用户名: 密码: 验证码:
聚酰亚胺中添加磨粒作为新型抛光材料的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着科学技术的迅猛发展,耐高温,高质量的精密机械抛光材料被广泛地研究和使用。磨粒型薄膜的抛光是一种优秀的机械抛光方式,特别是对于镜面材料、陶瓷材料、光学棱镜、硅晶片、特殊金属、CD盘这类硬脆型材料的机械抛光。目前对于磨粒型磨片的抛光技术研究较多,但是还没有涉及到有关在聚酰亚胺中添加磨粒作为抛光磨片的研究。
     聚酰亚胺是最有前途的热固性聚合物之一,它具有无毒、耐酸、耐碱、耐腐蚀、耐高温、机械性能好、真空下高的稳定性和抗腐蚀、抗辐射性能强等优秀的性能。基于这些优势,聚酰亚胺已经在汽车、航天器的耐高温零部件、印制电路材料及其它高科技领域得到了广泛的应用。目前,聚酰亚胺及其化合物受到了全世界的广泛关注,开始在摩擦领域扮演着越来越重要的角色。
     本研究的目的是想制备一种新型精密抛光材料,它是在聚酰亚胺中添加磨粒而制成,它可用于金属、玻璃、珠宝、光学镜片以及光纤等的抛光。
     基于上述意图,本实验制备了氧化铝/聚酰亚胺复合抛光薄膜和金刚砂/聚酰亚胺复合抛光薄膜,对这种聚酰亚胺抛光薄膜的制备程序中需要注意的问题做了总结,并且通过红外光谱,扫描电子显微镜,热重分析仪,万能材料试验机对这两种薄膜的性能做了研究。所得结果如下:(1)复合薄膜的红外光谱显示,聚酰亚胺和磨粒的混合是物理混合,二者并没有发生化学反应;(2)从薄膜的表面及侧面的SEM图上看出,这是一种双层成膜型磨片,一层是纯聚酰亚胺,另外一层是磨粒嵌入聚酰亚胺中,且在磨粒层的表面上看到磨粒均匀地分布在聚酰亚胺中;(3)氧化铝/聚酰亚胺薄膜和金刚砂/聚酰亚胺薄膜的拉伸强度均在80 MPa以上,断裂伸长率均在20%以上,这样的力学性能均足以作为抛光薄膜使用;(4)从氧化铝/聚酰亚胺薄膜和金刚砂/聚酰亚胺薄膜的热重分析上看出这种薄膜的耐高温性质很好;(5)从SEM电镜图上看到用薄膜抛光后的铜片的照片,可看出该种抛光薄膜对铜片的抛光效果良好。
With the rapid development of high technology in recent years, the high quality, precision and temperature-resistant mechanical planarization materials tend to be widely used and intensively studied. Polishing with abrasive films is one of the predominant methods for mechanical planarization, especially for hard and brittle materials including glass surface, ceramic components, optical lenses, semiconductor wafers, special metals and computer memory disks etc. Nowadays, more and more studies concentrate on the polishing techniques of abrasives. Whereas, there is little study involving the investigation of polyimide film with abrasive on the tribological properties.
     Polyimide(PI) is a very promising thermally stable polymer which has excellent properties such as innocuity, acid resistance, alkali resistance, cauterization resistance, strong mechanical strength, good heat resistance, high stability in vacuum, anti-radiation and solvent resistance etc. Based on these advantages, PI has been applied to automobile, spaceflight, printed circuits and other high-tech field. Nowadays, PI and its composites attract extensive concern and began to play the leading role in the area of tribological world-wide.
     The target of this work is to prepare a novel exact-material which is made of polyimide and abrasive. This new material can be used in the field of polishing such as metal, glass, jewelry, optical eyeglass, optical fiber etc.
     In this research, Al2O3/PI grinding slice and SiC/PI grinding slice have been prepared. The preparation process of the slice have been studied and their properties have been studied by using FT-IR, SEM, DSC-TGA, tension test. The conclusions obtained are: (1) FT-IR spectra of the grinding slice shows the physical bonds between abrasive and polyimide; (2)the section view of scanning electron microscope (SEM) shows the dual-layer structure of SiC/PI slice (the bottom-layer is a mixture composed of PI and uniformly spread abrasive, and the top-layer is pure PI); (3) mechanical properties test exhibits that the slice has excellent mechanical properties such as tensile strength is above 80 MPa and elongation at break is above 20% for both kinds of slices.(4)TGA data implys that the slice has the good thermal stability.(5)SEM image also shows good the results of a sheet copper surface polished by the slice.
引文
[1]N.A.Androva,M.I.Bessonov,L.A.P.Radakov.Polymers.A New Class of Heat-Resistant Polymers[M]. Leningrad: Nauka. 1968.
    [2]M.I.Bessonov,M.M.Koton,V.V.Kudryavtsev,L.A.Laius.Polyimides.Thermally Stable Polymers[M]. New York: Plenum. 1987.
    [3]K. L. Mittal.Polyimides,Synthesis. Characterization And Applications[M].New York. Plenum.1986.
    [4]E.I.du Pont de Nemous & Co.,Brit.Pat[P].1,098,556.1968.
    [5]Endrey A L.US Pat[P].3,179,630.1965.
    [6]Dine-Hart R A,Wright W W. Preparation and fabrication of aromatic polyimides. J.Appl.Polym.Sci[J].1967,11:609~627.
    [7]Jones J I.Chem Ind[J].1962,1686.
    [8]Numata S,Fujisaki K,Kinjo N. Re-examination of the relationship between packing coefficient and thermal expansion coefficient for aromatic polyimides.Polymer[J].1987,28:2282.
    [9]Chung H,Lee J,Jang W,Shul Y,Han H.J.Polym.Sci,Polym.Phys[J].2000,38:2879.
    [10]Ree M,Park Y-H,Kim K,Kim S I,Cho C K,Park C E. Effect of film formation process on residual stress of poly(p-phenylene biphenyltetracarboximide) in thin films.Polymer[J].1997,38:6333.
    [11]Kochi M,Yokota R,Yuki Iizuka,T,Mita I.J.Polym.Sci.,Polym.Phys[J].1990,28:2463
    [12]Cho K,Lee D,Lee M S,Park C E.Polymer[J].1997,38:1615.
    [13]Hergenrother P M.Trends in Polym.Sci[J].1996,4(4)
    [14]Wilson D.High Perf.Polym[J].1991,3:73
    [15]Irwin R S.US Pat[P].,3,415,728.1968.
    [16]Rudakov A P,Bessonov M I,Koton M M,Florinskii F S.Khim. Volokna[C]. 1966(5):20
    [17]Hara S,Yameda T,Yoshida T.US Pat[P]. 3,829,399.1974.
    [18]Minami M,Taniguchi M.US[P].,3,860,559.1975.
    [19]Yokoyama T,Miradera Y,Shito N,Suzuki H,Wakashima Y.US Pat[P].4,064,389.1977.
    [20]DeBrunner R E.USP[P].3,502,712.1970;CA Pat[P].72.112432.1970.
    [21]Gagliani J,Lee R,Sorathia U A K.US[P]. 4355120.1982.
    [22]Lee K W.US Pat[P]. 4806573.1989,
    [23]Weiser E S,Johnson T F,St Clair T L,Echigo Y,Kaneshiro H,Grimsley B W.High Perf.Polym[J].2000,12:1
    [24]Yamaguchi H,Yamamoto S.EP[P].1 167 427 A1.2002
    [25]Jordan T F.US Pat[P]. 3,413,394. 1968.
    [26]Takekoshi T.J.Polym.Sci.,Polym.Symp[J].1986,74:93.
    [27]Boedeker Plastics,Inc.,Torlon Product Bulletin.
    [28]尾崎彰敏.工业材料[J].1985,33(1):47.
    [29]Buchwalter L P.Polyimides:Fundamentals and Appllication[M].Eds by Ghosh M K,Mittal K L New York:Marcel Dekker,Inc.1996.587.
    [30]Yu J,Ree M,Shin T J,Park Y H,Cai W,Zhou D,Lee K W.Macromol.Chem.Phys[J].2000, 201:491.
    [31]Liang G,Fan J.J.Appl.Polym.,Sci[J].1999,73:1645.
    [32]Wang T-H,Ho S-M,Chen K-M,Hung A.J.Appl.Polym.Sci[J].1993,47:1057.
    [33]Miwa T,Tawata R,Numata S.Polymer[J].1993,34:621.
    [34]Ree M,Park Y H,Shin T J,Nunes T L,Volksen W.Polymer[J].2000,41:2105.
    [35]Jou J-H,Liu C-H,Liu J-M,King J-S.J.Appl.Polym.Sci[J].1993,47:1219.
    [36]Wang T H,Ho S M,Chen K M,Liang S M,Hung A.J.Appl.polym.Sci[J].1994,51:415.
    [37]Lee K W, Kowalczyk S P,Shaw J M,Macromolecules[J].1990,23:2097.
    [38]Yun H K,Cho K,Kim J K,Park C E,Sim S M,Oh S Y,Park J M.Polymer[J].1997,38:827.
    [39]Browm H R,Yang A C M,Russell T P,Volksen W,Kramer E J.Polymer[J].1988,29:1807.
    [40]Kerwin R E,Godrick M R.Polym.Eng.Sci[J].1971,2(5):426.
    [41]Rubner R.Siemens Frosch.-u.Entwickl.-Ber.Bd.,5,Nr.2(1976)
    [42]Rubner R,Bartel W,Bald G.Siemens Forsch.-u.Entwickl.-Ber. Bd.,5,Nr.4(1976)
    [43]Merrem H J,Klug R, Hartner H. in Polyimides:Symth., Chracat.,Appl. (Proc.Rechnol.Conf.Polyimides),1st,1982(pub.1984),2905.
    [44]Kubota S,Meriwaki T,Ando T,Fukami A.J.Appl.polym.Sci[J].1987,33:1763.
    [45]Kubota S,Mouiwaki T,Ando T, Fukami A.J.Macromol.Sci.Chem[J].1987,A24:1497.
    [46]Omote T,Mockizuki H,Koseki K,Yamaoka T.Macromolecules[J].1990,23:4796.
    [47]薛九枝. 液晶显示基础知识(四):介绍作用与液晶的边界条件.现代显示[J],1996,3:52~59.
    [48]赵静安. 铁电及反铁电液晶显示.现在显示[J],1995,(4):4~18.
    [49]Myrvold B O.Liq.Cryst[J].,1991,10:771
    [50]Ando S,Matsuura T,Sasaki S.Polym.J[J].1997,29;69
    [51]Kotov B V,Gordina T A,Voishchev V S,Kolninov O V,Pravednikov A N.Vysolomol.Soyedin[J].1977,19:614
    [52]St Clair A K,St Clair T I.Polym.Mater.Sci.Eng[J].1984,51:251
    [53]Ando S.高分子论文集[C],1994,51:62
    [54]丁孟贤,何大白.聚酰亚胺新型材料[M].北京:科学出版社,1998
    [55]Imai Y.Poly.Prepr.1994,35(1):399
    [56]Gresham W F,Naylor M A.US[P].2731447.1956.
    [57]Serafini T T,Delvigs P,Lightsey G R.J.Appl.Polym.Sci[J].1972,16:905.
    [58]Metzmann F H,Rehahn M,Schmitz L,Ballauff M,Wegner G.Makcomol.Chem[J]. 1992,193:1847.
    [59]Numata S,Fujisaki K,Kinjo N.Polymer[J],1987,28:2282.
    [60]Chung H,Lee J,Jang W,Shul Y,Han H.J.Polym.Sci.,Polym.Phys[J].2000,38:2879.
    [61]Ree M,Park Y-H,Kim K,Kim S I,Cho C K,Park C E,Polymer[J].1997,38:6333.
    [62]Kochi M,Yokota R,Yuki Iizuka T,Mita I.J.Polym.Sci.,Polym.Phys [J].1990, 28:2463.
    [63]Ree M,Shin T J,Park Y-H,Kim S I,Woo S H,Cho C K,Park CE.J.Polym.Sci.,Polym.Phys [J].1998,36:1261.
    [64]荣烈润,面向 21 世纪的超精密加工技术[J],机电一体化,2003 年第 2 期:6~10
    [65]周志斌,肖沙里,周宴,等,现代超精密加工技术的概况及应用[J],现代制造工程,2005(1):121~123.
    [66] 王先逵,精密和超精密加工技术[J],机械工人(冷加工),2000 年第 8 期:3~4.
    [67] 袁哲俊,王先逵主编,袁巨龙等参编,精密和超精密加工技术[M],北京,机械工业出版社,1999.10.
    [68] 袁巨龙,功能陶瓷的超精密加工技术[M],哈尔滨,哈尔滨工业大学出版社,2000.8.
    [69]杨福兴,非球面零件超精密加工技术,航空精密制造技术[J].1997. 33:5.
    [70]杨大伟,陶瓷刀具材料的应用及其发展概况.机械制造[J],1997.6:6~8.
    [71]T. Shirakashi, T. Obikawa. Feasibility of Gentle Mode Machining of Brittle Materials and Its Condition. Journal of Materials Processing Technology[J].2003, 138:522-526.
    [72] Z.W. Zhong. Surface Finish of Precision Machined Advanced Materials.Journal of Materials Processing Technology[J]. 2002, 122: 173-178.
    [73]C. C. A. Chen, L. S. Shu, S. R. Lee. Mechano-Chemical Polishing of Silicon Wafers. Journal of Materials Processing Technology[J]. 2003, 140: 373-378.
    [74]E. Brinksmeier, 0. Riemer, A. Gessenharter. Finishing of Structured Surfaces by Abrasive Polishing. Precision Engineering[J]. 2006, 30: 325-336.
    [75] 王忠志,精密研磨[M],北京,中国计量出版社.1989.59~75.
    [76]H.K.Tonshoff , R.Egger.Fine Grinding Can Replace Lapping for a Superior Finish.Manufacturing Engingeering[J].1998,120(2):52-59.
    [77]Bender M L,Chow Y-L,Chloupek F.J.Am.Chem.Soc[J].,1958,80:5380
    [78]Reynolds R J W,Seddon J D.J.Polym.Sci[J].1968,C23:45
    [79]Nechayev P P,Vygodskii Y S,Zaikov G Ye,Vinogradova S V.Vysokomol.Soedin[J].1976,14:2275
    [80]Bell V L,Stump B L,Gager H.J.Polym.Sci.,Polym.Chem.Ed[J].1976,14:2275
    [81]Harris F W,Hsu S L-C.High Perf.Polym[J].,1989,1:3
    [82]邓俊泳,冯勇建,聚酰亚胺在 MEMS 中的特性研究及应用.微纳电子技术[J],2003.4:30~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700