用户名: 密码: 验证码:
用于车载自主导航激光多普勒测速仪的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工程技术的飞速发展,特别是航空、航天、机械制造等技术的发展,需要对物体的运动速度进行高精度测量。在导航系统中,已有的测速方式(加速度、全球定位系统等)存在误差累积、动态响应能力差等缺点,已经不能满足导航日益发展的要求。激光多普勒测速具有精度高、空间分辨率好、动态响应快、测量范围大、非接触测量等特点,已成为当今速度测试技术的重要发展方向。本文从实际应用的角度出发,对激光多普勒固体表面运动速度测量的原理和信号的检测、处理及分析进行了理论和实验研究,以推动该项技术在更广泛领域中的应用。
     论文指出了导航系统中已有测速方式的缺点,比较并分析了几种常见的光学非接触速度测试方法的特点,提出了将激光多普勒测速仪应用于车载导航系统中;回顾了激光多普勒测速技术的发展历程并介绍了国内外的研究现状,阐明了激光多普勒技术用于固体表面运动速度的测量是可行的。
     系统地分析了波源与探测器之间不同相对运动情况下的多普勒效应,阐述了激光多普勒测量车式载体运动速度的基本原理;通过比较直接光谱技术和光学外差技术的特点和适用条件,阐明了运用光学外差技术探测多普勒频率的巨大优势。
     对比分析了双光束差动模式、参考光模式以及自混合模式三种常见光路结构的优缺点,针对双光束差动系统不能进行离焦测量的问题,提出将多点分层技术用于双光束差动模式,并设计了多点分层差动激光多普勒测速系统;为了解决参考光模式中载体颠簸摇摆严重影响测量精度的难题,将毫米波、声波计程仪中的Janus配置技术用于参考光模式,并设计了基于Janus配置的参考光束型激光多普勒测速系统;采用声光调制器,实现方向辨别和低速测量。
     根据散斑场光强变化规律,阐明了由固态散射体运动导致多普勒信号产生的机理――两个散斑场的相干叠加;将散斑理论与随机过程相结合,推导出固态散射面激光多普勒信号强度的表示方式,并分析待测物体上的光斑直径与信号强度及信噪比的关系。
     根据条纹模型和散射机理建立了固体激光多普勒测速的数学模型,模拟固体表面运动多普勒测速原理,并通过数值模拟分析了固体表面特性对多普勒信号强度和测量精度的影响;通过对系统中光场分布的研究,给出了信号光与参考光在最佳匹配以及各种失配情况下外差效率的计算公式及数值模拟的结果,为光学系统的设计和光学参数的选择提供了理论依据。
     针对多普勒信号的特点,基于频率反馈技术设计了跟踪滤波器实时跟踪多普勒信号,消除系统工频干扰、高斯基底及其它干扰(如声光调制器)引入的噪声;为了更准确地从微弱信号中提取多普勒频率,运用数字相关技术抑制了跟踪滤波后信号中的噪声,进一步提高多普勒信号的信噪比。
     针对实时多普勒信号处理中直接进行FFT点数有限和精度不高的问题,提出了一种应用于激光多普勒测速的高精度信号处理技术,即首先利用FFT得到信号的频谱,搜索其谱峰值频率,接着利用Goertzel频谱细化算法对搜索的谱峰进行细化分析,再引入比值频谱校正算法对细化后的谱峰进行校正分析,从而将离散频谱分析算法、频谱细化算法和频谱校正算法三者有机结合起来,充分发挥各自的优点,仿真结果表明,该技术使频率估计精度优于0.004%;提出了频域内设定门限阈值与加速度门限阈值相结合的方法来判别多普勒信号的有效性,并采用最小二乘多项式拟合的方法对丢失的速度信息进行实时补偿。
     系统地分析了车载激光多普勒测速仪的测量误差,并针对各种情况提出了误差控制措施;在引入加速度分量的基础上,对高斯包络型多普勒信号参数估计方差的克莱姆-拉奥下限(Cramer-Rao Lower Bound, CRLB)进行了深入研究,明确了提高系统测量精度可能性的大小。
     搭建了激光多普勒测速实验系统,开展了固体表面运动速度测量的实验研究。建立双光束差动激光多普勒测速系统测量斩波片上任一点的切向运动速度,与光计数法测量结果相比较,双光束系统速度测量的平均相对精度为0.47%;建立参考光束型激光多普勒测速系统进行转台转速测量实验,和转台本身设定的速度相比较,参考光系统速度测量的相对精度优于0.35%;分别设计了多点分层差动LDV和基于Janus配置的参考光束型LDV测量小车相对于地面的真实速度,验证了两种激光多普勒测速系统用于车载自主导航系统的可行性。
With the rapid development of modern engineering and technology, especially in the area of aviation, spaceflight and manufacture, it is necessary to measure the speed with high accuracy. In the navigation system, the existing speed measuring methods (accelerometer, global positioning system and so on) have the disadvantages of error accumulation and slow dynamic response. As a result, they cannot meet the requirement of the development of the navigation system any more. Laser Doppler technique has many advantages such as high accuracy, good spatial resolution, rapid dynamic response, large measuring range, and non-contact, so it represents the developing direction of speed measurement. This dissertation starts from the practical application, does some theoretical and experimental studies in terms of laser Doppler measurement, signal detecting, processing and analysis to broaden the application areas of this technology.
     The dissertation points out the defects of the existing speed measuring methods in the navigation system and compares and analyzes the characteristics of several ordinary optical and noncontact speed measurement methods. As a result, the idea of using laser Doppler velocimeter (LDV) to offer velocity for the vehicle navigation system is proposed. The feasibility of measuring the speed of certain solid surface using LDV is discussed after reviewing the development history and current status of the laser Doppler technology.
     The Doppler effects with different relative motion between a source and a detector are analyzed systematically and the measurement principle for vehicle’s velocity is expatiated. The superiority of optical heterodyne method for detecting the Doppler frequency is demonstrated based on the comparison of the features and the conditions between using direct light spectrum and optical heterodyne technique.
     The advantages and disadvantages of three optical model: dual-beam, reference beam and self-mixing, are discussed and analyzed. Multipoint layer technique is put forward for dual-beam model to solve the problem that it can not work in the status of out of focus and a multipoint layer-type LDV is designed. In order to reduce the effects of sway and toss of a vehicle on the measurement accuracy, Janus configuration used in millimeter wave and acoustic wave logs is proposed for reference beam model and reference beam LDV based on Janus configuration is designed. Especially, acousto-optic modulator is used for two kinds of LDVs to realize the direction discrimination and low speed measurement.
     The essence of laser Doppler signal, produced by the motion of solid surface that is superposed between two relevant speckle fields, is explained according to the order of the speckle field intensity variation. The expression of the solid-state scattering signal intensity of the laser Doppler is derived based on the speckle theory combined with the stochastic process. In addition, the relationship among light spot size on objects to be measured, the signal intensity and the signal-to-noise ratio is analyzed.
     A mathematic model of LDV, which is based on a theoretical model of fringes and the principle of light scattering, is developed for solid-state surface for analyzing the formation of the Doppler signal. The relationship among the characteristics of the solid-state surface, the signal intensity and the measurement accuracy is given by numerical simulations. By studying the distribution of the optical field, the expression and simulation results of heterodyne efficiency are given on the conditions of both exact match and mismatch. The results are of great importance to the design of the optical structure and the optimization of the optical parameters of the measurement system.
     A tracking filter is designed using frequency feedback technique to track the Doppler signal and to eliminate the noises of 50Hz, Gaussian basement, and other frequency interference (for example acousto-optic modulator) based on the characteristics of the Doppler signal. In order to extract Doppler frequency more exactly from the weak signal, the digital correlation technique is used to suppress the noise after filtering so that the signal-to-noise ratio is improved greatly.
     A high precision signal processing technology is introduced into LDV owing to the shortages of the real-time fast Fourier transform (FFT) algorithm such as limited data and low measurement precision. Firstly, using FFT algorithm to obtain the frequency spectrum of the Doppler signal and searching its peak value frequency; secondly, making zooming analysis using Goertzel algorithm; finally, using ratio correction algorithm to obtain a precise Doppler frequency. This technology combines three kinds of algorithms and makes good use of their advantages. The simulation results show that the precision of the frequency estimation is better than 0.004%. Moreover, a new method which combines frequency domain threshold and acceleration threshold is put forward to distinguish whether the Doppler signal is valid or not. The lost velocity information is compensated by the method of least square polynomial fitting.
     Measurement error of the LDV is analyzed systematically and methods to reduce the error in various situations are put forward. In order to clarify the potential of improving the measurement accuracy, the estimation of parameters and their Cramer-Rao Lower Bounds (CRLBs) of the Doppler signal with Gaussian envelope are investigated based on the introduction of the acceleration.
     Experimental systems of the LDV are built to do some research on speed measurement of solid-state surface. Firstly, a differential laser Doppler system is set up for measuring the tangential velocity of a certain point on the chopper. The mean relative accuracy of the laser Doppler system is 0.47% compared with the optics counting method. Secondly, a reference beam laser Doppler system is built to measure the rotating speed of a rotary table and the relative measurement accuracy is better than 0.35%. Finally, a multipoint layer-type LDV and a LDV based on Janus configuration are designed respectively for measuring the speed of a pushcart, which verified the feasibility of using LDV for the vehicle self-contained navigation systems.
引文
[1] Y. Yeh, H.Z.Cummins. Localized fluid flow measurements with an He-Ne laser spectrometer [J], Appl, Phys.lett, 1964, 176(4):176~178.
    [2] Utkarsh Sharma, Gang Chen, Jin U. Kang. Fiber optic confocal laser Doppler velocimeter using an all-fiber laser source for high resolution measurements [J]. Optics Express, 2005, 13(16):6250~6258.
    [3] Ying Zhong, Guoxiong Zhang, Changlin Leng, et al. A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS [J]. Measurement, 2007, 40:623~627.
    [4] Cedric Vuye, SteveVanlanduit, PatrickGuillaume. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer [J]. Optics and Lasers in Engineering, 2009, 47:644~650.
    [5] M.A. Gondala, J. Mastromarino, Uwe K.A. Klein. Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges [J]. Optics and Lasers in Engineering, 2002, 38:589~600.
    [6] Wang Bo, Zhang Jieyu, He Youduo, et al. Investigation on Eccentric Agitation in the Stirred Vessel Using 3D-Laser Doppler Velocimeter [J]. Chinese J. Chem. Eng., 2006, 14(5):618~625.
    [7] YuanHsiang Lin, YanYu Chen, Yuan Ho, et al. Design and development of laser Doppler velocimetry based on DSP technique for blood flow measurement [C]//In Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, Proceedings of SPIE, 2000, 4082:198~207.
    [8] Laser Doppler velocimeter [EB/OL]. http://www.cnanfang.info/product_7/24405.html.
    [9] Laser Doppler anemometer [EB/OL]. http://www. instrument.com.cn/netshow/C103909.htm.
    [10]清大兴业激光多普勒测速仪[EB/OL]. http://www. 21ist.com/Enterprise/Ent_ProductDetail.aspx?pro_ID=2008060316393625733.
    [11]孙凝生.基于绝对速度测量计的自主导航探讨[J].航天控制, 2006, 24(4):27~30.
    [12]秦永元,张红钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社, 2007.
    [13]丁文娟,李岁劳,熊伟.捷联惯导系统/里程计自主式车载组合导航系统研究[J].理论与实践, 2006, 26(1):14~16.
    [14] W Kkqnhempd. Automobile Doppler speedometer[C]//IEEE-IEE, Vehicle Navigation&Information Systems Conference, 1993:509~512.
    [15]张金红,李岁劳,杨洪友.差分GPS辅助里程仪标定刻度因子[J].测控技术,2007, 26(7):20~25.
    [16] RenéSkov Hansen, Christian Pedersen. All semiconductor laser Doppler anemometer at 1.55um [J]. Optics Express, 2008, 16(22):18288~18295.
    [17] Michael J. Connelly, Przemyslaw M. Szecówka, Raghavendra Jallapuram, et al. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera [J]. Optics letters, 2008, 33(4):330~332.
    [18] A. L. Huston, M. G. Roe. Frequency-offset, solid-state laser coherent Doppler velocity measurements of high-speed targets [J]. Optics Letters, 1990, 15(10):570~572.
    [19] N. S. Deshpande, CH. V. Prasad, A. A. Kulkarni, et al. Hydrodynamic characterization of dispersed two-phase flows by laser Doppler velocimeter [J]. Trans I Chem E, 2000, 78:903~910.
    [20] W Kleinhempel, D Bergmmm, W Stammler. Speed measure of vehicles with on-board Doppler radar [C]//Proceeeding of IEEE Conference, 1992, 365: 284~287.
    [21] Negishi, masami Shinkawa-cho, Yokahama-shi, Kanagawa-ken. Ultrasonic Doppler ground speedmeter [P]. European patent, 0418898B, 1990.
    [22]何远航,魏文,张庆明.反射式激光测速系统[J].北京理工大学学报, 2007, 27(11):981~983.
    [23]孟婕,丁志华,杨勇等.基于谱域光学多普勒层析技术的绝对速度测量[J].中国激光, 2009, 36(10): 2561~2565.
    [24]杜锡勇,张弘,冯荣彪等.光遮挡式激光测速方法的研究[J].激光杂志,2009, 30(4):58-59.
    [25]王本超.激光测速系统的设计与实现[D].西安:西安电子科技大学, 2007.
    [26] Adrian, R.J. Particle Imaging Techniques for Experimental Fluid Mechanics [J]. Annual Review of Fluid Mechanics, 1991, 23:261~304.
    [27] Willert, C.E., Gharib, M. Digital Particle Image Velocimetry [J]. Experiments in Fluids, 1991, 10:181~193.
    [28]刘骏.用于测量流体中纳米颗粒运动速度的LSV技术相关理论研究[D].南京:南京理工大学, 2006.
    [29] Andrea Di Donato, Lorenzo Scalise, Leonardo ZaPPelli. Noncontact speckle-based velocity sensor, IEEE Transactions on Instrumentation measurement [J]. 2004, 53(1):51~57.
    [30] Rudiger zeitler. Digital correlator for measuring the velocity of solid surfaces [J]. IEEE Transaction and Measurement, 1997, 46(4):490~495.
    [31]高晶.基于相关测量技术的激光测速系统的研究[D].大连:大连理工大学, 2008.
    [32] Christian Berger. Optical sensor for velocity and slip measurement of automobilebelt drives [J]. IEEE Conference on Sensors, 2002, 36(1):823~828.
    [33] Lopera, J.M., Prieto, M.J., Linera, F.F.. Magnetic contact-less speed measurement sensor for Steel Industries [J]. IEEE Conference on Industry Applications, 2003, 1(12):90~96.
    [34]江德生,芩宏杰,李维来.光纤传感热钢坯非接触式相关测长技术[J].武汉理工大学学报, 2003, 25(7):25~27.
    [35]李东光,张国雄.高速精密激光干涉测量的研究现状及其关键技术[J].航空精密制造技术, 1998, 34(6):29~34.
    [36]高赛,殷纯永.高测速双频激光干涉仪[J].光学技术, 2001, 27(3):238~239.
    [37] K. Christofori, K. Michel. Velocimetry with spatial filters based on sensor arrays [J].Flow Measurement and Instrumentation, 1996, 7(3):265~272.
    [38] M L Jakobsen, HE Larsen, S G Hanson. Optical spatial filtering velocimetry sensor for sub-micron, in-plane vibration measurements [J]. J. Opt. A: Pure Appl. Opt. 2005, 7:S303~S307
    [39]董正超, Klaus Michel, Swen Bergeler, et al. CCD器件空间滤波在微粒运动速度检测上的应用[J].仪器仪表学报, 2000, 21(2):211~214.
    [40]沙宪军,陈跃华,孟宪鸿.纱线/织物速度非接触式测定方法的研究与进展[J].上海纺织科技, 2002, 30(6):60~61.
    [41]邹泓,赵洋.激光多普勒技术在固体测量方面的运用[J].光学技术, 2000, 26(2):101~106
    [42]舒玮,王仕康.双光束激光测速计多普勒信号的理论分析[C].激光多普勒测速技术学术讨论会论文集, 1978:145~153.
    [43] F. Durst, W. H. Stevenson. Influence of Gaussian beam properties on laser Doppler signals [J]. Appl. Opt., 1979, 18(4):516~524.
    [44]舒玮.湍流中散射粒子的跟随性研究[J].天津大学学报, 1980, 1:75~79.
    [45] R.V. Edwards. Spectral Analysis of the Signal from the Laser Doppler Flowmeter [J]. J. Of Appl Phy., 1971, 42(2):837~850.
    [46]史绍熙,王仕康. LDA的相干性展宽[J].工程热物理学报, 1985, 6(2):194~197.
    [47]孙渝生.激光多普勒测量技术及其应用[M].上海:上海科学技术文献出版社, 1995.
    [48] H. T. Yura, S. G. Hanson, L. Lading. Laser Doppler velocimetry: analytical solution to the optical system including the effects of partial coherence of the target [J]. J. Opt. Soc. Am. A, 1995, 12(9): 2040~2047.
    [49] Churnside, James H. Signal-to-noise in a backscatter-modulated Doppler velocimeter [J]. Appl. Opt., 1984, 23(13): 2097~2106.
    [50] M .K.Mazumder. SNR and spectral broading in turbulence structure measurement using a C W laser [J], Appl. Opt., 1970, 9(3):633~637.
    [51] Buchhave, P., George, W.K., Jr.; Lumley, J.L. The Measurement of Turbulence with the Laser Doppler Anemometer [J]. Annual Review of Fluid Mechanics, 1979, 11:443~503.
    [52] Hirlemen E Dan. A History Review of Phase Doppler Sizing Anemometry (PDSA) [C]//20th Aniversory of PDA,1995, Germany.
    [53] J. W. Foremem. Flow velocity in glasses with a laser Doppler Flowmeter [J]. App.Phy.Let, 1969,7(4):77~78.
    [54] R.J.Goldstein, W.F.Hagen. Turbulent how measurements utilizing the Doppler shift of scattered laser radiation [J]. Phy of Fluid, 1967, 10(6):1349~1352.
    [55]瓦切西威兹,鲁德.激光多普勒测量[M].水利出版社, 1980.
    [56] F.Durst. Aerodynamic properties of separated gas flows: existing measurement techniques and a new optical geometry for Laser Doppler anemometry [M]. Progress Heat and Mass Transfer, 1971.
    [57] M. J. Rudd. Velocity measurements made with a laser Dopplermeter on the turbulent pipe flow of a dilute ploymer solution [J]. J. Fluids Mech, 1972, 51(4):673~685.
    [58] Sahin Kaya Ozdemir, Sotetsu Takamiya, Shigenobu shinohara, et al. A speckle velocimeter using a semiconduct laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements [J]. Meas.Sci.Techno1, 2000, 1:1447~1455.
    [59] OzdemirS K, Takasu T, Shinohara S, et al. Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter using two self-mixing laser diodes [J]. Appl.Opt., 1999, 38:1968~1974.
    [60] K .R.Bourquin. Investigation of air-flow velocity by laser back-scatter [J]. NASA TN, 1968:4453.
    [61] C.A.Greated. Resolution and back scattering optical geometry of laser Doppler system [J]. J. of Phy.E: Sci. Instru, 1971, 4(8):585~588.
    [62] M .K.Maurmder. Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beam [J]. App.Phy.Let, 1970, 6(11):462~464.
    [63] W. H. Stevenson. Optical frequency shifting by means of a rotating diffraction grating [J]. Appl.Opt., 1970, 9(3):649~6520.
    [64] R. Food. Solid-state electro-optic phase modulator for Laser Doppler Anemometry [J]. J.Phy,D: Appl.Phys, 1974, l7:36~39.
    [65] George R.Grant, Kenneth L.Orloff. Two-Color dual-Beam Backsactter Laser Doppler Velocimeter [J]. Appl.Opt., 1973, 12:2913.
    [66] K.A.Blake. Simple Two-Dimensional Laser Velocimeter Optics [J]. J.Phys.E, 1972, 5:623.
    [67] D.B.Brayton, H.T.Kalb, F.L.Crosswy. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal read out[J]. Appl.Opt., 1973, 12:1145
    [68] F. L. Crosswy, J.O.Hornkohl. Signal conditioning electronics for a laser vector velocimeter [J]. Rev.Sci.Instrum., 1973, 44:1324.
    [69] Boutier A. Three dimensional laser velocimetry: a review [C]//Proc. of the 2nd International symposium on applications of laser anemometry to fluid mechanics, Lisbon, 1984.
    [70] M.M.Ross. Combined differential and reference beam LDV for 3D velocity measurement [J]. Optics and laser in engineering, 1997, 27:587~619.
    [71] Andreas Voigt , Sascha Heitkam, Lars Büttner, et al. A Bessel beam laser Doppler velocimeter [J]. Optics Communications, 2009, 282:1874~1878.
    [72] Durst F, Whitelaw. Integrated optical units for laser anemometry [J]. J.Phys. E.Sci.instrum., 1971, 4(11):804~808.
    [73] Jentink, H.W., De Mul, F.F.M., Suichies, H.E.. Small laser Doppler velocimeter based on the self-mixing effect in a diode laser [J]. Appl. Opt., 1988, 27(2):379~385.
    [74] E.B. Li, J. Xi, J.F. Chicharo, et al. Multi-point laser Doppler velocimeter [J]. Optics Communications, 2005, 245, 309~313.
    [75] Satoru Kato, Tadashi Ichikawa, Hiroshi Ito, et al. Multipoint Sensing Laser Doppler Velocimetry Based on Laser Diode Frequency Modulation [C]//Eleventh International Conference on Optical Fiber Sensors. Advanced Sensing Photonics, Japan Society of Applied Physics, 1996, 606~609.
    [76] Michael J. Connelly, Przemyslaw M. Szecówka, Raghavendra Jallapuram, et al. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera [J]. Optics letters, 2008, 33(4):330~332.
    [77] Ainsworth RW, Thorpe SJ, Manners RJ. A new approach to flow-field measure-a view of Doppler global velocimetry techniques [J]. International Journal of Heat and Fluid Flow, 1997, 18(1):116~130.
    [78] Milena Martarelli, David J. Ewins. Continuous scanning laser Doppler vibrometry and speckle noise occurrence [J]. Mechanical Systems and Signal Processing, 2006, 20, 2277~2289.
    [79] Dubnishchev, Yu.N., Belousov, P.P., Belousov, P.Ya.. Method of the laser Doppler visualization for a velocity field in flows [C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4900(2): 1147~1154.
    [80] Yamamoto, Y., Oberg, P.A.. Measurement of digital blood flow using the laser Doppler impedance and strain-gauge methods [J]. Medical & Biological Engineering & Computing, 1990, 28(2):113~118.
    [81] Nijhof, E. J., Uijttewaal, W. S.J., Heethaar, R.M.. A laser-Doppler system for measuring distributions of blood particles in narrow flow channels [J]. Instrumentation and Measurement, IEEE Transactions, 1994, 43(3):430~435.
    [82] Boubal, O., Lahalle, E., Nita, L.. Engine dynamics identification in the case of non-uniformly sampled data [C]//Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, 2000, 2:1024~1029.
    [83] Weir, K., Boyle, W.J.O., Palmer, A.W., et al. A novel processing scheme for a fiber optical low coherence laser Doppler anemometer system for blood flow measurement [J]. Optical Techniques and Biomedical applications, IEE Colloquium, 1991, 14:9/1~9/4.
    [84] Tobben, H., Karbsek, M.. Experimental and numerical results of optical preamplification in a laser Doppler anemometer receiving head [J]. Instrumentation and Measurement, IEEE Transactions, 2000, 19(1):10~13.
    [85]张霄元.利用激光多普勒效应远距离目标横向位移测量技术的研究[D].天津:天津大学, 2000.
    [86]杜振辉,李淑清,蒋诚志等.激光光栅多普勒效应微小振动测量[J].光学学报, 2004, 24(6):834~837.
    [87]杜振辉,贺顺忠,蒋诚志等.激光多普勒效应回转体表面轮廓测量系统[J].光电子·激光, 2003,14(9):977~980.
    [88]成建兵.多普勒光纤速度传感器[D].成都:电子科技大学, 2004.
    [89]陈斌.激光多普勒技术及其在航空中的应用[J].激光技术, 1987, 12(1):48~53.
    [90] Laser Doppler velocimeter [EB/OL]. http://www.instrument.com.cn/netshow/SH100732/C13527.htm.
    [91] PL-Laser velocimeter [EB/OL]. http://www.2588.tv/China-Poineer/pro/1280331.
    [92] Laser velocimeter [EB/OL]. http://www.aitet.com/?UserName=zhangxiaoxiao12&Channel=15&Att=1&pid=4fa4a0fb-90e5-450e-8e47-f3de4d222a87.
    [93] Particle imaging velocimeter [EB/OL]. http://www.newmaker.com/pro-31278.html.
    [94] Noncontact laser Doppler velocimeter [EB/OL]. http://www.labbase.net/Supply/SupplyItem-304749.html.
    [95]沈熊.激光多普勒测速技术及应用[M].北京:清华大学出版社, 2003.
    [96]何德勇,赵天鹏,王焕钦等.高精度宽测速范围精确方向判别单模VCSEL自混合LDV[J].量子电子学报, 2008, 25(2):235~239.
    [97]刘昌文,陆尧,刘杰等.频谱分析型激光测速系统[J].光电工程, 2004, 31(5):52~55.
    [98] Zhenhui Du, Fuxiang Huang, Chengzhi Jiang, et al. Design of New Seismometer Based on Laser Doppler Effect [J]. Chinese Optics Letters, 2004, 2(4): 217~219.
    [99]张晓芳.激光多普勒离面位移测量技术的研究[D].天津:天津大学, 1999.
    [100]张霄云,洪昕,贺顺忠等.散射面位移激光多普勒测量技术的研究[J].中国激光, 2000, 27(8):751~755.
    [101] Sang Bo, Zhao Hong, Tan Yushan. New Type of 2-D Laser Doppler Vibrometer [J]. Photonics and Technology, 2001, 7 (3), 177~182.
    [102]胡海龙.高精度信号处理技术在激光多普勒测速中的应用研究[D].成都:电子科技大学, 2006.
    [103]许祖茂,赖康生,王晓旭等.不同固体表面下激光多普勒测速的数值模拟[J].光电子激光, 2005, 16(3)323~327.
    [104]韩微微.基于DSP芯片的激光多普勒测速仪的设计[D].大连:大连理工大学, 2007.
    [105] Crocker, T.R. Near surface Doppler sonar measurements in the Indian Ocean. Deep-Sea Research [J]. Part A: Oceanographic Research Papers, 1983, 30(4):449~467.
    [106] Alan K. Ball. Vehicle mounted Doppler radar system [P]. U.S. patent, 4635059, 1987.
    [107]金国藩,李景镇.激光测量学[M].北京:科学出版社, 1998: 512~513.
    [108] M.波恩, E.沃耳夫.光学原理[M].北京:科学出版社, 1978:434.
    [109]王楚,汤俊雄.光学[M].北京:北京大学出版社, 2001.
    [110] Rudd.M.J.. A new theoretical model for the laser Doppler meter [J]. J.Phy.E.Sci.Instrument, 1969, 2(1):55~58.
    [111] Edson T. Shimizu. Directional discrimination in the self-mixing type laser Doppler Velocimeter [J]. Appl. Opt., 1987, 26(21):4541~ 4544.
    [112] H. W. jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aamoudse, and J .Greve. Small laser Doppler Velocimeter based on the self-mixing effect in a diode laser [J]. Appl. Opt., 1988, 27(2):379~385.
    [113] Lorenzo Scalise, Nicola Paone. Laser Doppler vibrometry based on self-mixing effect [J]. Optics and Lasers in Engineering, 2002, 38(3):173~184.
    [114] L.E.Drain著.王仕康,沈熊,周作元译.激光多普勒技术[M].北京:清华大学出版社, 1985.
    [115]冯世英.基于相控阵的多普勒测速系统的硬件实现[D].哈尔滨:哈尔滨工程大学, 2004.
    [116] Jian Zhou, Weiqiang Yang, Xingwu Long. Research on multipoint layer-type laser Doppler self-velocimeter [J]. Optical engineering, 2010, 49(4), 044301:1~8
    [117]龙兴武,周健,魏国.多点分层型差动激光多普勒测速仪[P].中国专利申请号:201019060027.9.
    [118]周健,龙兴武.基于Janus配置的激光多普勒测速仪[J].光电子激光, 2011, 22(2):266~271.
    [119]刘金凤.激光多普勒参考光检波技术的研究[D].天津:天津大学, 2004.
    [120]吴利民,贺安之,阎大鹏.激光多普勒测速精度分析[J].光学技术, 1999,2:48~49.
    [121]何毅,吴健等.粗糙表面激光散射特性的理论研究[J].光学学报, 1997, 17(9):1202~1208.
    [122]李林涛.激光散斑的特性及其干涉条纹的滤波研究[D].长春:长春理工大学, 2008.
    [123]吴震.光干涉测量技术[M].北京:中国计量出版社, 1995.
    [124]冯建.基于激光散斑图像纹理分析的表面粗糙度研究[D].烟台:烟台大学, 2007.
    [125]戚康男,秦克诚,程路.统计光学导论[M].天津:南开大学出版社, 1987.
    [126]刘培森.散斑统计光学基础[M].北京:科学出版社, 1987.
    [127] T.A sakura. Dynamic laser speckles and their appplication to velocity measurement of the diffuse object [J]. Appl. Phys.1981, 25:179~194.
    [128]王仕瑶.信息光学理论与应用[M].北京:北京邮电大学出版社, 2004.
    [129]陈家壁,苏显渝.光学信息技术原理及应用[M].北京:高等教育出版社,2004.
    [130]陈佳圭.微弱信号检测[M].北京:中央广播电视大学出版社, 1987.
    [131]林理忠,宋敏.微弱信号检测学导论[M].北京:中国计量出版社, 1996.
    [132]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社, 1999.
    [133] O Andrade, B J Rye. Tolerances in Optical Mixing [J]. Journal of physics D: Applied Physics,1974, 7(2):280~291.
    [134] David Fink.Coherent detection signal-to-noise [J]. Appl.Opt., 1975, 14(3):689~69.
    [135] Walter L.Tucker, John L.Barrett. Heterodyne efficiency of quadrant photodetectors [J]. Appl. Opt., 1989, 28(5):892~896.
    [136] Nobuhiro Saga, Kazumasa Tanaka, Otozo Fukumitsu. Diffraction of a gaussian beam through a fineit aperture lens and the resulting hetordyne effciency [J]. Appl.Opt., 1981, 20(16):2827~2831.
    [137]马宗峰,张春熹,张朝阳等.光学外差探测信噪比研究[J].光学学报, 2007, 5(5):889~892.
    [138]王春晖,王琪,尚铁梁.相干激光雷达中光学天线与探测器光敏面的最佳匹配关系[J].中国激光增刊, 2004, 31:387~389.
    [139]张文睿.合成孔径激光雷达中激光外差探测技术研究[D].西安:西安电子科技大学, 2009.
    [140]周炳琨,高以智,陈倜嵘等.激光原理[M].北京:国防工业出版社, 2004.
    [141]郁道银,谈恒英.工程光学[M].北京:机械工业出版社, 2002.
    [142]马宗峰,张春熹,高爽等.相干激光雷达接收机混频效率[J].光学技术增刊,2006, 32:377~379.
    [143]徐争放,陈文新.空间光外差探测和跟踪接收机的优化仿真[J].空间电子技术, 2006, (1):44~48.
    [144] Jian Zhou, Xingwu Long. Research on laser Doppler velocimeter for vehicle self-contained inertial navigation system [J]. Optics & laser technology, 2010, 42(3):477~483.
    [145]周健,龙兴武.频谱分析型激光多普勒测速仪信号处理技术[J].强激光与粒子束, 2010, 22(8):1865~1869.
    [146]张广发.电路噪声的计算与测量(上册)[M].长沙:国防科技大学出版社, 1997.
    [147]周健,龙兴武,魏国等.数字相关技术在激光多普勒测速仪中的应用[J].激光杂志, 2009, 30(3):28~29.
    [148]程佩青.数字信号处理教程(第二版)[M].北京:清华大学出版社, 2001.
    [149]倪养华,王重苇.数字信号处理原理与实现[M].上海:上海交通大学出版社, 1994.
    [150]胡广书.现代信号处理教程[M].北京:清华大学出版社, 2004.
    [151]吴京,王展,王建伟等.信号分析与处理[M].北京:电子工业出版社, 2008.
    [152] Gordon E. Carlson著.曾朝阳,王卫国,周少英等译.信号与线性系统分析[M].北京:机械工业出版社, 2004.
    [153]周耀华.数字信号处理[M].上海:复旦大学出版社, 1991.
    [154]吴湘淇.信号、系统与信号处理[M].北京:电子工业出版社, 1996.
    [155]乐正友.信号与系统[M].北京:清华大学出版社, 2004.
    [156]孟利民.高压异步电机诊断与保护集成相关技术的研究[D].北京:华北电力大学, 2002.
    [157]苗苗.异步电动机转子故障诊断系统的分析与研究[D].辽宁:辽宁科技大学, 2007.
    [158]李玉柏.基于DFT滤波器组实现zoom-FFT算法分析[J].信号处理增刊, 2000, 16:122~127.
    [159]刘进明,应怀樵. FFT谱连续细化分析的傅里叶变换法[J],振动工程学报,1995, 8(2) : 162~166.
    [160]郭瑜,汤宝平,纪跃波等.基于解析信号和带通滤波器的频谱细化分析[J].重庆大学学报, 2001, 24( 4) : 17~25.
    [161]丁康,谢明,张彼德等.基于复解析带通滤波器的复调制细化谱分析原理和方法[J].振动工程学报, 2001, 14(1):29~35.
    [162]沈希忠.连续信号频谱细化的算法探讨[J].上海冶金高等令科学校学报,2000, 21(4):231~235.
    [163] Thomas Grandke. Interpolation Algorithms for Discrete Fourier Transformer of Weighted Signals [J]. IEEE Trans. on LM., 1983, IM-32(2):350~355.
    [164]彭启琼,李玉柏,管庆. DSP技术的发展与应用[M].北京:高等教育出版社, 2002.
    [165]胡海龙,彭启琼.一种基于FFT的精密离散频谱分析方法[C]. 2005年通信理论与信号处理年会论文集,北京:电子工业出版社, 2005: 444~447.
    [166]伍星,罗德扬,郭之磺.快速频率细化ZOOM软件的开发研究[J].昆明理工大学学报, 1998, 22(2):75~76.
    [167]田芬.现代谱在UM2000信号检测中的探讨[D].北京:北京交通大学, 2004.
    [168]唐小军.实时信号处理——算法的实时性与算法-硬件映射[D].成都:电子科技大学, 2003.
    [169]周传德,秦树人,汤宝平等.频率细化分析方法及其在虚拟仪器中的应用[J].重庆大学学报(自然科学版), 2005, 28(8):1~3.
    [170]张夕林.智能涡街流量计信号处理及总线技术应用研究[D],南京:东南大学, 2004.
    [171] Burgess J C. On digital spectrum analysis of periodic signals [J]. J. Acoust. Soc. Am, 1975, 58(3):556~567.
    [172] Grandke T. Interpolation algorithms for discrete Fourier transform of weighted signals [J]. IEEE Trans. Instrum. Meas., 1983, 32(2):350~355.
    [173] Xie M, Ding K. Correction for the frequency, amplitude and phase in FFT of harmonic signal [J]. Mechanical System and Signal Processing, 1996, 10(2):211~221.
    [174]谢明,丁康,莫克斌.频谱校正时谱线干涉的影响和判定方法[J].振动工程学报, 1998, 11(1):22~28.
    [175]谢明,丁康.频谱分析的校正方法[J].振动工程学报, 1994, 7(2):172~179.
    [176]谢明,丁康.离散频谱分析的一种新校正方法[J].重庆大学学报, 1995, 18(2):47~54.
    [177]刘进明,应怀樵. FFT谱连续细化分析的傅里叶变换法[J].振动工程学报, 1995, 8(2):162~166.
    [178]陈奎孚,焦群英,高小蓉.提高FFT谱质量的一种新方法[J].振动、测试与诊断, 1998, 8(3):216~232.
    [179]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报, 2001, 14(3):354~358.
    [180]朱利民,熊有伦.一个通用的频谱误差校正快速算法[J].振动工程学报, 2001, 14(2):166~171.
    [181]丁康,罗江凯,谢明.离散频谱时移相位差校正法[J].应用数学与力学, 2002,23(7):729~733.
    [182]丁康,江利旗.离散频谱综合相位差校正法[J].振动工程学报, 2002, 15(1):114~116.
    [183]丁康,钟舜聪,朱小勇.通用的离散频谱相位差校正法[J].电子学报, 2003, 31(1):142~145.
    [184]丁康,谢明.离散频谱的幅值、相位和频率的新校正方法及误差分析[J].动态测试与分析技术, 1996, 14(1):10~29.
    [185]丁康,谢明.离散频谱三点卷积幅值修正法的误差分析[J].振动工程学报, 1994, 1(1):92~98.
    [186]丁康,张晓飞.频谱校正理论的发展和应用[J].振动工程学报, 2000, 13(l):14~22.
    [187]江利旗.离散频谱分析技术及动态信号分析系统[D].重庆:重庆大学, 2000.
    [188]莫克斌.离散频谱校正方法与传统试验台改进[D].重庆:重庆大学, 1997.
    [189]洪昕.远距离固体散射体面内位移激光多普勒测量技术的研究[D].天津:天津大学, 1999.
    [190]刘彦宇.物体离面位移的激光多普勒测量技术的研究[D].天津:天津大学, 2003.
    [191]叶其孝,沈永欢.实用数学手册[M].北京:科学出版社, 2006.
    [192] Milind M. Rajadhyaksha, Warren H. Stevenson. Accuracy of a laser Doppler velocimeter for instantaneous velocity measurements on rotating solid surfaces [J]. L.I.A., 1989, 70, 97~113.
    [193]邹泓,赵洋.激光多普勒测量中信号的误差分析[J].光学技术, 2000, 26(3):235~240.
    [194]沈平,尹军飞.激光多普勒测速误差分析[J].宇航计测技术, 1993, 12(5):76~80.
    [195]周健,冯庆奇,马曙光等.参考光束型激光多普勒测速仪的误差分析[J].强激光与粒子束, 2010, 22(11):2581~2587.
    [196]桑波.激光多普勒测振技术理论、信号处理及应用研究[D].西安:西安交通大学, 2003.
    [197] V. S. Sobolev, A. A. Feshenko. Accurate Cramer–Rao Bounds for a Laser Doppler Anemometer [J]. IEEE Transactions on instrumentation and measurement, 2006, 55(2):659~665.
    [198] Wei-Qun Shu. Cramer-Rao Bound of Laser Doppler Anemometer [J]. IEEE Transactions on instrumentation and measurement, 2001, 50(6):1770~1772.
    [199] Alain Le Duff, Guy Plantier, Jean-Christophe Valiere et al. Cramer-Rao Bounds for Sound Field Measurements by Means of Laser Doppler Velocimetry [C]//IEEESENSORS 2008 Conference, 2008:164~167.
    [200] Richard Bamler. Doppler Frequency Estimation and the Cramer-Rao Bound [J]. IEEE Transactions on Geoscience and remote sensing, 1991, 29(3):385~390.
    [201] Ananthram Swami. Cramer-Rao bounds for deterministic signals in additive and multiplicative noise [J]. Signal Processing, 1996, 53:231~244.
    [202]王晓湘.高动态多普勒频率估计及其Cramer-Rao界[J].电子与信息学报, 2004, 26(2):206~212.
    [203]王纪强,张春熹,马宗峰等.激光多普勒测速参数估计的Cramer-Rao下限[J].中国激光, 2008, 35(9):1419~1422.
    [204]齐国清.离散实正弦信号参数估计的Cramer Rao方差下限[J].数据采集与处理, 2003, 18(2):151~155.
    [205] Hua Jingyu, Yang Xin, You Xiaohu. Bounds of the frequency estimation in the time selective radio channels with Doppler spread [J]. Journal of Electronics (China), 2006, 23(2): 165~171.
    [206]廖成旺,王建华.阻尼正弦项叠加形式估计参数的Cramer-Rao下界[J].大地测量与地球动力学, 2002, 22(3):122~126.
    [207] Rife D C, Boorstyn R R. Single-Tone Parameter Estimation from Discrete-time Observations [J]. IEEE Trans on Inform Theory, 1974, 20(5):591~598.
    [208] Jian Zhou, Xingwu Long. Signal processing of laser Doppler self-velocimeter [J]. Optics&laser technology, 2010, 42(6):1038~1043.
    [209]周健,龙兴武.差动激光多普勒测速仪在固体速度测量中的应用[J].应用光学, 2009, 30(2):334~337.
    [210]周健,龙兴武,宋锐等.基于计数法测量激光多普勒测速仪的测速精度[J].光学技术, 2009, 35(3):434~436.
    [211] Yoshito Isei, Yukihiko Yakita, Yasuhiko Buei. Development of interstand velocimeter for hot strip finishing mill [C]. SICE-ICASE International Joint Conference, Bexco, Busan, Korea, 2006:18-21.
    [212] M.A. Gondal, J. Mastromarino, Uwe K.A. Klein. Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges [J]. Optics and Lasers in Engineering, 2002, 38:589~600.
    [213]马建新.激光频移外差式测振技术[D].哈尔滨:哈尔滨工业大学, 2005.
    [214] Amit Lal, Slava Aranchuk, Valentina Doushkina, et al. Advanced LDV Instruments for Buried Landmine Detection [C]. Detection and Remediation Technologies for Mines and Minelike Targets XI, Proc. of SPIE, 2006, 6217:621715-1~621715-8.
    [215] E.B. Li, J. Xi, J.F. Chicharo. Multi-point laser Doppler velocimeter [J]. Optics Communications, 2005, 245:309~313.
    [216]周健,龙兴武.多点分层差动激光多普勒自身测速仪的研究[J].中国激光, 2010, 37(7):1837-1844.
    [217] Jian Zhou, Hua Huang, Xingwu Long. A novel laser Doppler velocimeter [J]. Journal of Modern Optics, 2010, 57(21):2170~2176.
    [218] Rosemary Diaz, Sze-Chun Chan, Jia-Ming Liu. Lidar detection using a dual-frequency source [J]. Optics Letters, 2006, 31(24):3600~3602.
    [219]张艳艳,霍玉晶,何淑芳等.一种新的双频激光多普勒测速方法的实验研究[J].激光与红外, 2010, 40(7):694~696.
    [220] H.T. Yura, S.G. Hanson, L. Lading. Comparison between the time-of-flight velocimeter and the laser Doppler velocimeter for measurements on solid surfaces [J]. SPIE, 1996, 2729:91~102.
    [221]何德勇.单模VCSEL自混合激光多普勒测速研究[D].合肥:中国科学技术大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700