用户名: 密码: 验证码:
基于光子晶体光纤的大功率高效超宽谱光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤的出现极大丰富和扩展了人们对于光纤波导的认识,优于常规光纤的显著特点使其在光传输、放大等方面都有极大的应用潜力。基于光子晶体光纤的超宽谱光源就是其特殊波导特性的产物,是光子晶体光纤的一个最激动人心的应用。由于超宽谱光源在医学、生物、化学、通信、精密测量、军事应用等领域的极大应用前景,一经出现便受到了广泛重视,基于光子晶体光纤的超宽谱光源得到了迅猛发展。但作为新生事物,仍有许多理论和技术问题尚待解决。一方面,光子晶体光纤特殊的波导特性使得其中的脉冲传输和超宽谱产生过程非常复杂,其理论模型和数值模拟方法仍有待改进,超宽谱产生机制需要明确;另一方面,目前超宽谱光源的输出功率普遍较小,转换效率很少被关注。当然,还有其他许多需要研究的问题。本论文主要针对这两个问题从理论和实验上进行研究,目的在于明确光子晶体光纤中的脉冲传输和超宽谱产生特性,研究制定提高输出功率和转换效率的总体技术方案。主要包含以下具体内容:
     首先,改进了描述光子晶体光纤中脉冲传输和超宽谱产生的广义非线性薛定谔方程形式,使之更加直观地反映光子晶体光纤中的各种传输效应,同时也方便数值计算的实施。另外,对数值方法进行了改进,并分析了与算法有关的几个关键问题。在利用分步傅立叶方法数值求解时,对非线性项直接采用积分处理,而不采取任何数学近似。数值计算时将其视为卷积,通过方便的傅立叶变换将卷积变为傅立叶变换的乘积,再做逆变换得到,巧妙而又精确的解决了非线性项的计算。整个过程没有任何人为的近似,从而保证了计算模型的精确度。对因步长选择引起的计算精度进行了分析,提出了根据频域窗口选择时间步长,根据时域窗口判断时间窗口合理性、选择采样点数的方法,再根据频谱图上伪四波混频等边带调制确定空间步长选择合理性。最后,针对非线性项的处理,对比分析了差分方法和龙格—库塔方法的计算精度,表明龙格—库塔法在这里处理非线性项有较好的计算精度。这些结论为分步傅立叶方法求解广义非线性薛定谔方程等数值求解过程中的窗口选择、步长选择、计算精度等问题提供了直观参考标准,也为精确描述光子晶体光纤中的脉冲传输和超宽谱产生问题提供了很好的理论指导。
     利用改进后的模型及算法详细分析了脉冲在光子晶体光纤中传输过程中的色散和非线性效应。以影响超宽谱光源系统性能的光子晶体光纤各参数和泵浦源各参数为变量,从理论和实验上分别研究它们对超宽谱光源输出特性的影响。通过这一研究,进一步明确了不同情况下超宽谱的产生理论和影响因素,并分反常色散区和正常色散区泵浦两种情况分别设计了超宽谱光源优化设计方案。
     将超宽谱光源的效率区分为某波段转换效率和全系统转换效率。理论研究表明,某波段转换效率可以通过光子晶体光纤与泵浦源参数优化提升;全系统转换效率与泵浦光对光子晶体光纤的耦合效率和泵浦光吸收转化为超连续谱的程度有关。前者通过设计高效的耦合系统解决,后者则通过选择最优化的光子晶体光纤长度达到。
     在理论研究基础上,分别采用普通固体激光器和光纤激光器做泵浦源对不同类型的光子晶体光纤进行超宽谱产生实验研究。分别获得了较好的预期实验结果,验证了理论模型和算法的准确性,进一步明确了超宽谱产生的物理机制和关键实验技术。着重提升超宽谱光源的全系统转换效率,探索了不同泵浦源条件下的高效耦合方式,为下一步发展大功率高效超宽谱光源提供了实验指导。
     在系统的理论和实验研究基础上,提出了发展大功率高效超宽谱光源的总体技术方案。针对限制其输出功率和转换效率的因素,分别提出了对泵浦源、光子晶体光纤、耦合方式等的优化设计方案,并探索了其他可能的替代技术路线。
The advent of a new class of optical fiber waveguides in the form of the photonic crystal fiber (PCF) in the late 1990s has enriched and extended the knowledge of fiber waveguide. The PCFs have showed many advantages in fiber delivery, amplification and many more similar applications compared with conventional fibers. The generation of ultra-broadband high brightness supercontinuum based on the special waveguide characteristics is one of the exciting applications. Because of the significance in fields such as medicine, biology, chemistry, telecommunication, precision measurement, military and so on, the supercontinuum light source based on PCFs has attracted widespread interests throughout the scientific community. Although the supercontinuum light source based on PCFs has received prosperity, there has left many unresolved theoretical and experimental problems. On one hand, because of the special waveguide characteristics, the process of pulse propagation and supercontinuum generation seems to be more complicated. The theory model and numerical simulation method need to be improved. Physical mechanisms under supercontinuum generation also need to be clarified. On the other hand, the output power of the present supercontinuum light source is so low-level. Attention should be paid on the conversion efficiency. Besides, there remains many other problems need to be researched, but those are beyond this thesis. Here, we concentrate our attention on the above two mentioned problems. Theoretical and experimental research has been careful took in aim to clarify the characteristic of pulse propagation and supercontinuum generation. A systematic technical scheme is proposed to enhance the output power and conversion efficiency. The content of this thesis is summarized as follows.
     The format of General Nonlinear Schrodinger Equation (GNLSE) which describes pulse propagation and supercontinuum generation in PCFs has been improved. This improvement makes it more facilitative to the reflection of the various propagation effects and the numerical simulation. The numerical method has also been improved. Several significant techniques related to the numerical simulations have been analyzed too. We treat the nonlinear term straightly as an integral instead of some mathematic approximation during the numerical calculation by the Split-Step Fourier Method (SSFM). Resolving of the integral is achieved by the Counter-Fourier -Transform of the product of the two Fourier-Transforms.
     The artful calculation of the nonlinear term avoided man-made approximation insures the precision. Numerical precision associated with step size choice is studied. Criteria are proposed as follows. The temporal and spatial step size can be appropriate chosen from the spectrogram. And the temporal figure provides a criterion for the temporal step size. These conclusions present some intuitionistic reference criteria for the intractable step size choice in solving the GNLSE. We have also analyzed the numerical precision of the Difference Method and the Runge-Kutta Method when calculating the nonlinear term. Results shows the Runge-Kutta Method can achieve much higher precision. All of these conclusions provided useful guidance in describing and numerical calculating the pulse propagation and supercontinuum generation in PCFs.
     Detail analysis of dispersion and nonlinear effect in the process of pulse propagation and supercontinuum generation in PCFs is carried out by the improved model and numerical method. PCFs parameters and pump parameters which may influence the supercontinuum light source are treated as variables to analyze their impact on the supercontinuum output. Theoretical and experimental research has clarified the mechanisms and affections under different cases. Optimized supercontinuum light source projects are proposed separately in the normal and anomalous dispersion region.
     The conversion efficiency of supercontinuum light source is divided into the whole system conversion efficiency and the efficiency conversion at certain band. Theory study shows results as follows. The efficiency conversion at certain band can be enhanced by optimizing the PCFs and the pump source. The whole system conversion is related to either the coupling efficiency or the extent of pump laser translated into the supercontinuum. The former can be enhanced by designing a high efficiency couple system. And the later can be achieved by optimizing the PCFs length.
     On the basis of these theory studies, supercontinuum generation experiments are carried out by pumping different PCFs by a conventional solid-state laser and a fiber laser. Preferable anticipated experimental results are obtained. So the veracity and validity of our model and numerical method is proved. And the physical mechanisms as well as the key experimental techniques are clarified. Emphasis is put on enhancing the whole system conversion efficiency. High efficiency coupling methods under different pumping conditions are also explored. These studies provide useful experimental guidance for developing the high power and high efficiency supercontinuum light source.
     A whole system project of high power and high efficiency supercontinuum light source is proposed based on the systematic theoretical and experimental studies. Optimized designs of pumping source, PCFs, coupling system and other related are proposed too in order to overcome the limitation of the output power and conversion efficiency.
引文
1 Yablonovitch E. Inhibited Spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987; 58:2019-2062.
    
    2 John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987;58:2486-2489.
    
    3 Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers[J]. Science, 1998; 282(5393); 1476-1478.
    
    4 Russell P St J. Photonic-Crystal Fibers (Invited)[J]. Journal of Lightwave Technology, 2006; 24(12): 4729-4749.
    
    5 Russell P St J. Private note. In: NATO Advanced Study Institute on Confined Electrons and Holes[C], Italy, 1991.
    
    6 Knight J C, Birks T A, Russell P St J, et al. All silica single mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996; 21(19): 1547-1549.
    
    7 Knight J C, Birks T A, Cregan R F, et al. Large mode area photonic crystal fiber[J]. Electron. Lett., 1998; 34(13): 1347-1348.
    
    8 Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999; 285(5433): 1537-1539.
    
    9 Russell P St J. Photonic crystal fibers[J]. Science, 2003; 299(5605): 358-362.
    
    10 Knight J C. Photonic crystal fibers[J]. Nature, 2003; 424(6950): 847-851.
    
    11 Birks T A, Knight J C and Russell P St J. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997;22(13):961-963.
    
    12 Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers[J]. Opt. Lett., 2003; 28(20): 1879-1881.
    
    13 Mogilevtsev D, Birks T A and Russell P St J. Group-velocity dispersion in photonic crystal fibers[J]. Opt. Lett., 1998; 23(21): 1662-1664.
    
    14 Reeves W H, Skryabin D V, Biancalana F, Knight J C, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres[J]. Nature, 2003; 424(6948): 511-515.
    
    15 Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2000; 12(7): 807-809.
    
    16 Reeves W H, Knight J C, Russell P St J, et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Opt. Express, 2002; 10(14): 609-613.
    
    17 Broderick N G R, Monro T M, Bennett P J and Richardson D J. Nonlinearity in holey optical fibers: Measurement and future opportunities[J]. Opt. Lett., 1999; 24(20): 1395-1397.
    
    18 Mortensen N A. Effective area of photonic crystal fibers[J]. Opt. Express, 2002; 10(7): 341-348.
    
    19 Onishi M, Okuno T, Kashiwada T et al. Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter[J]. Opt. Fiber Technol., 1998; 4(2): 204-214.
    
    20 Petropoulos P, Ebendorff-Heidepriem H, Finazzi V et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers[J]. Opt. Express, 2003; 11(26): 3568-3573.
    
    21 Nielsen M D and Mortensen N A. Photonic crystal fiber design based on the V-parameter[J]. Opt. Lett., 2003; 11(21): 2762-2768.
    
    22 Ouzounov, D G, Ahmad F R, Müller D, et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003; 301: 1702-1704.
    
    23 Skryabin D V, Luan F, Knight J C, et al. Soliton self-frequency shift cancellation in photonic crystal fibers[J]. Science, 2003; 301:1705-1708.
    
    24 Varshney S K, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band[J]. Opt. Express, 2005; 13: 9516-9526.
    
    25 Udem Th, Holzwarth R and Hansch T W. Optical frequency metrology[J]. Nature, 2002; 416:233-237.
    26 Humbert G, Knight J C, Bouwmans G, et al. Hollow core photonic crystal fibers for beam delivery[J]. Opt. Express, 2004; 12:1477-1484.
    
    27 Petropoulos P, Monrou T M, Belardi W, et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Opt. Lett., 2001; 26:1233-1235.
    
    28 Konorov S O, Zheltikov A M. Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation[J]. Opt. Express, 2003; 11(19): 2440-2445.
    
    29 Sudmeyer T, Brunner F, Innerhofer E, et al. Nonlinear femtosecond pulse compression at high average power levels by use of a lame-mode-area holey fiber[J]. Opt. Lett., 2003; 28(20): 1951-1953.
    
    30 Lako S, Seres J, Apai P, et al. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation[J]. Appl. Phys. B, 2003; 76:267-275.
    
    31 Tunnermann A, Schreiber T, Roser F, et al. The renaissance and bright future of fibre lasers[J]. J. of Phys. B, 2005; 38: 681-693.
    
    32 MacPherson W N, Gander M J, McBride R, et al. Remotely addressed optical fiber curvature sensor using multi-core photonic crystal fiber[J]. Opt. Comm., 2001; 193(16): 97-104.
    
    33 Sharping J E, J Chen, X Li, et al. Quantum-correlated twin photons from microstructure fiber[J]. Opt. Express, 2004; 12(14): 3087-3094.
    
    34 Benabid F, Knight JC, Russell P St J. Particle levitation and guidance in hollow-core photonic crystal fiber, Opt. Exp., 2002; 10(21): 1195-1203.
    
    35 Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006;78:1135-1184.
    
    36 Alfano R R. The Supercontinuum Laser Source[M]. New York: Springer, 2006.
    
    37 Alfano R R and Shapiro S L. Emission in the region 4000 to 7000 A via four-photon coupling in glass[J]. Phys. Rev. Lett., 1970; 24: 584-587.
    
    38 Alfano R R and Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Phys. Rev. Lett., 1970; 24: 592-594.
    
    39 Smith L W, Liu P, Bloembergen N. Superbroadening in H_2O and D_2O by self-focused picosecond pulses from a YALG:Nd laser[J]. Phys Rev A, 1977; 15(6): 2396-2403.
    
    40 Corkum P B, Rolland C, Srinivasanrao T. Supercontinuum generation in Gases[J]. Phys. Rev. Lett., 1986; 57(21): 2268-2271.
    
    41 Lin C and Stolen R H. New nanosecond continuum for excited-state spectroscopy [J]. Appl. Phys. Lett., 1976; 28:216-218.
    
    42 Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000; 288:635-639.
    
    43 Mori K, Morioka T, Saruwatari M. Group velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical fiber[J]. IEEE Electron Lett, 1993; 29(11): 987-989.
    
    44 Marks D L, Oldenburg A L, Reynolds J J and Boppart S A. Study of an ultrahigh-numerical fiber continuum generation source for optical coherence tomography[J]. Opt. Lett., 2002; 27(22): 2010-2012.
    
    45 Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing[J]. Electron. Lett., 2000; 36(25): 2089-2090.
    
    46 Morioka T, Mori K, Kawanishi S, et al. Pulse-width tunable, self-frequency conversion of short optical pulse over 200nm based on supercontinuum generation[J]. IEEE Electron. Lett., 1994; 30(23):1960-1962.
    
    47 Morioka T, Takara H, Kawanishi S, et al. Error-free 500Gbit/s all-optical demultiplexing using low-noise,low-jitter supercontinuum short pulses[J]. IEEE Electron. Lett., 1996; 32(9): 833-834.
    
    48 Dudley J M, Coen S. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectral generated in photonic crystal fiber[J]. Opt. Express, 2004; 12: 2423-2428.
    
    49 Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful laser[J]. Phys. Plasmas, 1994; 1:1626-1634.
    
    50 Zhang X M, Fan D Y, Zeng X M, et al. Acquiring 1053 nm femtosecond laser emission by optical parametric amplification based on supercontinuum white-light injection[J]. Opt. Lett., 2006; 31: 646-648.
    
    51 Veisz L, Herrmann D, Tavella F, et al. Light Wave Synthesizer 20 (LWS-20): Development of a 8 fs, 20 TW Optical Parametric Chirped Pulse Amplifier[A]. ICUIL2008, Tongli Shanghai, 2008.
    52 冯寒亮,韩锋,张平.美国海军舰载高能激光武器[J].激光与光电子学进展.2006;43(7).
    53 付伟.定向红外对抗技术的发展现状[J].航空电子技术,2002;21(3):64-69.
    54 邹意会,张荣康.自由电子激光器[J].国外激光,1994;341(5):16-19.
    55 友清.探测痕量气体的中红外二极管激光器的发展[J].激光与光电子学进展,1996;10:8-15.
    56 李子尧,南山.长波长稀土激光器[J].光电子技术与信息,1994,2:25-27.
    57 邓颖.超连续谱注入光参量放大法产生超短中红外激光脉冲技术研究[D].硕士学位论文.绵阳:中国工程物理研究院.
    58 Islam M N,Sucha G,Bar-Joseph I,et al.Broad bandwidths from frequency-shifting solitons in fibers[J].Opt.Lett.,1989;14:370-372.
    59 Gross B and Manassah J T.Supercontinumm in the anomalous group-velocity dispersion region[J].Opt.Lett.,1992;17(9):1813-1818.
    60 Morioka T,Kawanishi S,Mori K and Saruwatari M.Nearly penalty-free,4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm[J].Electron.Lett.,1994;30:790-791.
    61 Mori K,Takara H,Kawanishi S,et al.Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile[J].Electron.Lett.,1997;33:1806-1808.
    62 Birks T A,Wadsworth W J and Russell P St J.Supercontinuum generation in tapered fibers[J].Opt.Lett.,2000;25:1415-1417.
    63 Mussot A,Sylvestre T,Provino L and Maillotte H.Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser[J].Opt.Lett.,2003;28(19):1820-1822.
    64 Ranka J K,Windeler R S and Stentz A J.Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J].Opt.Lett.,2000;25:25-27.
    65 Ravi V V,Kumar K,George A K,et al.Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J].Opt.Express,2002;10(25):1520-1525.
    66 Schreiber T,Limpert J,Zellmer H,Tuunnermann A and Hansen K P.High average power supercontinuum generation in photonic crystal fibers[J].Opt.Commun.,2003;228:71-78.
    67 Cumberland B A,Travers J C,Popov S V and Taylor J R.29 W High power CW supercontinuum source[J].Opt.Express,2008;16(8):5954.
    68 Travers J C,Rulkov A B,Cumberland B A,Popov S V and Taylor J R.Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser[J].Opt.Express,2008;16(19):14435.
    69 Xia C A,Kumar M,Kulkami O P,Islam M N,et al.Mid-infrared supercontinuum generation to 4.5um in ZBLAN fluoride fibers by nanosecond diode pumping[J].Opt.Lett.,2006;31(17):2553.
    70 Xia C A,Kumar M,Cheng M Y,et al.Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power[J].Opt.Express 2007;15:865-871.
    71 Kim J H,Chen M K,Yang C E,et al.Broadband IR supercontinuum generation using single crystal sapphire fibers[J].Opt.Express,2008;16(6):4085.
    72 Kim J H,Chen M K,Yang C E,et al.Broadband supercontinuum generation coveting UV to mid-IR region by using three pumping sources in single crystal sapphire fiber[J].Opt.Express,2008;16(19):14792.
    73 Domachuk P,Wolchover N A,Cronin-Golombl M,et al.Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs[J].Opt.Express,2008;16(10):7161.
    74 Brabec T and Krausz F.Nonlinear optical pulse propagation in the single-cycle regime[J].Phys.Rev.Lett.,1997;78:3282-3285.
    75 Agrawal G P,贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002.
    76 Stolen R H,Gordon J P,Tomlinson W J,et al.Raman response function of silica-core fibers[J].J.Opt.Soc.Am.B 1989;6:1159-1166.
    77 Blow K J and Wood D.Theoretical description of transient stimulated Raman scattering in optical fibers[J].IEEE J.Ouantum Electron..1989:25:2665-2673.
    78 赵应桥、朱鹤元、刘建华等.物理学报,1997;46:2174.
    79 曹文华、张有为、刘颂豪等.物理学报,1997;46:919.
    80 Sinkin O V,Holzl(o|¨)hner R,Zweck J and Menyuk C R.Optimization of the split-step Fourier method in modeling optical-fiber communications systems[J].J.Lightwave Technol.,2003;21:61-68.
    81 Matera F,Mecozzi A,Romagnoli M and Settembre M.Sideband instability induced by periodic power variation in long-distance fiber links[J].Opt.Lett.,1993;18(18).
    82 Bosco G,Carena A,Curri V,et al.Suppression of Spurious Tones Induced by the Split-Step Method in Fiber Systems Simulation[J].IEEE Photonics Technology Letters,2000;12(5).
    83 Knight et al.Dispersion of 800 nm core PCF[J].Phot.Tech.Lett.,2000;12:807-809.
    84 Shimizu F.Frequency broadening in liquid by a short light Pulse[J].Phys.Re.vLett,1967;19(19):1097-1099.
    85 Stolen R H,Lin C.Self-Phase-modulation in silica optical fibers[J].Phys.Rev.Lett.,1978;17(4):1448-1453.
    86 Islam M N,Sucha G,Bar-Joseph I,et al.Femtosecond distributed soliton spectrum in fibers[J].J.Opt.Soc.Am.B,1989;6:1149-1158.
    87 Beaud P,Hodel W,Zysset B andWeber H P.Ultrashort pulse propagation,pulse breakup,and fundamental soliton formation in a single-mode optical fiber[J].IEEE J.Quantum Electron.1987;23:1938-1946.
    88 Nakazawa M,Suzuki K,Kubota H and Haus H A.High-order solitons and the modulational instability[J].Phys.Rev.A,1989;39:5768-5776.
    89 Nakazawa M,Tamura K R,Kubota H and Yoshida E.Coherence degradation in the process of supercontinuum generation in an optical fiber[J].Opt.Fiber Technol.,1998;4:215-223.
    90 Cristiani I,Tediosi R,Tartara L and Degiorgio V.Dispersive wave generation by solitons in microstructured optical fibers[J].Opt.Express,2004;12:124-135.
    91 Herrmann J,Griebner U,Zhavoronkov N,et al.Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J].Phys.Rev.Lett.,2002;88:173901-1-173901-4.
    92 谢旭东 周凯南 黄小军等.啁啾镜色散控制钛宝石飞秒激光振荡器[J].物理学报,待发.
    93 Chong J H and Rao M K.Development of a system for laser splicing photonic crystal fiber[J].Opt.Express,2003;11(12):1365-1370.
    94 Bourliaguet B,Pare C,Emond F,et al.Microstructured fiber splicing[J].Opt.Express,2003;11(25):3412-3417.
    95 张巍,张磊,陈实等.高非线性光子晶体光纤与单模光纤低损耗熔接实验[J].中国激光,2006;33(10):1389-1392.
    96 隋展.高功率激光系统中的光束全息控制[D].博士学位论文.上海:复旦大学.
    97 神光Ⅲ主机装置初步设计报告书[M].2006(内部资料).
    98 Champert P,Couderc V and Leproux P.,et al.White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system[J].Opt.Express 2004;12:4366-4371.
    99 Schreiber T,Andersen T V,Schimpf D,Limpert J,et al.Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths[J].Optics Express,2005;13:9556.
    100 R(a|¨)ikk(o|¨)nen E,Genty G,Kimmelma O and Kaivola M.Supercontinuum generation by nanosecond dualwavelength pumping in microstructured optical fibers[J].Opt.Express,2006;14(17):7914-7923.
    101 www.crystal-fibre.com.
    102 Tien A C.,Backus S,Kapteyn H,et al.Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration[J].Phys.Rev.Lett.,1999;82:3883-3886.
    103 Limpert J,Hofer S,Liem A,et al.100-W average-power,high-energy nanosecond fiber amplifier[J].Applied Physics B,2002;75:477-479.
    104 克希耐尔,孙文,江泽文,陈国祥译.固体激光工程[M].北京:科学出版社,2002.
    105 Roberts P J and Shepherd T J.The guidance properties of multi-core photonic crystal fibers[J].J.Opt.A:Pure Appl.Opt.2001;3:133-140.
    106 Gundu K M,Kolesik M and Moloney J V.Mode shaping in multicore fibers[J].Opt.Lett.,2007;32(7):763-765.
    107 Petrov G I,Yakovlev V V and Minkovski N I.Near-infrared continuum generation of femtosecond and picosecond pulses in doped optical fibers[J].Applied Physics B,2003;77:219-225.
    108 Leproux P,Buy-Lesvigne C,Tombelaine V,et al.Methods for visible supercontinuum generation in doped/undoped holey fibres[J].Proc.of SPIE,2008;6990:699007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700