用户名: 密码: 验证码:
基于FTS的微结构表面超精密车削控制系统及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构表面是指具有特定微小拓扑形状的功能表面,由于其独特的光学特性、粘附性、摩擦性、耐腐蚀性等,在民用和军用工业领域中有着广泛的应用。利用快速伺服刀架(FTS)作为精密微位移加工模块来车削加工微结构表面的方法已经成为微结构表面切削加工的一种主流技术。目前,世界发达国家已经研发了基于FTS的微结构表面切削加工的超精密加工设备及其多轴数控系统,并成功的实现了高精度微结构表面的加工。国内对微结构表面切削加工的研究仅仅处于起步阶段,无论是加工设备还是加工质量与国外相比还具有相当大的差距。基于此,本文搭建了可用于复杂微结构表面加工的多轴数控系统,并针对微结构表面切削加工过程中的控制与优化问题进行了相应的研究。
     建立多轴联动数控系统是实现非回转对称微结构表面加工的前提条件。为了满足加工实时性的要求,搭建的数控系统将FTS模块作为一个加工轴来对待,这样就避免了为FTS设置独立的控制模块所带来的其他加工轴与之通讯的问题。由于在非回转对称微结构表面的加工中FTS的输出位移量是由主轴的角度位置θ和X轴方向的刀具位置共同决定的,本文利用UMAC控制器的时基触发控制方法实现FTS进给与主轴转角和X轴进给的精确同步,实现非回转对称微结构表面的加工。建立面向微结构加工的数控系统人机界面,及能够实现典型微结构表面加工的自动编程系统。
     作为FTS的驱动元部件,压电陶瓷本身所固有的迟滞、蠕变等非线性特点不但会降低FTS系统的控制精度,而且可能造成系统失稳。因此,为了减小迟滞非线性的影响,提高FTS的跟踪控制精度,本文利用拓展输入空间法建立FTS迟滞系统的RBF神经网络模型,并在其逆模型基础上实现了FTS的闭环控制。由于理论上神经网络只能对一一映射或多对一映射建模,不能辨识FTS系统的迟滞特性这类多值映射的非线性现象,因此引入迟滞算子的概念,将迟滞算子的输出与系统的输入一起作为神经网络的输入向量,实现迟滞系统由多值映射到单值映射的转换。由于实际加工过程中使用的UMAC控制器将快速伺服刀架(FTS)也作为一个加工轴来对待,因此,利用UMAC控制器底层伺服控制开放性这一特点,编写自定义伺服算法代替控制器内建的PID算法,达到了对FTS精确控制的目的。
     为了提高加工工件的表面精度,误差补偿方法是最为经济有效地方法之一。由于在微结构表面的超精密车削加工过程中,切削深度是随着微结构表面的轮廓不断变化的,不同于普通的平面切削加工。因此,针对微结构表面切削加工的特点,我们提出了基于最小二乘支持向量机(LS-SVM)的误差补偿方法。通过分析在不同加工参数下得到的微结构表面误差轮廓,利用LS-SVM在小样本空间下的回归功能建立微结构表面切削加工过程的误差模型,并利用FTS作为误差补偿机构用以补偿在微结构表面切削过程中各种系统误差因素对加工表面轮廓精度的影响。通过回转对称正弦波微结构表面的误差补偿加工实验来证明该误差补偿方法的有效性。
     应用搭建的多轴联动控制系统进行了相应的加工实验研究,成功实现了五波瓣微结构表面、正弦网格微结构表面等非回转对称微结构表面的车削加工。利用二维离散Fourier变换(2D-DFT)对已加工的正弦网格表面进行评价,分析了其表面误差频率成分及成因,并提出了相应的改进策略。
Micro-structured surfaces which have particular micro-topological structures are widely used in military and civilian industries applications because of their special properties, such as optical, conglutinative, frictional characteristics. Precision diamond turning based on a fast tool servo as a micro-displacement module is a very popular micro-structured surface manufacturing technology. Nowadays, some developed countries have successfully fabricated precision micro-structured surfaces applying their precision equipment and numerical control multi-axis systems. However, we are on our first stage of researching the diamond turning of micro-structured surfaces, and there is still a large gap between our country and developed countries in the research of manufacturing equipment and fabricating quality. Based on this, a CNC system for machining of complex micro-structured surface is established and some relevant works of control and optimization during the process of micro-structured turning have been studied in this thesis.
     Multi-axis numerical control system is a precondition for obtaining non-symmetric micro-structured surfaces. In order to satisfy the real-time requirement, the fast tool servo system is taken as a universal machining axis so as to avoid the communication problems between the FTS and other machining axis caused by establishing a dependent control module for FTS. For non-symmetric micro-structured surface turning, the displacement of FTS is determined by the angle position of the spindle and the position of X-slide. In order to generate free form micro-structured surfaces, the displacement of FTS has to synchronize with the rotation of the spindle and the movement of the X-slide. By applying the UMAC’s time-base trigger control method, the synchronization has been achieved and the non-symmetric micro-structured surfaces have been successfully fabricated. The numerical control system suited for the complex micro-structured surfaces turning and the auto programming system are also developed.
     Piezoelectric actuator is used as universal driving base of the FTS because of its high resolution and high stiffness. However, piezoelectric actuator exhibits hysteresis in their response to an applied electric field, which not only considerably degrades the dynamic performance of the system but also leads to inaccuracy of the FTS system. A hysteresis model using RBF neural networks of FTS is established based on expanded input space method, and closed loop control of FTS is applied using corresponding inverse model. However, it is known that neural networks can only be available for the approximation of the continuous systems with one-to-one or multiple-to-one mappings. It is unable to use the neural networks to directly identify the model of systems with multi-valued mapping such as FTS hysteresis. In this paper, a novel hysteresis operator is proposed to construct an expanded input space so as to transform the multi-valued mapping into a one-to-one mapping which enables neural networks to approximate the behavior of hysteresis of FTS. In order to achieve better tracking performance of FTS, which is treated as a universal machining axis, user defined servo algorithm is programmed to take the place of PID algorithm embedded in UMAC controller.
     Error compensation could be the one of the most effective and economic strategies to improve the quality of machined micro-structured surfaces. Error compensation method applying the least square support vector machine (LS-SVM) is proposed according to the particularity of micro-structured surfaces turning with varing depth of cut which is quite different from general face cutting. In order to reduce the influence of systematic error factors to the contour accuracy, a least square support vector regression model of micro-structured surfaces turning errors is established by analysing the contour errors of micro-structured surfaces machined with different cutting parameters. The compensation experiment has been excuted and indicated the effectiveness of the proposed compensation method.
     The machinging experiments were carried out with the established multi-axis numerical control system and Non-rotation symmetric surface structures—five bode and sinusoidal grid microstructured surfaces were successfully manufactured by the designed machining system. An evaluation technique based on the two-dimensional discrete Fourier transform (2D-DFT) of the sinusoidal grid interference microscope images was developed to evaluate the fabricated micro-structured surfaces effectively. According to the frequency components of the spectrum obtained by the 2D-DFT of the image, error sources were analysed and corresponding amendment strategies were proposed.
引文
[1]王仕璠,朱自强.现代光学原理[M].成都:电子科技大学出版社,1998:2-12.
    [2] Wech M, Fischer S. Manufacturing of Microstructures Surfaces Using Ultraprecision Turning, Milling and Shaping[C]. Proceeding of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Germany :Bremen,1999:420-423.
    [3] Steve S. Large Area Microstructured Optic Applications[R/OL]. http://www. reflexite.com/tl_files/EnergyUSA/papers/Large-Area-Microstructured-Optic-Applications_Scott_2004.pdf.
    [4] Ying H, Ran L, Jianjun L, et al. Design and Fabrication of Negative Microlens Array[J]. Optics & Laser Technology,2008,2(10):1016.
    [5] Wech M, Fischer S. Manufacturing of Microstructures Surfaces Using Ultraprecision Turning, Milling and Shaping[C]. Proceeding of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Germany:Bremen,1999:420-423.
    [6] Sandoz P, Trolard B, Marsaut D, Gharbi T. Micro-structured Surface-element for High-accuracy Position Measurement by Vision and Phase-Measurement[C]. Proceeding of the Society of Photo-Optical Instrument Engineers,2004,5622:606-610.
    [7] Asoh H, Oide A, Ono S. Formation of Microstructured Silicon Surfaces by Electrochemical Etching Using Colloidal Crystal as Mask[J]. Electrochemistry Communications,2006,8:1817-1820.
    [8]李荣彬,杜雪,张志辉.自由曲面光学设计与先进制造技术[M].香港:香港理工大学出版社,2005:93-98.
    [9] Raymond B J, Mark E A. Applications of Microlens-conditioned Laser Diode Arrays[C]. SPIE,1995,2383:283-297.
    [10]孔令彬,易新建,申毕红.微透镜及其应用简介[J].红外技术,2002,24(2):18-21.
    [11] Sotgiu G, Schiirone L. Microstructured Silicon Surfaces for Field Emission Devices[J]. Applied Surface Science,2005,240:424-431.
    [12]杨智,戴一帆,张沛.折衍混合在长焦物镜中的应用研究[J].激光技术,2007,31(2):206-208.
    [13] Klammt S, Muller H, Nayer A. Advanced Daylighting by Micro Structured Components[R/OL]. http://www.reflexite.com/energy/us/en/papers.
    [14]陈松海,周晓东.浅析美国炮兵新概念武器系统[J].国防科技,2006,2:29 -33.
    [15]苑立伟,杨建军,刘海平.国外低轨道卫星综述[J].航天返回与遥感,200,25(4):54-59.
    [16] Bryant K, Cassin R, Chaloux L, et al. Freeform Cubic Phase Plate[R/OL]. http://www.tlatla.net/Res11/4/images/PDFs/Freefrom-%20Cubic%20Phase% 20Plate.pdf.
    [17] Stokes M. Evolving Aerospace Trends in the Asia-Pacific Region. http:// www.project2049.net/documents/aerospace_trends_asia_pacific_region_stokes_easton.pdf.
    [18] Gao W, Djiama S, Kiyono S. A Dual-mode Surface Encoder for Position Measurement[J]. Sensors and ActuatorsA,2005,117:95-102.
    [19]肖永鹏,任涛.二元光学在凸非球面零件检测中的应用[J].东北师大学报(自然科学版),2007,39(3):131-133.
    [20]刘博,李松.二元光学元件在星载激光测高仪中的应用[J].光电子与激光,2003,14(1):102-104.
    [21] Kasinski J J, Burnham R L. Near-diffraction-limited Laserbeam Shaping with Diamond-turned Aspheric Optics[J]. Opt Letter,1997,22(14):1062-1064.
    [22]张羽,杨坤涛,杨长城.二元光学元件的制作技术与进展[J].光学仪器,2005,27(2):80-85.
    [23] Kim S M, Kim D M, Kang S N. Replication of Micro-optical Components by Ultraviolet-molding Process[J]. Journal of Microlithography Microfabrication and Microsystems,2003,2(4):356-359.
    [24] Morgan B, Christopher W M, Ghodssi R. Compensated Aspect Ratio-dependent Etching (CARDE) using Gray-scale Technology[J]. Microelectronic Engineering,2005,77(1):85-94.
    [25] Moon S D, Kang S N, Bu J U. Fabrication of Polymeric Microlens of Hemispherical Shape using Micromolding. Optical Engineering,2002,41(9):2267-2270.
    [26] Dong X C, Du C L, Wang C T, et al. Mask-shift Filtering for Forming Microstructures with Irregular Profile[J]. Applied Physics Letters,2006,89:2611.
    [27]张新宇,陈胜斌,季安等.采用单步光刻和湿法腐蚀工艺制作高性能衍射微透镜[J].半导体学报,2007,10(10):1625-1629.
    [28]任智斌,朱丽思,曾皓.微透镜阵列的光刻胶热熔制作技术[J].长春理工大学学报,2006,29(4):12-15.
    [29]任智斌,姜会林,付跃刚.微柱透镜阵列的全息-光刻胶热熔制作技术[J].微细加工技术,2006,8:17-21.
    [30] Nadeem H R, Philp T R, Malecolm C G. New Developments and Applications in the Production of 3D Micro-structures by Laser Micro-machining[C]. SPIE,1999,3670:389-496.
    [31] Davies M A, Evans C J, Patterson S R, et al. Application of Precision Diamond Machining to the Manufacture of Micro-photonics Components[C]. Proc. of SPIE. Bellingham,2003,5183:94-108.
    [32] Brinksmeier E. Preuss W, Gessenharter A. Manufacturing of Calibration Standard by Diamond Machining[C]. Proc. Of 2nd Euspen International Conference. Italy :Turin,2001:680-683.
    [33] Takeuchi Y, Maeda S, Kawai T, Sawada K. Manufacture of Multiple-focus Micro Fresnel Lenses by Means of Nonrotational Diamond Grooving[J]. CIRP Annals-Manufacturing Technology,2002,51(1):343-346.
    [34] Keene. Nanotech 350FG Three-axis Freeform Generator[R/OL]. http:// www.nanotechsys.com.
    [35]李荣彬,张志辉,杜雪,高栋,王素娟.微结构光学元件快速伺服刀架加工技术研究[J].纳米技术与精密工程,2005,3(3):216-221.
    [36] To S, Kwok T C, Cheng C F, Lee W B. Study of Ultra-precision Diamond Turning of a Microlens Array with a Fast Tool Servo System[C]. Proc. of SPIE. 2006,6149:61490S-1-61490S-6.
    [37]谢军,黄燕华,吴卫东,唐永建.单点金刚石切削技术在ICF靶制备中的应用[J].原子能科学技术,2005,39(3):274-277.
    [38]杨元华.基于FTS的微结构功能表面超精密切削加工关键技术[D].哈尔滨:哈尔滨工业大学,2007.
    [39] Wei G, Araki T, Kiyono S, Okazaki Y, Yamanaka M. Precision Nano-fabrication and Evaluation of a Large Area Sinusoidal Grid Surface for a Surface Encoder[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2003,27(3):289-298.
    [40] Matthew B J, Robin H L. Fabrication and Metrology of Micro-scale Sinusiodal Surfaces in Polymer Workpiece Materials[C]. Proc. of ASPE. Orlando,2004,34:1-6.
    [41] Stefan R, James C F. Design and Testing of a Long-range, Precision Fast ToolServo System for Diamond Turning[J]. Precision Engineering,2009,33:18-25.
    [42] Tohme Y, Murray R. Principles and Applications of the Slow Slide Servo. Moore Precision Tools. http://www.nanotechsys.com/images/PDFs.
    [43]杨辉.光学复杂曲面的先进制造技术[C]. 2007军工精密与特种加工技术交流会文集,2007:67-76.
    [44] Yan J W, Zhang Z Y, Kuriyagawa T, et al. Fabricating Micro-structured Surface by Using Single-crystalline Diamond Endmill[J]. International Journal of Advanced Manufacture Technology,2010,10:2695-2703.
    [45]李荣彬,张志辉,杜雪,孔令豹,蒋金波.自由曲面光学元件的设计、加工及面形测量的集成制造技术[J].机械工程学报,2010,46(11):137-147.
    [46]李荣彬,张志辉,杜雪,孔令豹,蒋金波.自由曲面光学的超精密加工技术及其应用[J].红外与激光工程,2010,39(1):110-117.
    [47] Fang F Z, Zhang X D. Cylindrical Coordinate Machining of Optical Freeform Surfaces[J]. Optics Express,2008:16(10):7323-7329.
    [48]刘丽萍,王涌天,李荣刚.制作在非球面基底上的红外衍射光学元件[J].红外与毫米波学报,2004,4:308-312.
    [49] Chapman G. Ultra-Precision Machining Systems: an Enabling Technology for Perfect Surfaces[R/OL]. http://www.nanotechsys.com/ wp-content/uploads/file /PDFs/UltraPrecisionMachingSystem.PDF.
    [50] http://www.precitech.com/2010_Precitech_FTS.html.
    [51] Jin G F, Lee W B, Cheung C F, et al. Machinability in Precision Grinding of Aspheric Optical Lens with Diamond Wheel[J]. Key Engineering Materials,2007,364:1162-1167.
    [52] Yamamoto Y J, Suzuki H, Okino T, et al. Ultra Precision Grinding of Micro Aspherical Surface[R/OL]. http://www.aspe.net/publications/Annual_2004/ POSTERS/5PROC/1GRIND/1658.PDF.
    [53]罗松保,张建明.非球面曲面光学零件超精密加工装备与技术[J].光学精密工程,2002,11(1):75-77.
    [54]牛景丽,陈东海.现代超精密加工机床的发展及对策[J].机床与液压,2010,38(2):94-97.
    [55] Jiles D C, Latherton D. Ferromagnetic Hysteresis[J]. IEEE Trans. Magnetics,1983,19(5):2183-2185.
    [56] Goldfarb M, Celanovic N. Modeling Piezoelectric Stack Actuators for Control of Micromanipulation[J]. IEEE control system magazine,1997,17(3):69-79.
    [57] Tan X B, Baras J S. Modeling and Control of Hysteresis in Magetostrictive Actuator[J]. Automatica,2004,40:1469-1480.
    [58] Ge P, Musa J. Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators[J]. Precision Engineering,1997,20(2):99-111.
    [59] Wei J D, Sun C T. Constructing Hysteretic Memory in Neural Networks[J]. IEEE Trans. Systems, Man and Cybernetics Part B: Cybernetics,2000,30(4):601-609.
    [60] Adly A A, Abd-El-Hafiz S K. Using Neural Networks in the Identification of Preisach-type Hysteresis Models[J]. IEEE Trans. Magnetics,1998,34(3):629-635.
    [61] Claudio S, Ciro V. Magnetic Hysteresis Modeling via Feed-forward Neural Networks[J]. IEEE Trans. Magnetics,1998,34(3):623-628.
    [62] Zhao X L, Tan Y H. Neural Network Based Identification of Preisach-type Hysteresis in Piezoelectric Actuator Using Hysteresis Operator[J]. Sensor and Actuators, A: Physical,2006,126(2):306-311.
    [63]刘向东.基于混沌神经网络的压电陶瓷迟滞模型[J].北京理工大学学报,2006,2:135-138.
    [64]党选举,谭永红.基于wiener模型的压电陶瓷神经网络动态迟滞模型的研究[J].系统仿真学报,2005,11:2701-2703.
    [65]党选举,谭永红.基于灰色理论的压电陶瓷迟滞特性的神经网络建模研究[J].仪器仪表学报,2005,9:913-916.
    [66]曲东升,孙立宁等.压电陶瓷致动器自适应逆控制方法的研究[J].压电与声光,2002,5:354-357.
    [67] Ge P, Jouaneh M. Modeling Hysteresis in Piezoceramic Actuators[J]. Precision Engineering,1995,17:211-221.
    [68] Jung S B, Kim S W. Improvement of Scanning Accuracy of PZT Piezoelectric Actuators by Feed-forward Model-reference Control[J]. Precision Engineering,1994,16(1):49-55.
    [69] Main J A, Ephrahim G. Piezoelectric Stack Actuator and Control System Design: Strategies and Pitfalls[J]. Journal of Guidance, Control and Dynamics,1997,20(3):479-485.
    [70] Rasmussen J D, Tsao T C, Hanson R D. Piezoelectric Tool Servo System for Variable Depth of Cut Machining[J]. Precision Machining: Technology and Machine Development and Improvement,1992,58:119-130.
    [71] Ge P, Jouaneh M. Modeling Hysteresis in Piezoceramic Actuators[J]. Precision Engineering,1995,17:211-221.
    [72] Crudele M, Thomas R. Implementation of a Fast Tool Servo with Repetitive Control for Diamond Turning[J]. Machatronics,2003,3(13):243-257.
    [73] Hwang C L, Jan C, Chen Y H. Piezo-mechanics Using Intelligent Variable-structure Control[J]. IEEE Trans. Industrial Electronics,2001,48(1):47-59.
    [74] Heung Ch G, Hyyun O J. Repetitive Tracking Control of a Coarse-fine Actuator[C]. Proceeding of the 1999 IEEE International Conference on Advanced Intelligent Mechatronics. USA :Atlanta,1999:335-339.
    [75]傅星,胡小唐.模糊控制在压电陶瓷控制中的应用[J].压电与声光,1999,21(3): 200-202.
    [76]孙立宁,孙绍云,曲东升.基于PZT的微驱动定位控制方法的研究[J].压电与声光,2003,25(5):436-438.
    [77]李小力.数控机床综合几何误差的建模及补偿研究[D].武汉:华中科技大学,2006.
    [78] Gan S W, Lim H S, Rahman M, et al. A Fine Tool Servo System for Global Position Error Compensation for a Miniature Ultra-precision Lathe[J]. Machine Tools and Manufacture,2007,47:1302-1310.
    [79] Gao W, Tano M, Takeshi A, Satoshi K. Measurement and Compensation of Error Motions of a Diamond Turning Machine[J]. Precision Engineering,2007,31:310-316.
    [80] Evans C J, Hocken R J, Estler W T. Self-calibration: Reversal, Redundancy, Error Seperation and“Absolute Testing”[J]. Annals of the CIRP,1996,45:617.
    [81] Donaldson R R. A Simple Method for Separating Spindle Error from Test Ball Roundness Error[J]. Annals of the CIRP,1972,21:125.
    [82] Uda Y, Kohno T, Yazama T. In-process Measurement and Workpiece-referred Form Accuracy Control System: Application to Cylindrical Turning Using an Ordinary Lathe[J]. Precision Engineering,1996,18:50.
    [83] Kim J D, Kimk D S. Waviness Compensation of Precision Machining by Piezo-electric Micro Cutting Devices[J]. International Journal of Machine Tool and Manufacture,1998,38:1305.
    [84] Kiyono S, Gao W. Profile Measurement of Machined Surface With a New Differential Method[J]. Precision Engineering,1994,16:212-215.
    [85] Gao W, Kiyono S. On-machine Profile Measurement of Machined Surface Using the Combined Three-point Method[J]. JSME International Journal,1997,C40:253-256.
    [86] Delta Tau Data Systems Inc. TURBO PMAC USER MANUL[M]. Delta Tau Data Systems Inc,2008:3-40.
    [87]张珂.基于PMAC-PC下高速磨削实验及其关键技术研究[D].沈阳:东北大学,2007.
    [88]栾劲松,张虎,董湘怀. PMAC的时基触发原理与应用[J].机床与液压,2004,3:86-88.
    [89] Delta Tau Data Systems Inc. PCOMM32PRO SOFTWARE REFERENCE MANUL[M]. Delta Tau Data Systems Inc,2003:1-7.
    [90] Wei J D, Sun C T. Constructing Hysteresis Memoety in Neural Networks[J]. IEEE Trans. Systems, Man and Cybernetics-partB: Cybernetics,2000,30(4):601-609.
    [91] Cirrincione M, Miceli R, Galluzzo G R, Trapanese M. Preisach Function Identification by Neural Networks[J]. IEEE Trans. On Magnetics,2002,38(5):2421-2423.
    [92] Cincotti S, Marchesi M, Serri A. A Neural Network Model of Parametric Nonlinear Hysteretic Inductors[J]. IEEE Trans. On Magnetics,1998,34(5):3040-3043.
    [93] Sheng Chen, Labib K, Kang R et al. Adaptive Radial Basis Function Detector for Beamforming[C]. IEEE International Conference on Communications,2007:21-26.
    [94] Chen S, Hong X, Harrisa C J et al. Fully Complex-Valued Radial Basis Function Networks: Orthogonal Least Squares Regression and Classification[J]. Neurocomputing,2007,12:1-13.
    [95] Park J, Wsandberg J. Universal Approximation Using Radial Basis Functions Network[J]. Neural Computation,1991,3:246-257.
    [96]韩立群.人工神经网络[M].北京:北京邮电大学出版社,2006:127-139.
    [97]李翔.从复杂到有序-神经网络智能控制理论新进展[M].上海:上海交通大学出版社,2006:8-9.
    [98]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005:31-35.
    [99] Zhao X L, Tan Y H. Neural Network Based Identification of Preisach-type Hysteresis in Piezoelectric Actuator Using Hysteretic Operator[J]. Sensors&Actuators A:Physics,2006,126:306-311.
    [100]Webb G, Lagoudas D. Hysteresis Modeling of SMA Actuator for Control Application[J]. Journal of Intelligent Material Systems and Structures,1998,9(3):432-448.
    [101]Hu H, Mrad R B. A Discrete-time Compensation Algorithm for Hyteresis in Piezoceramic Actuators[J]. Mechanical Systems and Signal Processing,2004,18(1):169-185.
    [102]王清华,韩秋实,孙志永.基TurboPMAC数控系统的PID在线调节[J].微计算机信息,2007,23(6):226-228.
    [103]Delta Tau Data System Inc. Open Servo User’s Manual[M]. USA: Delta Tau Data System Inc,2001:1-2.
    [104]牛志刚,张建民.基于Turbo PMAC的数控系统自定义伺服算法的嵌入和实现[J].新技术新工艺,2005,7:11-13.
    [105]Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Trans. on Neural Networks,1999,10(5):988-999.
    [106]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag,1999:4-10.
    [107]Vapnik V N.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000:12-14.
    [108]许建华,张学工.统计学习理论[M].北京:电子工业出版社,2004:9-10.
    [109]Hastie T, Tibshirani R. Discriminant Adaptive Nearest-neighbor Classification[J]. IEEE Trans. on Pattern Recognition and Machine Intelligence,1996,243(18):607-616.
    [110]袁玉萍,陈庆华,汪洪艳.关于支持向量机VC维问题证明的研究[J].农业与技术,2006,26(4):210-211.
    [111]董本清.支持向量机在工程领域的应用研究[D].长沙:湖南大学,2007:14-16.
    [112]郭新辰.最小二乘支持向量机算法及应用研究[D].长春:吉林大学,2008.
    [113]宋夫华.支持向量机逆系统方法及其应用研究[D].杭州:浙江大学,2006.
    [114]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [115]Buiges C J C. Atutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):121-176.
    [116]Boser B, Guyon I, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers[C]. Fifth Annual Workshop on Computational Learning Theory. Pittsburgh:ACM Press,1992.
    [117]Scholkopf B, Burges C, Vapnik V N. Extracting Support Data for a Given Task[C]. Proceedings of First International Conference on Knowledge Discovery and DataMining, AAAI Press,1995:262-267.
    [118]罗公亮.从神经网络到支撑矢量机[J].冶金自动化,2001,5:1-5.
    [119]孙德山.支持向量机分类与回归方法研究[D].长沙:中南大学,2004.
    [120]Suykens J A K, Vandewalle J. Least Squares Support Vector MachineClassifiers[J]. Neural Processing Letter,1999,9:293-300.
    [121]Suykens J A K, Brabanter J D, Lukas L, et al. Weighted Least Square Support Vector Machines: Robustness and Sparse Approximation[J]. Neurocomputing,2002,48(1):85-105.
    [122]Pelckmans K, Suykens J A K, T. Gestel T V. LS-SVMlab Toolbox User’s Guide[R/OL]. http://www.esat.kuleuven.ac.be/sista/lssvmlab.
    [123]相征,张太镒,孙建成.基于最小二乘支持向量机的非线性系统建模[J].系统仿真学报,2006,19(9):2684-2687.
    [124]王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报,2005,35(5):859-862.
    [125]万敏,苏毅,张卫等.光学器件面形误差对光束质量的影响[J].光学快报, 2002,22(4):495-500.
    [126]高栋,孔令豹,姚英学.光学自由曲面面形误差评定算法研究[J].哈尔滨工业大学学报,2006,38(10):1630-1632.
    [127]李圣怡,戴一帆.精密和超精密机床建模技术[M].长沙:国防科技大学出版, 2007:240-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700