用户名: 密码: 验证码:
综合测井系统的内核设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地球物理勘探采用炸药震源井中激发时需要钻一定深度的井。井深和炸药的药量是探测各种地壳参数的重要基础数据之一,能否准确地记录炸药下放深度和炸药的药量,将直接影响到对各种测试资料的收集与分析,现行测井方法中广泛采用人工测量的方法。在实际应用中,个别施工人员为追求进度,不顾施工质量,违反操作规程,在施工中弄虚作假,事后报虚假资料的事时有发生,没有办法保证物探井深度测量的准确性,也没法办法准确记录炸药的药量。对炮井深度、位置控制不好,炸药安放的深度及药量不符合要求时,不仅影响勘探结果使施工质量得不到保障,还会带来安全隐患造成重大伤亡事故,无法为野外高质量施工提供可靠保障。
     本课题设计的综合测井仪就是为了克服现有技术的不足,提供一种能自动测量、记录井深、井的地理位置和外部环境,自动检测炸药安放深度、药量、雷管数、雷管编号、炸药编号等信息,自动将现场数据通过GPRS发送到远端监控机,自动将现场数据存储到U盘中的综合测井装置。系统具有参数测量灵活,能自动纠错,操作人员对测量参数无法人为更改的优点。本文重点分析了综合测井系统的硬件设计和驱动程序的编写,测量井深数据采用ICL7135实现;炸药编号数据的读取采用M106BXN非接触IC卡射频读卡模块;现场照片拍摄采用VC313摄像模块;现场中心处理机主要由CPU1、2、3三个核心51单片机组成;U盘数据存储采用CH375实现;现场打印采用WD-AN微型打印机实现;现场液晶显示采用JH-ABV7液晶显示控制板和5寸液晶;驱动的编写主要使用Keil C的平台。
     该综合测井系统现在已经完成了样机设计,并对样机进行现场实验,经现场试验证明该测井系统性能良好。炸药编号数据、井深数据、现场图像数据、现场经纬度数据采集和基于USB的数据存储稳定可靠,现场数据打印和基于GPRS远程数据传输也工作稳定,符合地球物理勘探要求。
Use of dynamite source in geophysical exploration, borehole drilling a certain depth when stimulated wells. Depths and doses of detecting explosives in various formation parameters of one of the important basic data, can accurately record the depth of explosives and explosives decentralization of the drug will have a direct impact on the various test data collection and analysis, existing logging method widely used method of manual measurement. In practice, the pursuit of individual progress of construction workers, regardless of construction quality, violation of operation rules, the construction of fraud, false information after the newspaper when something happens, there is no way to ensure the accuracy of depth measurement object exploration well, also can not approach accurate records of explosives dose. Well depth of the gun, position control is not good, explosives placed in the depth and dose not meet the requirements, not only affect the construction quality of the exploration results to lack of protection, which will create safety hazards cause heavy casualties, unable to field high-quality construction to provide reliable protection.
     A comprehensive logging instrument is designed in the dissertation to overcome the deficiencies of existing technologies, providing a method to automatically measure and record the well depth and location of the external environment; automatically detect the information such as the depth explosives have been placed in, the dose of explosives, number of detonators, detonator number, explosives number, etc; automatically transmit the field data to the distant monitor with GPRS; and automatically save the field data to the flash memory. This system has the advantages such as the flexibility of parameter measurement, the capability of automatically correcting, and the operator can not artificially change the measured parameters. This dissertation focuses on the design of the hardware and driver software of the comprehensive logging system. The well depth measurement is realized by using ICL7135; the reading of explosives number is realized by using M106BXN non-contact IC card RF reader module; the field photographing is realized by using VC313 camera module; the field center processor is composed by three 51 chip microprocessor; the flash memory is realized by using CH375; the field printing is realized by using WD-AN micro printer; the field LCD display is realized by using JH-ABV7 LCD controller and 5-inch LCD flat panel; and the driver software is coded by Keil C development environment.
     The integrated system of surveying well has now completed the prototype design, and the prototype has been deployed for the field experiment, the field experiment results show that the performance of the integrated system is good. The data collection and storage of the integrated system is reliable and stability, such as collect the number of explosives, the depth of well, the field image and the on-site latitude and logitude, storage data based on the USB, the field data print and data transmission based on the GPRS, the integrated system meet the requirements of the geophysical exploration.
引文
[1]刘文静.动态数控双侧井仪的研究.西安理工大学.2000,1:15-17
    [2]李梅.油田井深测试系统的研究.新疆大学.2005,2:65-66
    [3]宋永强.深度信号的鉴相方法.测井技术信息.2004,4:11-13
    [4]梁承名.测井中深度测量的研究.测井科技.2004,1:15
    [5]王天宝.物探井自动测量系统的设计.微计算机信息.2006,7:20-21
    [6]张辛耘.随钻测井的昨天、今天和明天.测井技术.2006,6:487-491
    [7]王晓娟.声电成像测井资料的综合应用.石油天然气学报.2006,3:289-291
    [8]林其伟,冯桂.测井电缆的拉伸校正.江汉石油学院学报.1994,16:37-40
    [9]陈永昌,杨蜀国.可自动校正的电缆注磁仪简介.测井技术.1994,18:276-280
    [10]李昔华,刑宏,严学书.钢丝绳在线测长仪的研制.重庆工商大学学报(自然科学版).2006,23:263-265
    [11]刘铮.非接触式射频IC卡技术应用与研究.湖南大学硕士论文.2002:14-15
    [12]Klaus Finkenzeller.射频识别(RFID)技术.陈大才编译.北京电子工业出版社.2001:5-7
    [13]季颖.非接触式IC卡的研究和设计.中国科学院硕士论文.2002:5-7
    [14]Klaus Finkenzeller. RFID Handbook:Fundamentals and Applications in Contactless Smart Cards and Identification.2003:2-5
    [15]ISO 14443 Identification cards-Contactless integrated circuits cards-Proximity cards. International Organization for Standardization Publication Date.2001: part 1-4
    [16]胡宴如.高频电子线路.高等教育出版社.2004:13-17
    [17]Antenna Circuit Design for RFID Applications.Microchip Technology Inc.2003: 12-14
    [18]RFID Coil Design. Microchip Technology Inc.1998:8-15
    [19]Peter Vizmuller RF. Design Guide system Circuits and Equations. ARTECH HOUSE.1995:125-130
    [20]张敏.关于非接触式IC智能(射频)卡及其读写设备类和技术的研究与应用开发.上海华东磁记录电子公司.2003:4-6
    [21]Roy Want. An introduction to RFID technology. IEEE Transcations.2005,5:25-33
    [22]夏敦柱.非接触式IC卡系统研究与开发.安徽大学硕士论文.2002:23-24
    [23]刘舒祺,牟志刚.RFID系统中的PCB环形天线设计.单片机嵌入式系统应用.2007,1:35-37
    [24]何立民.MCS-51系列单片机应用系统设计系统配置与接口技术.北京航空航天大学出版社.1992:80-81
    [25]王福瑞.单片微机测控系统设计大全.北京航空航天大学出版社.1998:263-267
    [26]电子电路手册.高等教育出版社.1991:200-202
    [27]李朝青.PC机与单片机&DSP数据通信技术选编.北京航空航天大学出版社.2004:202-203
    [28]马忠梅.单片机的C语言应用程序设计.北京航空航天大学出版.1998:120-122
    [29]Jan T Bosiers, Inge M. Peters, CeesDraijer, etal. Technical challenges and recent progress in CCD imagers. Nuclear Instruments and Methods in Physics Research Section A.2006,1:148-156
    [30]冈萨雷斯.数字图像处理.电子工业出版社.2007:295-300
    [31]Walter Oney. Programming the Microsoft Windows Driver Model. Microsoftess. 2002:10-12
    [32]Penny Orwick, Guy Smith. Developing Drivers with the Windows Driver Foundation. microsoft Press.2007:20-23
    [33]赵春江.C#数字图像处理算法典型实例.人民邮电出版社.2009:25-28
    [34]Objectbased Texture Coding of Moving Video in MPEG 4. Circuits and Systems for Video Technology.1999,1:5-8
    [35]T Stockhammer, T Wiegand, T Oelbaum. Video Coding and Tranport Layer Techniques for H. 264/AV-based Transmission over Packet-lossy Networks. Image Processing.2003,9:481-484
    [36]Athanassios Skodras, Charilaos Christopoulos, TouradjEbrahimi. The JPEG 2000 still image compression standard. IEEE Sigmal Processing Magazine.2001,9:36-43
    [37]王新年.数字图像压缩技术实用教程.机械工业出版社.2009:62-63
    [38]Tsung-Han Tsai and Kuei-Lan Lin, A high speed and low complexity integrated framework for JPEG2000. Communication Systems.2002. ICCS 2002. The 8th International Conferenceon.2002,11:493-496
    [39]Chris Cant. Windows WDM设备驱动程序开发指南.机械工业出版社,2000:36-42
    [40]孙晓云.接口与通信技术原理与应用.中国电力出版社.2007:200-205
    [41]美国迈舍尔公司.USB系统体系.中国电力出版社.2003:20-23
    [42]Art Baker. Windows 2000设备驱动程序设计指南第二版.机械工业出版社.2001:130-135
    [43]Walter Oney. Programming the Windows Driver Model(2nd). Microsoft Press. 2003:160-168
    [44]薛园园.USB应用开发实例详解.人民邮电出版社.2009:85-88
    [45]胡晓军.USB接口开发技术.西安电子科技大学出版社.2005:100-103
    [46]Diffie W, Heliman M. New Directions in Cryptography. IEEE Transactionson Information Theory.2002:644-654
    [47]南京沁恒.CH375 Datasheet.2007:2-6
    [48]philips. ISP1581 Universal SefiM Bus 2.0 high-speed interface device. Philips Electronics N.V.2000
    [49]许永和.USB外围设备设计与应用.中国电力出版社.2008:35-36
    [50]USB Organization. USB Specification Revision 2.0. http//www.usb.org
    [51]郎峥,李晓峰.基于USB的高精度多通道数据采集卡设计.电子科技.2010,2:86-89
    [52]叶君耀,刘克宁.加密存储设备驱动程序的优化设计.软件导刊,2010,2:5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700