用户名: 密码: 验证码:
多载频相位编码雷达信号设计与处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究利用单一信号形式实现多种功能的新体制雷达具有迫切的军事需求和现实意义。论文围绕多载频相位编码雷达信号的设计与处理技术进行研究,重点开展多载频雷达信号设计、脉冲压缩与目标检测、运动目标参数估计与成像三个方面的研究工作。
     论文首先介绍了多载频雷达信号的来源与分类,从信号包络和模糊函数两方面研究其特性。针对多载频相位编码信号结构灵活的特点,分析了不同子载频加权方式对信号包络峰均比的影响;理论推导完整的模糊函数表达式,分析其自相关函数与信号各参数之间的关系,为信号设计提供了理论基础。
     针对多载频雷达信号的参数设计与优化问题,首先以模糊函数作为优化准则,对信号参数相对较少的OFDM信号进行参数优化,设计出的信号自相关函数旁瓣水平极低,适合进行目标探测。然后针对MCPC信号模糊图整体旁瓣较高的问题和现有信号设计方法的局限,提出了一种随机移位编码的MCPC信号,并通过时频域限幅迭代方法有效降低其包络起伏,在模糊图和包络控制方面同时取得了令人满意的性能。这种设计方法可以很方便的生成具有波形分集特点的脉冲串信号,具备十分理想的模糊函数和较低的周期性自相关旁瓣。最后分析了多载频雷达系统性能参数,以此指导发射波形参数的设计,并结合具体任务给出了设计实例。
     针对MCPC雷达回波在脉冲压缩中的计算效率问题和对多载频结构的充分利用,基于子载频分离的思想,在时域分码元进行处理,推导两级脉压的过程,针对子载频未作加权的一类特殊MCPC信号给出带宽合成的快速脉压方法;针对加权后的MCPC信号提出了改进的子载频合成滤波方法,有效降低其计算量。然后为了避免时域分段错位现象,给出了频域脉压方案。在改变DFT快速算法计算顺序的基础上提出了频域分段匹配法,在不增加计算复杂度的前提下很好地实现了子带的分离与合成,能够同时获得粗分辨积累距离像和高分辨距离像。最后给出脉冲串信号的脉压方法并综合比较了各方法的脉压性能和计算量。
     针对MCPC雷达目标检测问题,在两级脉压的基础上针对高分辨距离像给出了宽带检测方法,针对粗分辨积累距离像则提出了基于窄带框架的检测方法。对于脉冲串信号,所提出的方法在脉间通过相参积累保证信噪比增益,在载频间通过非相参积累保证目标散射点能量的良好聚集。仿真实验表明了窄带框架下的检测方法在高速动目标检测上的优势。
     针对MCPC雷达运动目标参数估计问题,基于随机移位相位编码的MCPC脉冲串信号,分析其模糊函数低旁瓣在消除距离周期性模糊上的作用,给出测距原理和仿真实验。针对当前宽带雷达在测速时面临的高分辨距离单元走动问题与速度模糊问题,基于子载频多普勒处理技术,提出了基于最小二乘法的速度解模糊方法,将速度测量的适用范围提高到积累时间内目标走动不超过一个粗分辨距离单元,并针对低速、中高速和高速运动目标,分别给出仿真实验和测速性能。基于Radon-CLEAN方法实现了多目标速度分辨,能够在低信噪比条件下对高速运动目标进行速度分辨与高精度测量。
     针对MCPC雷达高速运动目标ISAR成像问题,用实时估计的速度和距离为ISAR成像提供运动补偿和参考距离,提出了利用多个脉冲串进行ISAR成像的算法和宽带雷达多功能一体化的实现框架。针对高速运动目标,分析了成像时遇到的相位误差和散射点越距离单元走动问题,根据仿真数据进行了成像实验,与LFM雷达在ISAR图像质量上做了对比。仿真结果表明,利用前端测速结果进行运动补偿后的MCPC雷达在ISAR成像上更有优势。
It is of pressing military demands and practical signality to research utilizing single form of signal to realize new type wideband radar with multiple functions. The dissertation focuses on the research of signal designing and processing of multi-carrier phase coded (MCPC) radar. Three main subjects are addressed in this dissertation, which are designing of multi-carrier radar signal, pulse compression and target detection as well as parameter estimation and imaging of moving target.
     The derivation and category of multi-carrier radar signal is firstly addressed whose envelope and ambiguity function (AF) are two main characteristics. Based on the flexibility feature of MCPC, the impact of different sub-carrier weighting on signal envelope is analyzed. And the full expression of AF is deduced to research the relationship between auto cross function and signal parameters, which provides theoretical basis for signal designing.
     For the parameter designing and optimization of multi-carrier radar signal, based on the rule of AF, the OFDM signal with relatively less parameters is firstly designed to achieve very low sidelobes in ACF, which is suitable to target detection. Secondly, considering the high sidelobes in AF of MCPC and the drawback of current designing method, a random shifted phase-coded MCPC is proposed. Its envelope is efficiently lowered by time-frequency clipping iteration which leads to satisfied ambiguity diagram and envelope fluctuation at the same time. This method is able to expediently produce waveform-diverse pulse train with ideal AF and low recurrent sidelobes in ACF. Finally the multi-carrier radar system performance is analyzed to instruct the designing of transmitting waveform and designing samples towards specific mission are given.
     For the computational efficiency and full usage of multi-carrier structure in pulse compression (PC) of MCPC radar echo signal, based on sub-carrier separation, signal chips are firstly divided in time domain. Two-level PC process is deduced to efficiently compress a special kind of MCPC without sub-carrier weighting. And improved wide band synthetic filtering is proposed to lower the calculation amount when compressing MCPC with sub-carrier weighting. Afterward PC methods in frequency domain are addressed to avoid improper chip dividing problems. By changing the computing order of FFT, piecewise matching method in frequency domain is brought forward to realize separation and synthesis of sub bands without growing computational complexity. It is able to obtain integrated coarse resolution range profile (CRRP) and HRRP simultaneity. Finally the PC of pulse train is given. Also the performance and calculation amount are compared among different methods.
     For the target detection in MCPC radar, on the basis of two-level PC, wideband detection method is addressed upon HRRP. And a detection strategy based on narrow band frame is proposed upon integrated CRRP. For pulse train signal, this method guarantees SNR gain through coherent integration among pulses and obtains favorable energy gathering of scattering points through non-coherent integration among sub-carriers. Simulations indicate the advantage of detection method based on narrow band frame when detecting moving target at high velocity.
     For the parameter estimation of moving target in MCPC radar, based on random shifted phase-coded MCPC pulse train, its low AF sidelobes is utilized to eliminate recurrent range ambiguity. Distance measurement principle with simulations is then provided. While nowadays wideband radar faces the range walk of HRRP cells and velocity ambiguity problems, LSE method based on Doppler processing of sub-carriers is proposed to solve velocity ambiguity. This method promotes the suitable scope of velocity measurement to one CRRP cell that target walking through in integration interval. Experiments are given toward target moving at low, medium and high velocity respectively. Velocity resolution based on Radon -CLEAN is then brought forward and proved to distinguish targets with diverse speed against low SNR.
     For the ISAR imaging of fast moving target in MCPC radar, using the real-time estimated velocity and range as motion compensation and reference distance, an ISAR imaging method based on multiple pulse trains and multi-functional wideband radar in integrative frame are proposed. The phase error and scatter migration through resolution cell problem when imaging the fast moving target is discussed and the ISAR result is compared with LFM radar. Simulations present the advantage of MCPC radar in ISAR imaging after motion compensation by provided velocity.
引文
[1]向敬成,张明友.雷达系统[M].北京:电子工业出版社, 2001.
    [2]斯科尔尼克.雷达手册(第二版)[M].北京:电子工业出版社, 2003.
    [3]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社, 1981.
    [4]张直中.雷达信号的选择与处理[M].北京:国防工业出版社, 1979.
    [5]冯德军.弹道导弹目标识别及评估技术研究[D].长沙:国防科技大学, 2006.
    [6] Jankiraman M, Wessels B J, van Genderen P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, 1998: 548-589.
    [7] Levanon N. Multifrequency radar signals[C]. IEEE International Radar Conference, Alexandria, VA, USA, 2000: 683-688.
    [8] Levanon N. Multifrequency complementary phase-coded radar signal[J]. IEE Proc.-Radar, Sonar Navigation. 2000, 147(6): 276-284.
    [9] Prasad N N S S, Shameem V, Desai U B, et al. Improvement in target detection performance of pulse coded Doppler radar based on multicarrier modulation with fast Fourier transform (FFT)[J]. IEE Proc. -Radar Sonar Navig. 2004, 151(1): 11-17.
    [10] Levanon N. Multicarrier radar signal - pulse train and CW[J]. IEEE Trans. AES. 2002, 38(2): 707-720.
    [11]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社, 2000.
    [12]沈一鹰,赵彬,禹胜来.脉冲多普勒-阶梯跳频信号混合设计与处理技术的研究[J].系统工程与电子技术. 1998(10): 6-9.
    [13] Shen Y Y, Liu Y T. A step pulse train design for high resolution range imaging with Doppler resolution processing[J]. Chinese Journal of Electronics. 1999(8): 196-199.
    [14]陈军科.频率步进+PD毫米波制导雷达的工作模式分析[J].弹箭与制导学报. 2003(23): 27-30.
    [15]孙厚军,于伟华,叶方全.毫米波多模制导关键技术研究[J].弹箭与制导学报. 2005(25): 116-119.
    [16]金耀宇,李少洪. PD探测器对目标HRR像的测量[J].电子测量技术. 2006(29): 199-201.
    [17]王桂丽,李兴国.频率步进和脉冲多普勒复合测速研究[J].红外与毫米波学报. 2008(27): 190-192.
    [18]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报. 2001(22): 16-25.
    [19] Yuan H J, Gao M G, Wang S. Long-term integration algorithm using the HPRF stepped-frequency waveform[C]. International Conference on Signal Processing, 2008: 2310-2313.
    [20]王飞行. PD/HRR兼容新体制雷达关键技术研究[D].长沙:国防科学技术大学, 2009.
    [21] Adler E, Clark J, Conn M, et al. Low-cost enabling technology for multimode radar requirements[C]. Proceedings of the IEEE International Radar Conference, 1998: 50-55.
    [22] Adler E, Clark J, Conn M, et al. Low-cost technology for multimode radar[J]. IEEE on AES Systems. 1999(6): 23-27.
    [23] Geoffrey H G. Tracking high-speed targets using a pulse Doppler stepped-frequency waveform[C]. Proceedings of the IEEE International Radar Conference, 2007: 229-233.
    [24] Chen H, Huang B, Hou Y. Research on waveform design of airborne phased array pulse Doppler radar[C]. Proceedings of the CIE International Radar Conference, 2006: 1614-1617.
    [25] Chang R W. Synthesis of band-limited orthogonal signals for multichannel data transmission[J]. Bell System Technical Journal. 1966, 45: 1775-1796.
    [26]李天一.基于OFDM的雷达体制研究[D].南京理工大学:南京, 2008.
    [27] Barnum J R. Ship Detection with High-Resolution HF Skywave Radar[J]. IEEE Journal of Oceanic Engineering. 1986, 11(2): 196-208.
    [28] Teague C C, Veseeky J F. Initial Observations of Ocean Currents,Current Shears and Wind Direction Using a Multi-Frequency HF Radar[J]. Geoscience and Remote Sensing. 1997(4): 1808-1810.
    [29] Jankiraman M, Wessels B J, van Genderen P. Pandora multifrequency FMCW/SFCW radar[C]. IEEE National Radar Conference, Alexandria, VA, USA, 2000: 750-757.
    [30] Paichard Y, Castelli J C, Dreuillet P, et al. HYCAM: a RCS measurement and analysis system for time-varying targets[C]. Instrumentation and Measurement Technology Conference, Sorrento, Italy, 2006: 921-925.
    [31] Ghaleb A, Vignaud L. Fine micro-Doppler analysis in ISAR imaging[C]. IEEE International Symposium on Geoscience and Remote Sensing, Barcelona, 2007: 574-577.
    [32] Garmatyuk D S. Simulated Imaging Performance of UWB SAR Based on OFDM[C]. Proceedings of The 2006 IEEE International Conference on Ultra-Wideband, Waltham, MA, 2006: 237-242.
    [33] Garmatyuk D S, Schuerger J, Kauffman K, et al. Wideband OFDM system for radar and communications[C]. IEEE National Radar Conference - Proceedings,Pasadena, CA, United States, 2009.
    [34] Ding X F. Narrowband imaging method for spatial precession cone-shaped targets[J]. Sci China Tech Sci. 2010, 53: 942-949.
    [35] Essen H, Hagelen M, Johannes W, et al. High resolution millimeter wave measurement radars for ground based SAR and ISAR imaging[C]. Proc. IEEE Radar Conf., Rome, Italy, 2008: 1-5.
    [36] Geisheimer J L, Greneker E F, Marshall W S. A high-resolution Doppler model of human gait[C]. SPIE Proceedings on Radar Sensor Technology and Data, Visualization, 2002: 8-18.
    [37] Geisheimer J L, Marshall W S, Greneker E F. A continuous-wave (CW) radar for gait analysis[C]. Pacific Grove, 2001: 834-838.
    [38] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal. 2000, 12(2): 383-396.
    [39] Hough P V C. Method and means for recognizing complex patterns[P]. 1962.
    [40] Huang X H. Estimation of space object shapes from RCS time series[J]. Aerospace Electronic Warfare, China. 2004, 21(4): 44-46.
    [41] Kealey P G, Jahangir M. Advances in Doppler recognition for ground moving target indication[C]. SPIE Proceedings on Automatic Target Recognition, Orlando, FL, USA, 2006: 1-11.
    [42] Kelly E J, Wishner R P. Matched-filter theory for high-velocity accelerating targets[J]. IEEE Trans. Mil. Electron. 1965, 9: 56-69.
    [43] Lai C, Ruan Q, Narayanan R M. Hilbert-Huang Transform (HHT) processing of through-wall noise radar data for human activity characterization[C]. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 2007: 1-6.
    [44] Lambour R, Rajan N. Assessment of orbital debris size estimation from radar crosssection measurements[J]. Adr. Space Res. 2004(34): 1013-1020.
    [45] Lellouchl G, Nikookar H. On the capability of a radar network to support communications[C]. 14th IEEE Symposium on Communications and Vehicular Technology in the Benelux, Delft, 2007: 1-5.
    [46] Le-Tien T, Talhami H, Nguyen D T. An application of the wavelet transform for the echo signal from a rotating object[C]. 1996 IEEE TENCON. Proceedings on Digital Signal Processing Applications, Hobart, Tas, Australia, 1996: 587-592.
    [47] Li J. Model-based signal processing for radar imaging of targets with complex motions[D]. Texas: University of Texas at Austin, 2002.
    [48] Li J, Ling H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proc-Radar Sonar Navig. 2003, 150(4): 284-291.
    [49] Lin A, Ling H. Through-wall measurements of a Doppler anddirection-of-arrival(DDOA) radar for tracking indoor movers[C]. IEEE International Symposium on Antennas and Propagation Society, San Piego, USA, 2005: 322-325.
    [50] Liu B, He Z S. Comments on discrete frequency-coding waveform design for netted radar systems[J]. IEEE Signal Processing Letters. 2008, 15: 449-451.
    [51] Marple S L, Marino C, Strange S. Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data[C]. SPIE proceedings on Advanced Signal Processing Algorithms, Architectures, and Implements, Kuala Lumpur, Malaysia, 2003: 139-145.
    [52] Munoz-Ferreras J M, Perez-Martinez F. Non-Uniform rotation rate estimation for ISAR in case of slant range migration induced by angular motion[J]. IEEE Radar Sonar Navig. 2007, 1(4): 251-260.
    [53] Oppenheim A V, Schafer R W. Discrete-Time Signal Processing[M]. Upper Saddle River, NJ: Prentice-Hall, 1999.
    [54] Schuerger J, Garmatyuk D. Multifrequency OFDM SAR in presence of deception jamming[J]. EURASIP Journal on Advances in Signal Processing. 2010.
    [55] Garmatyuk D, Schuerger J, Morton T Y, et al. Feasibility Study of a Multi-Carrier Dual-Use Imaging Radar and Communication System[C]. The 4th European Radar Conf, 2007: 194-197.
    [56]熊张亮,是湘全,王志华.多载波雷达信号分析[J].现代雷达. 2007, 29(10): 35-39.
    [57]袁俊泉,龚享铱,皇甫堪.基于二次差频的多频连续波测距方法研究[J].电子学报. 2004, 32(12): 2056-2058.
    [58] Levanon N. Multifrequency signal structure for radar[P]. 2002.
    [59] Levanon N, Mozeson E. Radar Signals[M]. New York: John Wiley & Sons, Inc., Hoboken, 2004.
    [60] Levanon N. Train of diverse multifrequency radar pulses[C]. Proc. of the IEEE International Radar Conf., Atlanta, GA, 2001: 93-98.
    [61] Levanon N. Multicarrier radar signals with low peak-to-mean envelope power ratio[J]. IEE Proc. Radar Sonar and Navigation. 2003, 150(2): 71-77.
    [62]陈炜.扩频调制技术在多载波扩频雷达系统中的应用[D].南京:南京理工大学, 2006.
    [63]梁潇.多载波相位编码信号的研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [64] Stralka J P, Meyer G G L. OFDM-based wideband phased array radar architecture[C]. RADAR2008, Adelaide, 2008: 1892-1897.
    [65]顾村锋,缪晨,侯志等.多载波补偿相位编码雷达信号的子载波加权优化[J].探测与控制学报. 2008, 30(4): 56-60.
    [66] Mohseni R, Sheikhi A, Masnadi-Shirazi M A. Constant envelope OFDMsignals for radar applications[C]. Proceedings RADARCON2008, Rome, 2008: 453-457.
    [67] Sebt M A, Norouzi Y, Sheikhi A, et al. OFDM radar signal design with optimized ambiguity function[C]. Proceedings RADARCON2008, Rome, Italy, 2008: 448-452.
    [68] Sebt M A, Sheikhi A, Nayebi M M. Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio[J]. IET Radar, Sonar and Navigation. 2009, 3(2): 122-132.
    [69] Sen S, Nehorai A. Adaptive design of OFDM radar signal with improved wideband ambiguity function[J]. IEEE Transactions On Signal Processing. 2010, 58(2): 928-933.
    [70] Sen S, Nehorai A. Target detection in clutter using adaptive OFDM radar[J]. IEEE Signal Processing Letters. 2009, 16(7): 592-595.
    [71] Sen S, Hurtado M, Nehorai A. Adaptive OFDM radar for detecting a moving target in urban scenarios[C]. 2009 International Waveform Diversity and Design Conference Proceedings, WDD 2009, Kissimmee, FL, United states, 2009: 268-272.
    [72] Mohseni R, Sheikhi A, Masnadi Shirazi M A. A new approach to compress multicarrier phase-coded signals[C]. Proceedings RADARCON2008, Rome, 2008: 442-447.
    [73] Mohseni R, Sheikhi A, Masnadi-Shirazi M A. Compression of multicarrier phase-coded radar signals with low sampling rate[C]. Proceedings of the 2008 International Conference on Radar, Radar 2008, Adelaide, SA, Australia, 2008: 718-721.
    [74] Franken G E A, Nikookar H, van Genderen P. Doppler tolerance of OFDM-coded radar signals[C]. 3rd European Radar Conference (EuRAD 2006), Manchester, England, 2006: 108-111.
    [75]顾陈,张劲东,朱晓华.基于OFDM的多载波调制雷达系统信号处理及检测[J].电子与信息学报. 2009, 31(6): 1298-1300.
    [76] Lellouch G, Tran P, Pribic R, et al. OFDM waveforms for frequency agility and opportunities for doppler processing in radar[C]. 2008 IEEE Radar Conference, RADAR 2008, Rome, Italy, 2008: 432-437.
    [77] Lellouch G, Pribic R, van Genderen P. Wideband OFDM pulse burst and its capabilities for the doppler processing in radar[C]. Proceedings of the 2008 International Conference on Radar, Radar 2008, Adelaide, SA, Australia, 2008: 531-535.
    [78] Lellouch G, Pribic R, van Genderen P. Frequency agile stepped OFDM waveform for HRR[C]. 2009 International Waveform Diversity and Design Conference Proceedings, WDD 2009, Kissimmee, FL, United states, 2009: 90-93.
    [79] Duan J. Multicarrier coherent pulse shaping for radar and corresponding signal processing[C]. The Eighth International Conference on Electronic Measurement and Instruments, Xi'an, China, 2007: 843-847.
    [80] Zhou S, Yang Q, Deng W. MCPC Signal Applied in MIMO HF Radar[C]. IEEE International Radar Conf, Guilin,China, 2009.
    [81] Zhang Y, Wang J. OFDM-Coded Signals Design for MIMO Radar[C]. 9th International Conference on Signal Processing Proceedings, Beijing,China, 2008.
    [82] Lock E, Adve R S. Orthogonal Frequency Division Multiplexing in Distributed Radar Apertures[J]. IEEE. 2008: 1886-1891.
    [83] Zazo S, Béjar B, Grajal J. Virtual MIMO Radar Using OFDM-CDM Waveforms[C]. IEEE, 2008: 1366-1370.
    [84] Otero M. Application of a continuous wave radar for human gait recognition[C]. SPIE Proceedings on Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, USA, 2005: 538-548.
    [85] Peleg S. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase[J]. IEEE Transactions on signal processing. 1991, 39(3): 749-752.
    [86] Pillai S U, Li K Y, Beyer H. Waveform design optimization using bandwidth and energy considerations[C]. 2008 IEEE Radar Conference, 2008: 1875-1879.
    [87] Ram S S, Li Y, Lin A. Doppler-based detection and tracking of humans in indoor environments[J]. Journal of the Franklin Institue. 2008, 345: 679-699.
    [88] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989, 37(7): 984-995.
    [89] Ruegg M, Meier E, Nuesch D. Constant motion, acceleration, vibration,and rotation of objects in SAR data[C]. Proc. of SPIE on SAR Image Analysis, Modeling, and Techniques, Brugge, Belgium, 2005: 1-12.
    [90] Ruggiano M, Stolp E, van Genderen P. Performance of reiterated LMMSE filtering and coded radar waveforms[C]. Proceedings of the 5th European Radar Conference, Amsterdam, 2008: 132-135.
    [91] Ruggiano M, Stolp E, van Genderen P. Resolution and unmasking of CLEAN and LMMSE algorithms using coded waveforms[C]. International Conference on Radar, Adelaide, Australia, 2008: 374-379.
    [92] Ruggiano M, van Genderen P. Wideband ambiguity function and optimized coded radar signals[C]. 4th European Radar Conference, Munich, Germany, 2007: 142-145.
    [93] Sato T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Trans. Geosci. Remote Sens. 1999, 37(2): 1000-1005.
    [94] Sejdic E, Djurovic I, Jiang J. Time-frequency feature representation using energy concentration: an overview of recent advances[J]. Digital Signal Processing.2009, 19: 153-183.
    [95] Setlur P, Amin M G, Ahmad F. Experiments on through-the-wall motion detection and ranging[C]. SPIE Proceedings on Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Security and Homeland Defense, Orlando, FL, USA, 2007: 1-10.
    [96] Setlur P, Amin M G, Ahmad F, et al. Indoor imaging of targets enduring simple harmonic motion using Doppler radars[C]. IEEE International Symposium on Signal Processing and Information Technology, Athens, 2005: 141-146.
    [97] Shan R G, Ren Q S, Li S G. ISAR trajectory motion compensation[C]. SPIE Proceedings on Hybrid Image and Signal Processing, Orlando, 1990: 56-61.
    [98] Sisan H, Yong-Feng Z, Hong-Zhong Z, et al. Analysis of rotating structures for stepped frequency radar[C]. Proceedings of the 2008 International Conference on Radar, Radar 2008, Adelaide, SA, Australia, 2008: 386-390.
    [99] Son J S, Flores B C. Stepped-frequency ISAR motion compensation using maximum likelihood phase gradient[C]. SPIE Proceedings on Algorithms for Synthetic Aperture Radar Imagery, Orlando, 2002: 252-263.
    [100] Sparr T. ISAR-radar imaging of targets with complicated motion[C]. Proceedings of International Conference on Image Processing, Singapore, 2004: 5-8.
    [101] Stankovic L. Time-frequency distributions with complex argument[J]. IEEE Trans. on Signal Processing. 2002, 150(3): 475-486.
    [102] Stankovic S. General form of time-frequency distribution with complex-lag argument[J]. Electronics Letters. 2008, 44(11): 699-701.
    [103] Stove A G, Sykes S R. A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. IEEE Proceedings of International Radar Conference, Edinburgh, 2002: 419-423.
    [104] Tan R, Bender R. Analysis of Doppler measurements of people[C]. SPIE Proceedings on Targets and Backgrounds: Characterization and Representation, Orlando, FL, USA, 2006: 1-10.
    [105] Thayaparan T, Lampropoulos G. A new approach in time-frequency analysis with applications to experimental high range resolution radar data[R]. Ottawa: , 2003.
    [106] Thayaparan T, Lampropoulos G, Wong S K. Distortion in the inverse synthetic aperture radar (ISAR) images of a target with time-varying perturbed motion[J]. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4): 221-227.
    [107] Thayaparan T, Lampropoulos G, Wong S K. Applications of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data[J]. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4): 213-220.
    [108] Thomas G, Flores B C. Time-varying filters for ISAR motion compensation[C]. SPIE Proceedings on Radar Processing Technology and Applications,San Diego, 1998: 174-185.
    [109] Tigrek R F, Van Genderen P. A Golay code based approach to reduction of the PAPR and its consequence for the data throughput[C]. 4th European Radar Conference, Munich, GERMANY, 2007: 146-149.
    [110] Valeau V, Valiere J C, Mellet C. Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[J]. Elsevier Signal Processing. 2004(84): 1147-1165.
    [111] Walker J L. Range Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems. 1980, 16(1): 23-52.
    [112] Wang Q, Xing M, Lu G, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing. 2008, 46(1): 22-30.
    [113] Wong S K, Riseborough E, Duff G. An analysis of ISAR image distortion based on the phase modulation effect[J]. EURASIP Journal on Applied Signal Processing. 2006, 2006(11): 1-16.
    [114] Xing M D. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters. 2004, 1(2): 141-144.
    [115] Xing M D. ISAR echoes coherent processing and imaging[J]. Chinese Journal of Electronics. 2004, 13(2): 187-193.
    [116] Xing M D, Lei J, Bao Z. A method of ISAR ship imaging based on pendulum model[C]. Proceedings of the International Radar Symposium, Berlin, 2005.
    [117] Yau D, Berry P E, Haywood B. Eigenspace-based motion compensation for ISAR target imaging[J]. EURASIP Journal on Applied Signal Processing. 2006, 2006(11): 1-9.
    [118] Yuan Y, Sun J, Mao S. PFA algorithm for airborne spotlight SAR imaging with nonideal motions[J]. IEE Proc.-Radar Sonar Navig. 2002, 149(4): 174-182.
    [119] Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating parts based on the hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing. 2008, 46(1): 291-299.
    [120] Stralka J P. Applications of orthogonal frequency-division multiplexing (OFDM) to radar[D]. Baltimore, Maryland: Johns Hopkins University, 2008.
    [121]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社, 2003.
    [122] Davis J A, Jedwab J. Peak-to-Mean Power Control in OFDM,Golay Complementary Sequences and Reed—Muller Codes[J]. IEEE Transactions on Information Theory. 1999, 45(7): 2397-2417.
    [123] Richards M A. Fundamentals of Radar Signal Processing[M]. American: The McGraw-Hill Companies,Inc, 2008.
    [124] Newman D J. An L1 extremal problem for polynomials[J]. Proc. Amer. Math. Soc. 1965: 1287-1290.
    [125] Schroeder M R. Systhesis of low-peak-factor signals and binary sequences with low autocorrelation[J]. IEEE Trans. Information Theory. 1970: 85-89.
    [126] Narahashi S, Nojima T. New phasing scheme of N-multiple carriers for reducing peak-to-average power ratio[J]. Electron Letter. 1994, 30(17): 1382-1383.
    [127] Skolnik Merrill I.雷达系统导论(第三版)[Z].北京:电子工业出版社, 2006: 264-265.
    [128]胡爱明,胡可欣.相位编码信号在雷达中的应用[J].舰船电子对抗. 2007, 30(5): 66-68.
    [129] Kretschmer F F, Lin F C. Huffman-Coded Pulse Compression Waveforms[R]. Washington, D. C.: Naval Research Laboratory, 1985.
    [130] Hughes P K. High resolution radar detection strategy[J]. IEEE Trans on AES. 1983, 19(5): 663-667.
    [131]徐仲.范德蒙矩阵类的快速算法[M].西安:西北工业大学出版社, 1997.
    [132] Tom V T, Quatieri T F, Hayes M H, et al. Convergence of Iterative Nonexpansive Signal Reconstruction Algorithms[J]. IEEE Transactions on Acoustics, Speech and Signal Processing. 1981, 29(5): 1052-1058.
    [133] Vannicola V C, Hale T B, Wicks M C, et al. Ambiguity Function Analysis for the Chirp Diverse Waveform[C]. 2000: 666-671.
    [134] Gill G S. Step frequency high PRF waveform design[R]. California: Naval Postgraduate School Monterey, 1996.
    [135] Gill G S. Step frequency waveform design and processing for detection of moving target in clutter[C]. IEEE International Radar Conference, 1996: 573-578.
    [136] Karl G. Spatially distributed target detection in non-gaussian clutter[J]. IEEE Trans on AES. 1999, 35(3): 926-934.
    [137] Gerlach K, Steiner M, Lin F C. Detection of a spatially distributed target in white noise[J]. IEEE Signal Processing Letters. 1997, 4(7): 198-200.
    [138]孙文峰,何松华,郭桂蓉.自适应距离单元积累检测法及其应用[J].电子学报. 1999, 27(2): 111-123.
    [139]赵建宏.低空目标探测及宽带雷达信号检测研究[D].成都:电子科技大学, 2008.
    [140] Mohseni R, Sheikhi A, Masnadi-Shirazi M A. Compression of multicarrier phase-coded radar signals based on discrete fourier transform (DFT)[J]. Progress In Electromagnetics Research. 2008, 5: 93-117.
    [141]龙腾,李眈,吴琼之.频率步进雷达参数设计与目标抽取算法[J].系统工程与电子技术. 2001, 23(6): 26-31.
    [142]蒋增荣,曾泳泓,余品能.快速算法[M].长沙:国防科技大学出版社, 1998.
    [143] Skolnik M I. Introduction to radar system(Second edition)[M]. New York: McGraw-Hill, 1983.
    [144]黎海涛,徐继麟.高分辨雷达目标检测研究[J].仪器仪表学报. 2001, 22(4): 397-399.
    [145]何松华,郭桂蓉. FMCW毫米波雷达高分辨率目标距离像及其处理[J].系统工程与电子技术. 1991, 13(10): 33-38.
    [146]杨建宇,李俊生.高分辨雷达目标的随机参量脉冲串检测方法[J].电子学报. 2004, 32(6): 1044-1046.
    [147]黎海涛,徐继麟.基于广义似然比的高分辨率雷达目标检测[J].系统工程与电子技术. 2000, 22(11): 5-13.
    [148]陈阿磊,马晓岩.一种高分辨率雷达目标检测方法[J].空军雷达学院学报. 2006, 20(2): 105-110.
    [149] Albersheim W J. Closed-Form Approximation to Robertson's Detection Characteristics[J]. Proceedings of IEEE. 1981, 69(7): 839.
    [150]杜兰.雷达高分辨距离像目标识别方法研究[D].西安:西安电子科技大学, 2007.
    [151]夏宇垠,冯大政,李涛.高分辨距离像数据的检测新方法[J].西安电子科技大学学报(自然科学版). 2010, 37(2): 260-266.
    [152] Wang G Y, Xia X G, Chen V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Trans on Image Process. 2001, 10(3): 436-447.
    [153]袁莉.基于高分辨距离像的雷达目标识别方法研究[D].西安:西安电子科技大学, 2007.
    [154] Ian G C, Frank H W. Digital Processing of Synthetic Aperture Radar Data[M]. USA: ARTECH HOUSE, 2005.
    [155]陆林根.逆合成孔径(ISAR)雷达目标检测方法[J].电子学报. 2000, 28(3): 29-31.
    [156] Farina A. Detection with high resolution radar:Great promise big challenge[J]. Microwave Journal. 1999, 23(5): 263.
    [157] van Genderen P. Assessment of the unambiguous radial velocity by using multiple frequencies[C]. RADAR2004-International Conference on Radar Systems, Toulouse, France, 2004.
    [158] Tigrek R F, De Heij W J A, Van Genderen P. Solving doppler ambiguity by doppler sensitive pulse compression using multi-carrier waveform[C]. 2008 5thEuropean Radar Conference Proceedings, EuRAD 2008, Amsterdam, Netherlands, 2008: 72-75.
    [159]王国玉.电子系统建模仿真与评估[M].长沙:国防科技大学出版社, 1999.
    [160]张伟,孙厚军.高重频脉冲多普勒雷达参数设计与解距离模糊解析法[J].弹箭与制导学报. 2005, 25(2).
    [161]莫里斯G. V.机载脉冲多普勒雷达[Z].航空工业出版社, 1990.
    [162]曹宇飞,屈晓光,黄培康.基于keystone变换的宽带雷达精确测速[J].系统工程与电子技术. 2009, 31(1).
    [163]王珊.宽带雷达运动目标检测方法研究[D]. 2009.
    [164]秦国栋,陈伯孝,陈多芳等.多载频MIMO雷达解速度模糊及综合处理方法[J].电子与信息学报. 2009, 31(7): 1636-1700.
    [165] Wang M, Chan A K, Chui C K. Linear Frequency-Modulated Signal Detection Using Radon-Ambiguity Transform[J]. IEEE Transactions on Signal Processing. 1998, 46(3): 571-586.
    [166] Jennison B K. Performance of a Linear Frequency Modulated Signal Detection Algorithm[C]. 2000: 447-450.
    [167] Li X, Liu G, Ni J. Autofocusing of ISAR Images Based on Entropy[J]. IEEE Trans. on Aerosp. Elc.Syst. 1999, 35(4): 1240-1252.
    [168]保铮,刑孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2006.
    [169]文树梁,起袁,何佩坤等.宽带线性调频雷达信号多普勒效应分析与处理[J].系统工程与电子技术. 2005, 27(4): 573-577.
    [170] Deans S R. The Radon Transform and Some of Its Applications[M]. Florida: Krieger Publishing Company, 1993.
    [171] Tsao J, Steinberg B D. Reduction of side lobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Trans. on Antennas and Propagation. 1988, 36(4): 543-556.
    [172] Chen C C, Andrews H C. Target motion induced radar imaging[J]. IEEE Trans. on Aerospace and Electronic Systems. 1980, 16(1): 2-14.
    [173] Picket M J, Chen C C. Principles of inverse synthetic aperture radar ( ISAR ) imaging [C]. EA SCON Record, 1980: 340-345.
    [174] Itoh T, Sueda H, Watanabe Y. Motion compensation for ISAR via centroid tracking[J]. IEEE Trans. on Aerospace and Electronic Systems. 1996, 3(1): 1192-1197.
    [175]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报. 2003, 30(2): 155-159.
    [176] Xing M D, Lan J Q, Bao Z, et al. ISAR echoes coherent processing and imaging[J]. Chinese Journal of Electronics. 2004, 13(2): 187-193.
    [177] Xing M D, Wu R B, Lan J Q, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters. 2004, 1(2): 141-144.
    [178] Chen V C, Li F, Ho S, et al. Micro-doppler effect in radar phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1): 2-21.
    [179]李康乐.雷达目标微动特征提取与估计技术研究[D].长沙:国防科学技术大学, 2010.
    [180]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科学技术大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700