用户名: 密码: 验证码:
分布式信源低复杂度参数估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式信源广泛存在于雷达、声纳和移动通信等领域。例如,在城区密集环境中,建筑物、道路和车辆等物体易引起多径传播现象,从而导致信号的能量发生一定程度的空间扩散。对于分布式信源,基于点源假设的传统参数估计算法已不再适用。为此,众多学者提出了一些分布源模型和相应的参数估计算法。然而,这些算法大多需要进行多维非线性优化或者多维谱搜索,计算复杂程度很高,不利于实时处理和工程实现。此外,现有的算法几乎都假设分布源是静止的,而不能对移动分布源的中心波达方向(DOA)进行实时跟踪估计。
     针对上述问题,本文在对现有分布源模型和参数估计算法进行全面分析的基础上,重点对分布源的低复杂度参数估计和中心DOA的快速跟踪问题做了深入系统的研究,并取得了若干具有创新性的研究成果。论文的主要工作和创新点可概括如下:
     1.在深入研究相干、非相干分布源模型及现有空时分布源模型的基础上,提出了两种新的分布源模型:角度相干时延相干分布源和角度非相干时延非相干分布源,并推导了相应的阵列接收矢量的表达式或阵列协方差矩阵的表达式。
     2.提出了一种相干分布源的低复杂度参数估计算法。该算法利用了均匀线阵的平移子阵间的近似旋转不变性质和传播算子方法,能够实现中心DOA和角度扩展参数的解耦估计。由于避免了二维搜索和样本协方差矩阵的特征分解,该算法比现有算法有更少的计算花费,并且在低信噪比下的估计性能良好。
     3.提出了两种低复杂度的相干分布源二维中心DOA估计算法。第一种算法利用了特殊的双平行线阵中存在的两个近似旋转不变关系,由总体最小二乘法求得两个对应的旋转不变矩阵,进而估计出分布源的中心方位角和中心俯仰角。第二种算法利用了特殊的三平行线阵中存在的三个近似旋转不变关系,由传播算子法求得对应的三个旋转不变矩阵,进而估计出分布源的二维中心DOA。与传统算法相比,上述两种算法无需谱搜索,计算复杂度更低,且能用于具有不同角分布的多源场合。
     4.提出了两种非相干分布源的低复杂度参数估计算法。第一种算法利用了样本协方差矩阵次对角线元素的相位信息和无噪声协方差矩阵的首列矢量,能够实现中心DOA和角度扩展参数的解耦估计。该算法无需对样本协方差矩阵做特征分解,估计单个分布源的两个参数时仅需完成一次一维搜索,因而,计算复杂度较低。第二种算法基于空间靠得很近的两个平移线阵近似满足的旋转不变性质,由传播算子求得对应的旋转不变矩阵,进而利用旋转不变矩阵的特征值加权估计出分布源的中心DOA。该算法无需谱搜索和对样本协方差矩阵做特征分解,与现有算法相比,计算上更具优势,并且对模型误差稳健。
     5.提出了两种二维非相干分布源的低复杂度参数估计算法。第一种算法利用L型阵列构造了两类空间互相关函数,并在小角度扩展假设下,由空间互相关函数的相位信息估计出分布源的中心方位角和中心俯仰角。该算法无需任何搜索和矩阵的特征分解运算,计算复杂度非常低,且对分布源的角分布形式不敏感。第二种算法首先利用空间靠得很近的两个平行线阵获得中心俯仰角的初始估计,然后由中心俯仰角初值将一个四维参数优化问题转化两个一维参数优化问题和一个二维参数优化问题。该算法大大减轻了计算负担,且能处理多个分布源。
     6.提出了三种分布源中心DOA快速跟踪算法。其中,前两种算法基于子空间更新的思想,分别用于跟踪相干分布源的中心DOA和二维中心DOA。这两种算法避免了对样本协方差矩阵进行重复的特征分解,且可跟踪具有不同角分布的多个信号。第三种算法利用了最大似然估计和粒子群算法,用于跟踪非相干分布源的中心DOA。该算法无需重复确定伪信号子空间的维数,且在低信噪比时也具有优异的跟踪性能。
Distributed sources exist widely in radar, sonar and mobile communications fields. For example, in dense urban environments, some objects such as building, road and vehicle cause easily the multipath phenomena, and may lead to certain spatial spreading of the source energy. The traditional parameter estimation techniques based on point source model aren’t applicable to distributed sources. Therefore, a number of investigators have proposed some models of distributed sources and corresponding parameter estimation methods. However, most of them involve multi-dimensional nonlinear optimization or multi-dimensional spectrum search. The computational complexities of them are too high to be suited to real-time processing and engineering realization. In addition, all of them are based on the assumption that distributed sources are static, and cann’t be applied to track the nominal direction-of-arrivals (DOAs) of mobile distributed sources in real time.
     Aiming at the above problems, based on an overall analysis of the existing models and parameter estimation methods of distributed sources, this dissertation focuses on two problems: the low-complexity parameter estimation and fast nominal DOA tracking of distributed sources, and gains several novel research achievements.
     Our main works and innovations are summarized as follows:
     1. Based on an intensive study on coherently distributed (CD) source model, incoherently distributed (ID) source model and the existing space-time distributed source model, two new distributed source models: temporal-angular coherently distributed sources and temporal-angular incoherently distributed sources are proposed. The expressions of corresponding array received vector and array covariance matrix are derived.
     2. A low-complexity parameter estimation method for CD sources is proposed. Using the approximate rotational invariance property between two shifted subarrays in a uniform linear array (ULA) and the propagator method, the proposed method can realize the decoupled estimation of nominal DOA and angular spread. Avoiding two-dimensional (2-D) search and the eigendecomposition of the sample covariance matrix, our approach has a substantially reduced computational cost than the existing methods. Further, it can provide excellent performance even at low SNR.
     3. Two low-complexity methods for the 2-D DOA estimation of CD sources are proposed. Based on two approximate rotational invariance relations in the special double parallel ULAs, the first method estimates the nominal azimuths and elevations of CD sources by obtaining two corresponding rotational invariance matrices using the total least squares (TLS) method. Based on three approximate rotational invariance relations in the special treble parallel ULAs, the second method obtains the 2-D nominal DOA estimates of CD sources by estimating three corresponding rotational invariance matrices using the propagator method. Without spectrum-peak search, the above methods provide lower computational complexity than the traditional methods, and can be applied to the multisource scenario with different angular distributions.
     4. Two low-complexity parameter estimation methods for ID sources are proposed. The first method can realize the decoupled estimation of nominal DOA and angular spread by utilizing the phase information of the secondary diagonal elements of the sample covariance matrix and the first column vector of the noise-free covariance matrix. Without the eigendecomposition of the sample covariance matrix, the method can estimate two parameters of single ID source using only once one-dimensional (1-D) search. Therefore, it provides lower computational complexity. The second method exploits the approximate rotational invariance property between two closely spaced shifted ULAs. And it estimates the nominal DOAs of ID sources by using the weighted eigenvalues of the corresponding rotational invariance matrix which is estimated by propagator method. Without spectrum search and the eigendecomposition of the sample covariance matrix, our approach is computationally more attractive compared to the existing methods, and is robust to mismodeling.
     5. Two low-complexity parameter estimation methods for 2-D ID sources are proposed. Using L-shape array, the first method formulated two types of spatial cross-correlation functions (SCFs). Under small angular spread, the nominal azimuth and elevation are estimated by using the phase information of the SCFs. Without any search and matrix eigendecomposition, our approach has a substantially reduced computational. Moreover, it is also a robust estimator which doesn’t depend on the angular distribution shape of the ID source. Based on two closely spaced parallel ULAs, the second method firstly obtains preliminary estimates of the nominal elevations. And then it transforms a four-dimensional parameter optimization problem into two 1-D parameter optimization problems and a 2-D parameter optimization problem with the help of preliminary values of the nominal elevations. The method reduces significantly the computational burden and can be used to deal with multiple ID sources.
     6. Three fast methods for the nominal DOA tracking of distributed sources are proposed. Among the methods, two methods based on the subspace updating idea are used to track, respectively, the nominal DOAs and 2-D nominal DOAs of CD sources. Avoiding the repeated eigendecomposition of the sample covariance matrix, they can track multiple sources with different angular distributions. The third method takes advantage of the maximum likelihood (ML) estimator and particle swarm algorithm, and is used to track the nominal DOAs of ID sources. The method does not require the knowledge of the effective dimension of the pseudosignal subspace of ID sources, and can exhibit excellent tracking performance even at low SNR.
引文
[1] S.U.Pillai. Array signal proeessing. New York, Springer Verlag, 1989, 456-490.
    [2] S.Haykin, J.P.Reilly, V.Kezys, et al. Some aspects of array signal proeessing. IEE Proc-F, 1992, 139(1): 1-26.
    [3] P. Zetterberg, B. Ottersten. The spectrum efficiency of a base station antenna array system for spatially selective transmission. IEEE Trans. Vehicular Technology, 1995, 44(3): 651-660.
    [4] B.Ottersten. Array processing for wireless communications. Proc. of 8th IEEE Signal Processing Workshop on Statistics Signal and Array Processing, Corfu, Greece, 1996: 466-473.
    [5] H.Miyauehi. Development of DBF radar. Proc.of Phased Array Systems and Technology, 1996, IEEE International Symposium on, Boston, MA, USA, 1996: 226-230.
    [6] A.Dreher, N.Niklasch, F.Klefenz, A.Schroth. Antenna and receiver system with digital beamforming for satellite navigation and communications. IEEE Trans. Micraowave Theory and Techniques, 2003,51(7): 1815-1821.
    [7]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [8] H.Krim, M.Viberg. Two decades of array and signal processing: The parametric approach. IEEE Signal Processing Magazine, 1996,6: 67-94.
    [9] T.Chen. Highlights of statistical signal and array processing. IEEE Signal Processing Magazine, 1998, 9: 21-64.
    [10] S.Valaee, B.Champagne, P.Kabal. Parametric localization of distributed sources. IEEE Trans. Signal Processing, 1995, 43(9): 2144-2153.
    [11] M. Tapio. Direction and spread estimation of spatially distributed signals via the power azimuth spectrum. Proc.of IEEE ICASSP, Orlando Florida USA, 2002, 3: 3005-3008.
    [12] T.P. Jantti.The influence of the extended sources on the theoretieal Performance of MUSIC and ESPRIT method: narrow-band sources. Proc. of ICASSP, San Francisco, 1992, 3:Ⅱ-429-Ⅱ-432.
    [13] D. Astely, B. Ottersten. The effect of local scattering on direction of arrival estimation with MUSIC and ESPRIT. ICASSP, 1998, 5: 3333-3336.
    [14] B.Gershman, C.F.Mecklenbrauker, J.F.Bohme. Direction finding with imperfect wavefront coherence: a matrix fitting approach using genetic algorithm. ICASSP, 1997, 1: 519-522.
    [15] G.Montalbano, G.V.Serebryakov. Optimum array signal processing in the presence of imperfect spatial coherence of wavefronts. OCEANS’98, 1998, 3: 1704-1708.
    [16] P.Stoica, O.Besson, A.B.Gershman. Deterministic maximum likelihood DOA estimation in heterogeneous propagation media. IEEE Signal Processing Workshop on SSAP, 2000: 424-428.
    [17] P.Stoica, O.Besson, A.B.Gershman. Direction-of-arrival estimation of an amplitude-distorted wavefront. IEEE Trans. Signal Processing, 2001, 49(2): 269-276.
    [18] T.P. Jantti.The influence of the extended sources on the theoretieal Performance of MUSIC and ESPRIT method: narrow-band sources. Proc.of ICASSP, San Francisco, 1992, 3:Ⅱ-429-Ⅱ-432.
    [19] Y. Meng, K.M. Wong, Q.Wu. Estimation of the directions of arrival of spread sources in sensor array processing. Proc. of ICSP, 1993, 10: 430-434.
    [20] Q. Wu, K.M. Wong, Y. Meng. DOA Estimation of point and scattered sources-Vec-MUSIC. IEEE Signal Processing Workshop on SSAP, 1994: 365-368.
    [21] Y.U. Lee, J. Choi, I. Song, S.R. Lee. Distributed sources modeling and direction-of-arrival estimation techniques. IEEE Trans. Signal Processing, 1997, 4(45): 960-969.
    [22] D. Astely, B. Ottersten, A.L. Swindlehurst. Generalized array manifold model for wireless communication channels with local scattering. IET Radar Sonar Navig., 1998,145(1): 51-57.
    [23] D. Astely, B. Ottersten. The effects of local scattering on direction of arrival estimation with MUSIC. IEEE Trans. Signal Processing, 1999, 47(12): 3220-3234.
    [24] R. Raich, J. Goldberg, H. Messer. Localization of a distributed source which is“partially coherent”modeling and Cramer-Rao bounds. ICASSP, 1999, 5: 2941-2944.
    [25] R. Raich, J. Goldberg, H. Messer. Bearing estimation for a distributed source: Modeling, inherent accuracy limitations and algorithms. IEEE Trans. Signal Processing, 2000, 48(2): 429-441.
    [26] M. Bengtsson, B. Ottersten. Low complexity estimation for distributed sources. Signal ProcessingTechnical Report IR-S3-9721, Signal, Sensors, Systems Department, Royal Institute of Technology, Stockholm, Sweden, October, 1997.
    [27] M.Bengtsson, B.Ottersten. Rooting techniques for estimation of angular spread with an antenna array. Vehicular Technology Conference, 1997, IEEE 47th, 2: 1158-1162.
    [28] M.Bengtsson, B.Ottersten. Low complexity estimation for distributed sources. IEEE Trans. Signal Processing, 2000, 48(8): 2185-2194.
    [29] M.Bengtsson. Antenna array processing for high rank data models. Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 1999.
    [30] S.J.Liu, Q.Wan, Y.N.Peng. A robust bearing estimator based on Jacobi-Anger expansion for large angular spread source. IEEE Sensor Array and Multichannel Signal Processing Workshop, August, 2002: 499-502.
    [31]刘申建.空间分布源波达方向估计及其性能分析研究:[博士学位论文].北京:清华大学,2003.
    [32] S.Kikuchi, H.Tsuji, A.Sano. Direction-of-arrival estimation for spatially non-symmetric distributed sources. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2004: 589-593.
    [33]李强,李志舜.一种新的非相干分布源模型及方位估计方法.声学技术, 2007,26(5):910-914.
    [34]李强.分布源目标方位估计研究:[博士学位论文].西安:西北工业大学,2007.
    [35] S.R.Lee, I.Song, Y.U.Lee, et al. Estimation of distributed elevation and azimuth angles using linear arrays. MILCOM, Virginia, USA, 1996: 868-872.
    [36] S.R.Lee, I.Song, Y.U.Lee, et al. Estimation of two dimensional DOA under a distributed model and some simulations results. IEICE Trans. Fundamentals, 1996,E79A(9):1475-1485.
    [37] J.H.Lee, C.H.Lee, J.H.Chun, et al. Joint estimation of the space-time distributed signals parameters. Processing of IEEE VTC, 2000:822-828.
    [38] J.S.Lee, P.Wilkinson, A.Manikas. Blind multiuser vector channel estimation for space-time distributed signals. Processing of IEEE ICASSP, 2000, Vol.5:3061-3064.
    [39] M.Ghogho, T.S.Durrani. Broadband direction of arrival estimation in presence of angular spread. Electronics Letters, 2001,37(15):986-987.
    [40] G.Fuks, J.Goldberg, H.Messor. Bearing estimation in a Ricean channel-Part 1: inherent accuracy limitations. IEEE Trans. Signal Processing, 2001,49(5):925-937.
    [41]熊维族,叶中付.极化分布源模型及角度估计.数据采集与处理, 2003,18(3):243-248.
    [42] Y.U.Lee, S.R.Lee, T.Chang, et al. An analysis of DOA estimation method under a dispersive signal model. ICCSP, 1995: 351-354.
    [43] J.Tabrikian, H.Messer. Robust localization of scattered sources. IEEE Workshop on Statistical Signal and Array Processing, 2000: 453-457.
    [44] T.Trump, B. Ottersten. Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Processing, 1996, 50(4): 57-69.
    [45] O.Besson, F.Vincent, P. Stoica. Approximate maximum likelihood estimators for array processing in multiplicative noise environments. IEEE Trans. Signal Processing, 2000, 48(9):2506-2518.
    [46] ] B.T.Sieskul, S.Jitapunkul. An asymptotic maximum likelihood for estimating the nominal angle of a spatially distributed source. Int. J. Electron.Commun., 2006, 60: 279-289.
    [47] O.Besson, P.Stoica. Decoupled estimation of DOA and angular spread for a spatially distributed source. IEEE Trans. Signal Processing, 2000, 48(7): 1872-1882.
    [48] O.Besson, P.Stoica, A.B.Gershman. A simple and accurate direction of arrival estimator in the case of imperfect spatial coherence. IEEE Trans. Signal Processing, 2001, 49(4): 730-737.
    [49] S.Shallbazpanahi, S.Valaee, A.B.Gershman. A covariance fitting approach to parametric localization of multiple incoherently distributed sources. IEEE Trans. Signal Processing, 2004, 52(3): 592-600.
    [50] A.Zoubir, Y.Wang, P.Chargé. On the ambiguity of COMET-EXIP algorithm for estimating a scattered source. Signal Processing, 2006, 86(2): 733-743.
    [51] Y.Meng, K.M.Wong, Q. Wu. Direction finding for point and dispersed sources-Vec-MUSIC and its performance. ICASSP, 1996, 5: 2908-2911.
    [52] Y.Meng, P.Stoica, K.M.Wong. Estimation of the directions of arrival of spatially dispersed signals in array signal processing. IEE Proc. Radar Sonar Navig., 1996,143(2): 1-9.
    [53] M.Bengtsson, B.Ottersten. Rooting techniques for estimation of angular spread with an antenna array. VTC, 1997: 1158-1162.
    [54] M.Bengtsson, B.Ottersten. A generalization of weighted subspace fitting to full-rank models. IEEE Trans. Signal Processing, 2001, 49(5): 1002-1012.
    [55] S.Shahbazpanahi, S.Valaee, M.H.Bastani. Distributed source localization using ESPRIT algorithm. IEEE Trans. Signal Processing, 2001, 49(10): 2169-2178.
    [56]万群.分布式目标波达方向估计方法研究:[博士学位论文].成都:电子科技大学,2000.
    [57]万群,杨万麟.相干分布式目标一维波达方向搜索迭代估计方法.电子科技大学学报, 2000,29(6): 583-586.
    [58]万群,杨万麟.基于子空间的后验稀疏约束迭代DOA估计方法.系统工程与电子, 2000,22(9): 13-15.
    [59]万群,杨万麟.相干分布式目标一维波达方向估计方法.信号处理, 2001,17(2): 115-119.
    [60]万群,杨万麟.一种分布式目标波达方向估计方法.通信学报, 2001,22(2): 65-70.
    [61]万群,杨万麟.一种相干信号源分布式目标波达方向估计方法.系统工程与电子, 2001, 23(3): 8-11.
    [62]万群,彭应宁,杨万麟.单次快摄的局部散射源中心DOA估计方法.电子学报, 2003, 31(6):809-811.
    [63]万群,袁静,刘申建等.基于角信号子空间的DOA估计方法.清华大学学报(自然科学版), 2003, 43(7): 950-952.
    [64] K.L.Bell, H.L.V.Trees. Adaptive beamforming for spatially spread sources. IEEE Workshop on Statistical Signal and Array Processing, 1998: 1-4.
    [65] X.L. Xu. Spatially-spread sources and the SMVDR estimator. SPAWC, 2003: 639-643.
    [66] A.Hassanien, S.Shallbazpanahi, A.B.Gershman. A generalized Capon estimator for localization of multiple spread sources. IEEE Trans. Signal Processing, 2004, 51(1): 280-283.
    [67] S.Shallbazpanahi, A.B.Gershman, Z.Q.Luo, K.M.Wong. Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Processing, 2003, 51(9): 2257-2269.
    [68] J.H.Lee, K.P.Cheng, C.C.Wang. Robust adaptive array beamforming under steering angle mismatch. Signal Processing, 2006, 86: 296-309.
    [69] A.Zoubir, Y.Wang, P.Chargé. New adaptive beamformers estimation of spatially distributed sources. IEEE Antennas and Propogation Society International Symposium, 2004: 2643-2646.
    [70] A.Zoubir, Y.Wang. Robust generalized Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources. IET Signal Processing, 2008, 2(2): 163-168.
    [71] A.Zoubir, Y.Wang. Performance analysis of the generalized beamforming estimators in the case of coherently distributed sources. Signal Processing, 2008, 88: 428-435.
    [72] ]A.Senst, P.S.Rittich, U.Krause, et al.Random beamforming in correlated MISO Channels for multiuser systems. IEEE International Conference on Communications, 2004(5): 2909-2913.
    [73] C.T.Christou, G.M.Jacyna. Simulation of the beam response of distributed signals. IEEE Trans. Signal Processing, 2005, 53(8): 3023-3031.
    [74] A.Morell, A.P.Iserte, A.P.Neira. Fuzzy inference based on beamforming. Signal Processing, 2005, 85: 2014-2029.
    [75] M.Hirari, K.Gotoh, M.Hayakawa. DOA estimation of distributed sources using neural networks. ICSP, 1998, 1: 335-338.
    [76] J.Goldberg, H.Messer. A polynomial rooting approach to the localization of coherently scattered sources. ICASSP, 1998, 4: 2057-2060.
    [77] T.Abdellatif, P.Larzabal, H.Clergeot. Linear prediction methods for scattered sources. VTC, 1999,1:112-116
    [78]万群,杨万麟.基于盲信号分离的分布式目标DOA估计方法.电子科技大学学报, 2000,29(5): 457-460.
    [79]万群,杨万麟.基于盲波束形成的分布式目标波达方向估计方法.电子学报, 2000,28(12): 90-93.
    [80]张林让,李燮,徐卫.利用预投影变换提高分布式目标波达方向估计性能.西安电子科技大学学报, 2003, 30(5): 590-593.
    [81]张林让,田惠,李燮.分布式目标参数估计的波束域处理方法.电波科学学报, 2004,19(1):87-91.
    [82] X.S.Guo, Q.Wan, B.Wu, et al. Parameters localization of coherently distributed sources based on sparse signal representation. IET Radar Sonar Navig., 2007,1(4):261-265.
    [83]郭贤生,万群,张瑛,杨万麟.一种快速分布式目标波达方向估计新方法.现代雷达, 2008,30(9):36-39.
    [84]郭贤生.多阵列分布源参数估计及跟踪方法研究:[博士学位论文].成都:电子科技大学,2008.
    [85]张高毅,唐斌等.一种利用矩阵束的相干分布源二维波达方向估计方法.电子对抗年会,扬州, 2007: 439-443.
    [86] G.Y.Zhang, B.Tang. Decoupled estimation of 2D DOA for coherently distributed sources using 3D matrix pencil method. EURASIP Journal on Advances in Signal Processing, 2008, 2008(Article ID 417157): 1-7.
    [87]张高毅.复杂空间多维参数估计研究:[博士学位论文].成都:电子科技大学,2009.
    [88] G.Y.Zhang, B.Tang. Estimation of 2D-DOAs and angular spreads for coherently distributed sources using cumulants. IEEE SPAWC 2007, Helsinki, Finnand, 2007: l-5.
    [89]张高毅,唐斌.基于矩阵重构的非相干分布源参数估计方法.系统工程与电子技术, 2009,31(10): 2363-2366.
    [90]张高毅,唐斌.非相干分布源2D-DOA与角度扩展估计新方法.电子科技大学学报, 2009,38(6): 916-920.
    [91] S.J.Liu, Q.Wan, Y.N.Peng. Asymptotic performance analysis of bearing estimate for spatially distributed sources with finite broadband. Electronics Letters, 2002, 38(24):1600-1601.
    [92]熊维族,叶中付.一类快速的宽带分布源到达角估计算法.系统工程与电子技术, 2004,26(5):665-667.
    [93]陈红光.稳健的阵列处理波达方向估计算法研究:[博士学位论文].长沙:国防科技大学,2005.
    [94]熊维族,叶中付.角度分布对有效子空间的影响.电波科学学报, 2004,19(1):7-12.
    [95]熊维族,叶中付.利用电磁矢量传感器估计分布源三维到达角.电路与系统学报, 2004,9(4):36-41.
    [96] B.Qian, W.L.Yang, Q.Wan. A joint DOA and time delay estimation method for space-time coherent distributed signals based on search. Journal of systems engineering and electronics, 2007,18(2):341-346.
    [97] B.Qian, W.L.Yang, Q.Wan. A joint DOA and time delay estimation method for space-time distributed signals. ICCCAS, 2006, Vol.6:1099-1102.
    [98] B.Qian, W.L.Yang, Q.Wan. An improved 2-D ESPRIT method for joint DOA-delay estimation. ICCCAS, 2007, Vol.1:129-132.
    [99]钱斌,杨万麟,万群.一种相干分布目标的DOA-时延联合估计算法.信号处理, 2007,23(3):425-428.
    [100]钱斌,杨万麟,万群.一种空时分布多径信号DOA-时延联合估计的ESPRIT方法.信号处理, 2008,24(3):366-369.
    [101]钱斌.分布式信号波达方向—时延联合估计算法研究:[博士学位论文].成都:电子科技大学,2008.
    [102] S.R.Lee, I.Song, T.Chang, et al. Distributed source location estimation using a circular array. ISSPA, 1996: 341-344.
    [103] Q.Wan, Y.N.Peng. Low-complexity estimator for four-dimensional parameters under a reparameterised distributed source model. IEE Proc. Radar Sonar Navig., 2001,148(6): 313-317.
    [104] Q.Wan, W.L.Yang. Low-complexity estimator for two-dimensional DOA under a distributed source model. CIE Radar, 2001: 814-818.
    [105] J.Lee, I.Song, H.Kwon, S.R. Lee. Low-complexity estimation of 2D DOA for coherently distributed sourcesk. Signal Processing, 2003, 83(8): 1789-1802.
    [106] X.S.Guo, Q.Wan, W.L.Yang, et al. Low-complexity 2D coherently distributed sources decoupled DOAs estimation method. Sci China Ser F-Inf Sci, 2009, 52(5): 835-842.
    [107]韩英华,汪晋宽,宋昕.基于L阵的分布式信源二维波达估计算法.东北大学学报, 2008,29(5): 677-680.
    [108]韩英华,汪晋宽,宋昕.相干分布式信源二维波达估计算法.电子与信息学报, 2009,31(2):323-326.
    [109] H.Boujemaa. Extension of COMET algorithm to multiple diffuse source localization in azimuth and elevation. Euro. Trans. Telecomms., 2005, 16: 557-566.
    [110] R.Roy, T.Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques.IEEE Trans. on ASSP, 1989, 37(7): 984-995.
    [111] A.Zoubir, Y.Wang, P.Chargé. Efficient subspace-based estimator for localization of multiple incoherently distributed sources. IEEE Trans. Signal Processing, 2008, 56(2): 532-542.
    [112]张高毅,唐斌.非相干分布源DOA和角度扩展去耦估计方法.电子与信息学报, 2010,32(1): 98-101.
    [113] B.Lindmark, B.Ahlbegrg, M.Nilsson, C.Beckman. Performance analysis of applying up-link estimates in the down-link beamforming using a dual polarized array. Proc. Of IEEE VTC2000, 2000, 2: 690-694.
    [114]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [115] P.Comon, G.H.Golub. Tracking a few extreme singular values and vectors in signal processing. Proc. IEEE, 1990, 78(8): 1327-1343.
    [116] G.W.Stewart. An updating algorithm for subspace tracking. IEEE Trans. Signal Processing, 1992, 40: 1535-1541.
    [117] C.H.Bischof, G.M.Shroff. On updating signal processing. IEEE Trans. Signal Processing, 1992, 40: 96-105.
    [118] K.B.Yu. Recursive updating the eigenvalue decomposition of a covariance matrix. IEEE Trans. Signal Processing, 1991, 39: 1136-1145.
    [119] B.Champagne. Adaptive eigendecomposition of data covariance matrices based on first-order perturbations. IEEE Trans. Signal Processing, 1994, 42: 2758-2770.
    [120] J.F.Yang, M.Kaveh. Adaptive eigensubspace algorithms for direction or frequency estimation and tracking. IEEE Trans. ASSP, 1988, 36: 241-251.
    [121] Z.Fu, E.M.Dowling. Conjugate gradient eigenstructure tracking for adaptive spectral estimation. IEEE Trans. Signal Processing, 1995, 43: 1151-1160.
    [122] B.Yang. Projection approximation subspace tracking. IEEE Trans. Signal Processing, 1995, 43(1): 95-107.
    [123] D.R.Fubrmann. An algorithm for subspace computation with applications in signal processing. SIAM J Matrix Anal Appl, 1988, 9: 213-220.
    [124] M.Moonen, P.V.Dooren, J.Vandewalle. A singular value decomposition updating algorithm for subspace tracking. SIAM J Matrix Anal Appl, 1992, 13: 1015-1038.
    [125] K.Abed-Meraim, A.Chkeif, Y.Hua. Fast orthonormal PAST algorithm. IEEE Signal Processing Letters, 2000, 7(3): 60-62.
    [126]贺宁荣,吕善伟,常戎.子空间跟踪PASTD算法的改进及其应用.现代雷达,2005,27(11):75-78.
    [127]孟艳,汪晋宽,宋昕,刘志刚.基于子空间跟踪和卡尔曼滤波的半盲多用户检测.信号处理, 2008, 24(3): 464-466.
    [128] R.Badeau, G.Richard, B.David, et al. Approximated power iterations for subspace tracking: Signal processing and its applications. ISSPA’03 Proceedings of The Seventh International Symposium, 2003, Paris: Digital object Identifier, 2003.583-586.
    [129]曾建潮,介靓,崔志华.微粒群算法.北京:科学出版社,2004.
    [130] S.Janson, M.Middendorf. On trajectories of particles in PSO. IEEE Swarm Intelligence Symposium, 2007, 4: 150-155.
    [131]庞伟正,高洪元,王丽艳,等.基于粒子群优化算法的相干信源波达方向估计.哈尔滨工程大学学报, 2006, 27(3): 453-456.
    [132]赵大勇,袁熹,高洪元.应用粒子群算法的动态目标DOA估计.哈尔滨工程大学学报, 2009, 30(7): 843-846.
    [133]刁鸣,袁熹,高洪元,陈娟.一种新的基于粒子群算法的DOA跟踪方法.哈尔滨工程大学学报, 2009, 31(9): 2046-2049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700