分裂,才使得能量得到重新分配,最后形成了超连续谱;在正常色散区,啁啾的变化显示,由于自相位效应使得脉冲渐渐展宽,脉冲内拉曼散射效应和自陡的作用较弱,而三阶色散啁啾在前沿或后沿的不对称振荡,使得频谱不对称展宽,当频谱进入反常色散区时, ISRS、FWM等效应会使得频谱的能量发生转移或产生新的频率,从而产生了超连续谱。
According to the ENLS equations which describe the transmission of femtosecond level laser pulse in photonic crystal fiber (PCF) , the effects of high-order nonlinearities and high-order dispersion on the supercontinuum generation in PCF are tried to explained from the angle of the study of chirp by means of mathematical and numerical computing. To take the hyperbolic-secant input pulse for example, the functions of SPM-caused chirp (self-phase modulation, SPM), ISRS-caused chirp (intra-pulse simulated Raman scattering, ISRS) and SS-caused chirp (self–steepening, SS) are resolved mathematically, and the evolutions of SS-caused chirp, TOD-caused chirp (third-order dispersion, TOD) are simulated. Also is the evolution of chirp caused by all effects above. Conclusions are as the followings.
     As far as the nonlinearities are concerned, the symmetrical transmission of SPM chirp leads to the symmetrical broadness of frequency-spectrum; For the ISRS chirp, the central point of chirp shifts to the trailing edge, and the absolute peak values of the negative chirps at leading edge are greater than those of positive chirp at trailing edge. So ISRS makes the spectrum center shift to long wavelength side, and red-shifted spectrum bandwidth is broader than that of blue shift. The center of SS chirp shifts to trailing edge rapidly and the whole chirp is upgrading to trailing side with propagation. In particular, Self-steepening of the pulse causes a sharp drop at the trailing part of the pulse resulting in an asymmetric broadening of the spectrum of the pulse towards the blue.
     For higher-order dispersions, not only in anomalous-dispersion region but also in normal-dispersion region, positive TOD-induced (Third-order dispersion, TOD) chirp develops oscillations with great amplitude in trailing edge, and for negative TOD chirp, oscillations with great amplitude are developed in leading edge, which break the spectral symmetry. FOD (Fourth-order dispersion, FOD) chirp change the shape slightly comparing with TOD chirp when FOD is considered.
     When all effects are considered together, for one thing, in anomalous-dispersion regime, for initial propagation, the total chirp transmits symmetrically which shows that the combination of SPM and GVD compresses pulse and higher-order solitons are formed. Because of the increase of pulse-peak power, the effects ISRS and SS make function. With further propagation, TOD effect is obvious gradually, and the combination of higher-order nonlinearities and dispersions Lead to breakup of higher-order soliton into fundamental solitons, which results in the distribution of energy and SC spectrum is formed at last. For another thing, in normal-dispersion regime,the evolutions of chirp show that, because of SPM-induced broaden pulse, the effects of ISRS and SS are slight, and TOD effect make great contribution to the spectral dissymmetry broadness. After the SPM-induced broadened spectrum enters into the anomalous-dispersion regime, higher-order nonlinearities, such as ISRS and XPM, lead to the distribution of energy and new frequencies are developed, which form SC spectrum at last.
引文
[1]伍剑,李玉华,娄采云,高以智,利用超连续谱光源产生超短光脉冲,光学学报,2000, 20(3):325~329
    [2]刘军,陈晓伟,刘建胜,冷雨欣,朱毅,戴君,李儒新,徐至展,负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究,物理学报,2006,55(4):1821~1826)
    [3] E. Smith, N. Wada, W. Chujo, and D. Sampson, High resolution OCDR using 1.55um supercontinuum source and quadrature spectral detection, Electronics Letters, Electronics Letters, 2001, 37 (21) :1305~1307
    [4] Hartl I,Li X D,Chudoba C et al.Ultra-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J].Opt Lett,2001,26(5):608~610
    [5] Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R.S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber , Optics Letters , 2001 ,26 (9) :608~610
    [6] Kebin Shi,Sung Hyun Nam, Peng Li, Shizhuo Yin, Zhiwen Liu, Wavelength division multiplexed confocal microscopy using supercontinuum, Optics Communications, 2006, 263:156~162
    [7] Maciej Szkulmowski, Maciej Wojtkowski, Tomasz Bajraszewski ,Iwona Gorczynska, Piotr Targowski, Wojciech Wasilewski, Andrzej Kowalczyk, Czes?aw Radzewicz, Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source, Optics Communications, 2006, 246 :569~578
    [8] M. Gonzalez-Herraez, S. Mart?n-Lopez, P. Corredera, M. L. Hernanz, P. R. Horche, Supercontinuum generation using a continuous-wave Raman fiber laser, Optics Communications, 2003, 226: 323~328
    [9] T. Schreibera, J. Limpert, H. Zellmer, A. Tunnermann, K.P. Hansen, High average power supercontinuum generation in photonic crystal fibers, Optics Communications,2003,228: 71~78
    [10] Jin Wei,Xu Wencheng, Chen Zhaoxi, Xu Yongzhao, Yu Bingtao, Cui Hu, Liu Songhao, Effect of frequency chirping on supercontinuum generation in dispersion flatted and dispersion decreasing fiber, Physics Letters A , 2004, 333 :415~419
    [11] S. Martin-Lopez, M. Gonzalez-Herraez,P. Corredera, M. L. Hernanz, A. Carrasco, J. A. Mendez, Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser, Optics Communications 2006,267:193~196
    [12] Ju Han Lee, Kazuhiro Katoh, Kazuro Kikuchi,Experimental investigation ocontinuous-wave supercontinuum ring laser composed of clad-pumped Er/Yb codoped fiber and highly-nonlinear optical fiber, Optics Communications, 2006, 266:681~685
    [13] Ja-Hon Lin, Chih-Chang Hsu, Wen-Feng Hsieh, Kuei-Huei Lin, Build-up of supercontinuum in heated and unheated photonic crystal fibers using a chirped femtosecond laser, Optics Communications, 2006, 265: 659~663
    [14]王肇颖,贾东方,葛春风,倪文俊,李世忱,10 GHz再生锁模光纤激光器获得光纤超连续谱的研究,光电子·激光,2006,17(1):9~13
    [15]谢旭东,王清月,王专,张伟力,柴路,超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究,2005,54(7):3159~3163
    [16]陈险峰,李劬,华一敏,陈英礼,超宽连续谱的实验研究,光学学报,1994,14(1): 102~106
    [17]李智勇,王肇颖,王永强,贾东方,李世忱,基于100 m色散位移光纤的超连续谱实验研究,光子学报,2004,33(9):1064~1067
    [18] Wang Zhaoying, Li Zhiyong, Wang Yongqiang, Ni Wenjun, Lin Ran, Li Shichen, Wide Broadband Supercontinuum Generated in Conventional Dispersion-shifted Fiber,Acta.Photonica.Soinica,2004,33(11):1324~1326
    [19]王肇颖,王永强,李智勇,贾东方,林冉,张瑞峰,李世忱,皮秒脉冲在色散位移光纤中产生的超连续谱,光电子·激光,2004,15(5):528~533
    [20]贾东方,王永强,王肇颖,倪文俊,林冉,丁永奎,李世忱,色散平坦光纤中的超连续谱,天津大学学报,2005,38(5):381~384)
    [21] Cross. B, Manassah J. T, Supercontinuum in the anomalous group-velocity dispersion region, J. Opt. Sov. Am. B, 1991, 1813~1818
    [22] Penzkofer. A, Kaiser W. Generation of picosecond light continua by parametric four-photon interactions in liquids and solids.Opt. Quantum Electron, 1977, 9(4): 315~394
    [23] Mori K, Morioka T and Saruwatari M, Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5(m compact laser source, IEEE Tran. Instru. Measure, 1995,44(3): 712~715
    [24] Fumio, Yuichi, Kazuro et al, Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersionflattened optical fiber with normal group-velocity dispersion. IEICE Trans. Electron., 1999, E82-C: 1531~1533
    [25] Morika T, Kawanishi S, Mori K, Saruwatari. M, Nearly penalty-free <4ps supercontinuum Gbit/s pulse generation over 1535~1560nm, Electron. Lett,1994, 30(10):790~791
    [26] Mori. K, Takara. H, Kawanishi. S, Saruwatari. M, Flatly broadened supercontinuum generation in a dispersion decreasing fiber with convex dispersion profile, Electron Lett,1997, 33(21):1806-1807
    [27]贾东方,丁永奎,胡志勇,刘俭辉,王肇颖,李世忱,光纤中超连续谱产生机理研究,光电子·激光,2004,15(5):612~620
    [28] Masataka Nakazawa, Kohichi Tamura, Hirokazu Kubota, and Eiji Yoshida, Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber, OPTICAL FIBER TECHNOLOGY, 1998, 4: 215~223
    [29] Ju Han Lee, Kazuhiro Katoh and Kazuro Kikuchi, Experimental investigation of continuous-wave supercontinuum ring laser composed of clad-pumped Er/Yb codoped fiber and highly-nonlinear optical fiber, Optics Communications 2006, 266: 681~685
    [30] F Futami, Y. Takushima, K Kikuchi. Generation of 10 GHz 200f s Fourier-transform-limited optical pulsa train from mode locked semiconductor la ser at 1. 55μm by pulse compression using dispersion-flattened fiber with normal group-velocity dispersion [J], Electron. Lett, 1998, 34(22): 2129~2130
    [31] S. Taccheo, P. Vava ssori. Dispersion2flattened fiber for efficient supercontinuum generation[A], In :OFC’2002[ C], Anaheim ,USA ,2002. 565~567
    [32] K Mori, H Takara, S Kawanishi, et al. Flatly broadened supercontinuum spectrum generatedin a dispersion decreasing fiber with convex dispersion profile [J] . Electron. Lett,1997 ,33 (21): 1806~1807
    [33] TA Birks, WJ Wadsworth, P. St. J Russel, Supercontinuum generation in tapered fibers [J], Opt. Lett, 2000, 25 (9): 1415~1417
    [34] J. K. Ranka, R. S. Windeler ,A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers withanomalous dispersion at 800 nm[J], Opt. Lett, 2000, 25(1): 25~27
    [35] K. P. Hansen, J. R. Jensen, Pumping wavelength dependence of supercontinuum generation in photonic crystal fibers [A], OFC’02[C], Anaheim, USA, 2002: 622~624
    [36] R.E Slusher, G. Lenz, J. Hodelin, J. Sanghera, ; L. B.Shaw, ; I. D. Aggarwal, Large raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Soc. Am. B, 2004, 21(6): 1146~1155
    [37] J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett, 2000, 25(1): 25~27
    [38] S. V. Popov, J. R. Taylor, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping, Opt. Express, 2005, 13(2): 377~381
    [39] J. C. Travers, S. V. Popov, and J. R. Taylo, Extended blue supercontinuum generation in cascaded holey fibers, Opt. Lett. 2005, 30(23): 3132~3134
    [40] P.A. Champert, S.V. Popov, and J.R. Taylor, Generation of multiwatt, broadband continua in holey fibers, Opt. Lett, 2002, 27: 122~124
    [41] A. V. Avdokhin, S. V. Popov and J.R. Taylor, Continuous-wave, high-power, Raman continuum generation in holey fibers, Opt. Lett, 2003, 28:1353~1355
    [42] J. C. Travers, S. V. Popov, and J. R. Taylor, Extended blue supercontinuum generation in cascaded holey fibers, Optic.Lett, 30(23): 3132~3134
    [43] S. Coen, A. Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J. Opt. Soc. Am. B, 2002, 19: 753~764
    [44] Bernhard von Vacano, Wendel Wohlleben, and Marcus Motzkus,Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,Opt.Lett, 2006,31(3): 413~415
    [45] J. C. Travers, R. E. Kennedy, S. V. Popov, and J. R. Taylor, Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber, Opt. Lett, 2005, 30(15): 1938~1940
    [46]阮双琛,于永芹,程超,杜晨林,刘承香,林浩佳,姚建铨,光子学报,2004,33(7):789~792
    [47]于永芹,阮双琛,曾剑春,姚建铨,泵浦波长对光子晶体光纤产生超连续谱的影响,光子学报,2005,34(9):12931~296
    [48]李曙光,冀玉领,周桂耀,侯蓝田,王清月,胡明列,栗岩峰,魏志义,张军,刘晓东,多孔微结构光纤中飞秒激光脉冲超连续谱的产生,物理学报,2004,53(2):478~483
    [49]Yu Yongqin, Ruan Shuangchen, Du Chenlin, Yao Jianquan, Spectral Broadening in the 1. 3μm Region Using a 1.8-m-Long Photonic Crystal Fiber by FemtosecondPulses from an Optical Parametric Amplifier, Acta.Photonica Sinica, 2005,34(3):481~484
    [50] Yablonovitch. E, Inhibited spontaneous emission in solid-state physics and electronics [J], Phys. Rev. Lett, 1987, 58(20): 2059~2061
    [51] John S. Strong localization of photons in certain disordered dielectric super-lattices [J], Phys. Rev. Lett, 1987, 58, (23):2486~2489
    [52] Knight.J.C, Birks. T. A, Russell P. St. Jetal, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett, 1996, 21 (19):1547~1549
    [53]任国斌,王智,娄淑琴,简水生,光子晶体光纤的模式截止特性,电子学报,2004,32(8):1318~1321
    [54] T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber [J], Opt. Lett, 1997, 22 (13): 961~963
    [55]王智,任国斌,娄淑琴,梁伟军,简水生,光子晶体光纤模式特征的研究,光学学报,2004,24(3):324~329
    [56] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett, 2003, 28(6): 393~395
    [57] http://arxiv.org/ftp/physics/papers/0311/0311065.pdf
    [58] http://leosbenelux.org/symp04/s04p311.pdf
    [59] Knight. J. C, Birks. T. A, Cregan. R. F, et al. Large mode area photonic crystal fiber [J], Elec. Lett, 1998, 34 (13): 1347~1348
    [60] Monro. T. M, Richardson. D. J, Holey optical fibres: Fundamental properties and device applications [J],Comptes. Rendus, Physique,2003,(4):175~186
    [61]李曙光,刘晓东,侯蓝田,光子晶体光纤色散补偿特性的数值研究,物理学报,2004,53(6):1880~1886
    [62]鞠晓丹,刘兆伦,倪正华,高艳东,李曙光,侯蓝田,刘晓东,光子晶体光纤在光通信中的色散补偿应用,光通信技术,2004(7):26~28
    [63]Yi Ni, Lei Zhang, Liang An, Jiangde Peng, and Chongcheng Fan, Dual-Core Photonic Crystal Fiber for Dispersion Compensation, IEEE Photo. Tech. Lett. 2004, 16(6): 1516~1518
    [64]杨广强,张霞,任晓敏,黄永清,陈雪,利用光子晶体光纤实现10 Gb /s光传输系统宽带色散补偿,光电子·激光,2005,16(9):1058~1061
    [65]沈旷轶,宁提纲,基于光子晶体光纤的色散补偿和色散平坦技术,光子技术,2006,2:78~87
    [66] Sinha. P. K, Varshney. S. K, Dispersion properties of photonic crystal fibers [J], Microwave, Opt.Technol. Lett, 2003, 37 (2): 129~132
    [67] W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres [J]. Nature, 2003, 424: 511~515
    [68] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K.W. Koch, A. L. Gaeta, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301: 1702~1704.
    [69] N. Nishizawa and T. Goto, Wavelength tunable femtosecond soliton pulse generation for wavelengths of 0.78-1.0 um using photonic crystal fibers and an ultrashort fiber laser [J],Jpn. J. Appl. Phys, 2003, 42 (2): 449~452.
    [70]李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性[J ],物理学报, 2003, 53 (11):2811~2817.
    [71] W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, Supercont inuum and four-wave mixing with Q-switched pulses in endlessly single-mode pho tonic crystal fibres [J], Opt Express, 2004, 12 (2) : 299~309
    [72] Renversea. G, Kuhlmer. B, MCPHEDRANR. Dispersion management with microstructured optical fibers: ultra flattened chromatic dispersion with low losses [J], Opt. Lett, 2003, 28 (12): 989~991.
    [73]陈波,杨广强,张霞,黄永清,任晓敏,光子晶体光纤色散特性的理论研究,光通信研究,2006,135:44~46
    [74]谭晓玲,耿优福,姚建铨,郑义,光子晶体光纤超平坦色散特性的研究,量子光学学报,2006,12(3):163~166
    [75]李曙光,刘晓东,侯蓝田,接近于零色散的色散平坦光子晶体光纤的数值模拟与分析[J],中国激光, 2004, 6 (31):713~717
    [76] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, Nearly zero ultralattened dispersion in photonic crysal fibers [J], Opt. Lett, 2000, 25: 790~792
    [77]Albert Ferrando, Enrique Silvestre, Pedro Andres, Juan Miret, and Miguel Andres,Designing the properties of dispersion-flattened photonic crystal fibers [J], Opt.Express, 2001, 9(13): 687~697)
    [78]Guo Shuqin, Le Zichun and Quan Bisheng, Realization of Ultra-broadband Dispersion-flattened in Dual-cladding Photonic Crystal Fiber, Proc. of SPIE Vol. 6025-1~6025-4)
    [79]高艳东,刘兆伦,鞠晓丹,倪正华,李曙光,侯蓝田,刘晓东,光子晶体光纤与光通信相关的奇异色散特性,光通信研究,2005,127:40~50
    [80] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R.C. Moore, K. Frampton, D.J. Richardson, T.M. Monro, Highly nonlinear and anomalously dispersive lead silicate glass holey fibers [J], Op t Exp ress, 2003, 11 (26) : 3668~3673
    [81] R.E Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, Large raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Soc. Am. B, 2004, 21(6): 1146~1155
    [82]曹俊忠,王志,刘剑飞,刘艳格,董孝义,光子晶体光纤在全光网中的应用,光通信研究,2006(2):55~57
    [83]王清月,栗岩锋,胡明列,柴路,光子晶体光纤非线性特性地研究,前言进展,2005,34(1):43~49
    [84]王清月,胡明列,柴路,光子晶体光纤非线性光学研究新进展,中国激光,2006,3(1):57~66
    [85]池灏,蒋铭,赵焕东,曾庆济,光子晶体光纤地非线性效应及其应用研究进展,半导体光电2003,24(5):297~300)
    [86] Ortigosa B A, Knight J C, Wadsworth W J, et al, Highly birefringent photonic crystal fibers [J], Optic.Lett, 2000, 25 (18) :1325~1327
    [87] Tuomo Ritari, Tapio Niemi, Hanne Ludvigsen , Mark Wegmuller, Nicolas Gisin, Jacob Riis Folkenberg, Anders Petterson, Polarization-mode dispersion of large mode-area photonic crystal fibers, Optics Communications, 2003, 226: 233~239
    [88] R. Kotynski, M. Antkowiak, H. Thienpont and K. Panajotov, Modeling of polarization behaviour of LC filled photonic crystal fibers, in Proceedings Symposium IEEE/LEOS Benelux Chapter, Ghent, Belgium Dec. 2004, 315~319
    [89]杨广强,张霞,林健飞,宋继恩,黄永清,任晓敏,高双折射光子晶体光纤偏振模色散测量,光子学报,2005,34(8):1133~1136
    [90]娄淑琴,任国斌,延凤平,简水生,类矩形芯光子晶体光纤的色散与偏振特性,2005,54(3):1229~1234
    [91]李秀娟,宋英趁,六角芯高双折射光子晶体光纤,光纤与电缆及其应用技术,2006,3:1~3 [92]葛祥友,李平,王效杰,陈晓寒,刘琳,新型高双折射及色散平坦光子晶体光纤研究,应用光学,2006,27(4):332~335
    [93]娄淑琴,简伟,任国斌,简水生,一种新结构的高双折射光子晶体光纤,光电子·激光,2005,16(11):1265~1269
    [94]娄淑琴,王智,任国斌,简水生,折射率导模高双折射光子晶体光纤的偏振特性,电子学报,2005,33(3):393~396
    [95] Chunshu Zhang, Guiyun Kai, Zhi Wang, Yange Liu, Tingting Sun, Shuzhong Yuan, and Xiaoyi Dong, Tunable highly birefringent photonic bandgap fibers, Optic.Express, 2005, 30(20): 2703~2705
    [96] Mingyang Chen, Rongjin Yu, Design of defect-core in highly birefringent photonic crystal fibers with anisotropic claddings, Optics Communications, 2006, 258: 164~169
    [97] T. Schreiber, H. Schultz, F. R?ser, O. Schmidt, J. Limpert, Design and high power operation of a stress-induced singlepolarization single-transverse mode LMA Yb-doped photonic crystal fiber, Proc. of SPIE Vol. 6102(C):1~9)
    [98] K. Tajima, J. Zhou, Ult ra low loss and long lengt h photonic crystal fiber [J] . IEICE Trans. Electron, 2005, E88C (5) : 870~875
    [99] K. Tajima, J. Zhou, K. Nakajima et al, Ult ralow loss and long length photonic crystal fiber [J], J. Lightwave Technol , 2004 , 22 (1) :7~10
    [100] Jian Zhou, Katsusuke Tajima, Kazuhide Nakajima, Kenji Kurokawa, Chisato Fukai, Takashi Matsui, Izumi Sankawa, Progress on low loss photonic crystal fibers, Optical Fiber Technology, 2005,11(2):101~110
    [101] P. J. Roberts, F. Couny, H. Sabert et al, Ultimate low loss of hollow-core photonic crystal fibres [J] , Opt. Express , 2005, 13 (1) :236~244
    [102]桑新柱,余重秀, M. K. Islam,高非线性光子晶体光纤与单模光纤之间的熔接及其损耗分析,半导体光电,2005,26(6):535~537
    [103]陈波,彭艳杰,杨广强,张霞,黄永清,任晓敏,光子晶体光纤宏弯曲损耗特性的理论分析,光纤材料,2006,7:60~62
    [104]方宏,娄淑琴,任国斌,王智,简水生,光子晶体光纤接续损耗的理论分析,光子学报,2006,26(6):806~811
    [105]倪屹,解月剑,安亮,实心光子带隙限制光纤泄漏损耗的研究,电子学报,2006,34(3):396~398)
    [106]栗岩锋,王清月,胡明列,李曙光,刘晓东,侯蓝田,光子晶体光纤色散的无量纲化计算方法,物理学报,2004,53(5):1396~1400
    [107] Marek Trippenbach, Y. B. Band, Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Physical Review A,1998 57(6): 4791~4803
    [108] Yang Bu, Xiangzhao Wang, Compensation for the self-steepening effects in optical fiber communication system using midway optical phase conjugation. Chinese Optics Letters, 2004, 2(5):256~258)
    [109] Govind P. Agrawal, Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers. Optics Letters, 1990, 15 (4): 224~226
    [110] Govind P. Agrawal著,贾东方,余震虹等译,非线性光纤光学原理及应用,第三版电子工业出版社,2002
    [111]韩文,吴锦花,文双春,张华,傅喜泉,光子晶体光纤中频率啁啾对超连续谱的影响,光电子?激光,2004,15(12): 1452~1455
    [112] Karen Marie Hilligsoe, Henrik Norgaard Paulsen, Jan Thogersen and S?ren Rud Keiding Initial steps of supercontinuum generation in photonic crystal fibers, J. Opt. Soc. Am .B, 2003, 20(9): 1887~1893
    [113] N. Tzoar and M. Jain, Self-phase modulation in long optical waveguides, Phys. Rev. A,1981,23 (3):1266~1270
    [114] H. Schroeder, S. A. Hosseini, Q. Luo, S.L. Chin, Self-steepening is an abrupt process, Optics Communications, 2006, 266:302~306
    [115]陈泳竹,高阶群速度色散对光纤超连续谱产生的影响,光学与光电技术,2005,3(5):16~18
    [116]陈泳竹,徐文成,崔虎,徐永钊,于丙涛,刘颂,色散位移光纤反常色散区平坦超宽超连续谱的产,光学学报,2004,24(11):1468~1472
    [117] Ayhan Demircan, Uwe Bandelow, Supercontinuum generation by the modulation instabilit- y, Optics Communications, 2005, 244: 181–185
    [118]孙喜文,王清月,胡明列,柴路,栗岩峰,光子晶体光纤中非线性传输的数值分析,中国激光,2005,32(11):1478~1484
    [119]刘俭辉,贾东方,丁永奎,李世忱,超连续谱光纤的优化设,光学学报,2003,23(6):684~688)
    [120] P. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system, Opt. Express 2004,12: 4366~4371
    [121] W. Wadsworth, A. Ortigosa-Blanch, J. Knight, T. Birks, T. Man, and P. Russell,Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B,2002, 19(9):2148~2155
    [122] G. Genty, M. Lehtonen, and H. Ludvigsen, Route to broadband blue-light generation in microstructured fibers, Opt. Lett,2005, 30(7): 756~758
    [123]贾亚青,闫培光,吕可诚,张铁群,朱晓农,高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分,物理学报,2006,55(4):1809~1814
    [124] A. V. Husakou and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Phys. Rev. Lett.2001, 87(20): 203901-1~203901-4
    [125] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers, Phys. Rev. Lett. 2002,88(17):173901-1~173901-4
    [126] A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers, J. Opt. Soc. Am. B, 2002,19(11):2567~2572.
    [127] W. Wadsworth, A. Ortigosa-Blanch, J. Knight, T. Birks, T. Man, and P. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B,2002, 19(9): 2148~2164
    [128] G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers, Opt. Express, 2002,10(20):1083~1098
    [129] J. Dudley, L. Provino, N. Grossard, H. Maillotte, R. Windeler, B. Eggleton, and S. Coen, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt.Soc. Am. B, 2002, 19(4): 765~771
    [130] Rui Zhang, J?rn Teipel, and Harald Giessen,Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,OPTICS EXPRESS,2006,14(15):6800~6812
    [131] M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson,Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles,OPTICS EXPRESS,2006,14(10):4445~4451
    [132] A. Kudlinski, A. K. George and J. C. Knight,Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-textended supercontinuum generation,OPTICS EXPRESS,2006,14(12):5715~5722
    [133] Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li, and Lu Chai,Aleksei M. Zheltikov,Tunable supercontinuum generation in a high index-step photonic-crystal fiber with a comma-shaped core,OPTICS EXPRESS,2006,14(5):1942~1950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700