用户名: 密码: 验证码:
硼掺杂金刚石薄膜涂层工具的制备和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石薄膜优良的力学性能使其在工模具和耐磨器件等领域具有广阔的应用前景。然而,由于硬质合金工具中粘接相钴的催石墨化作用,使得金刚石薄膜与硬质合金基体之间的附着力较低,从而阻碍了金刚石薄膜涂层工具的产业化应用。p型金刚石的研究表明在金刚石薄膜的生长过程中进行硼掺杂具有细化金刚石薄膜晶粒、降低薄膜内应力、提高薄膜质量等特点,这对于硼掺杂金刚石薄膜涂层技术在工具方面的应用和发展具有重要的意义。
     本文采用偏压增强热丝化学气相沉积法,以丙酮和氢气为原料,以硼酸三甲酯为掺杂源,在高电阻单晶硅片、硬质合金刀具以及硬质合金铜管拉拔模具上分别制备了硼掺杂金刚石薄膜涂层,研究了硼掺杂金刚石薄膜的制备原理、工艺方法及影响因素等。通过采用扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线衍射(XRD)等不同的表征方法对硼掺杂金刚石薄膜的形貌、结构及质量等进行了详细的研究和分析,通过对难加工材料的切削和钻削加工试验以及对铜管的拉拔生产应用评价了硼掺杂金刚石薄膜涂层刀具及模具的实际使用效果。
     研究结果表明:①硼掺杂金刚石膜的制备原理及其相应的晶体生长规律与常规金刚石膜的规律基本相同,可用非平衡热力学耦合模型进行解释。②圆形高阻单晶硅片上制备的硼掺杂金刚石薄膜内存在一定的拉应力,且随硼掺杂浓度的不同而发生变化,晶粒尺寸和薄膜电阻随着硼掺杂浓度的增加而减小。③在带有断屑槽的硬质合金刀片SCMT120408-HM上通过两步法预处理后制备的硼掺杂金刚石薄膜涂层表明两步法预处理可以较好的粗化基体表面,适量的硼掺杂可以提高金刚石的形核密度,并在刀具基体表面生成稳定的硼-钴化合物层,有效抑制钴的催石墨化作用;硼掺杂金刚石的晶粒取向主要为{111}晶面,随着硼掺杂浓度的增加晶粒尺寸减小,且拉曼光谱的中心声子线向低能方向漂移;硼掺杂浓度在3000ppm时金刚石涂层刀具的膜-基附着强度最大,刀具的切削性能最好。④在整体式WC-Co(YG8)硬质合金钻头上在沉积的金刚石薄膜涂层比较均匀,由于硼元素对涂层晶粒的细化和对膜-基附着力的改善,使得硼掺杂金刚石涂层比常规金刚石涂层的质量更均匀,硼掺杂金刚石薄膜涂层钻头具有更好的加工性能。⑤在大孔径铜管拉拔模具内孔上不同位置处沉积的硼掺杂金刚石薄膜涂层表面平整、颗粒细小、厚度均匀一致,薄膜颗粒尺寸在2~5μm之间,硼掺杂金刚石薄膜涂层拉拔模具的实际生产应用效果较好,可以延长模具寿命、节约原材料、提高拉制铜管的质量和生产效率。
The application of diamond coated film to tools, dies and wear-resistant apparatus material have been attracting great interest for the outstanding mechanical characteristics of diamond. However, the adhesive strength of diamond coating and substrate is very poor, which is primarily due to the large mismatch of thermal expansion coefficient and the cobalt-catalyzed formation of non-diamond carbon at the diamond-carbide interface, has restrained the successful development and commercialization of diamond-coated tools. The research of p-type diamond has indicated the incorporation of boron into the diamond coating in the process of diamond deposition is a dynamic boron doping technique, which can decrease the grains sizes, reduce internal stress and improve quality of diamond thin film. It is of great significance for the application and development of boron-doped diamond coating.
     In the present paper, boron-doped diamond coatings were deposited on silicon wafers, cemented carbide tools and cemented carbide drawing dies by bias-enhanced hot filament chemical vapor deposition. The trimethyl borate (B(OCH3)3) dissolved in acetone solution was used as the boron resource, the gas mixture of hydrogen and acetone were used as reaction gases. The deposited mechanism, process and influencing factors of boron-doped diamond coatings were studied. The surface morphology and quality of boron doped diamond coatings were studied and analyzed carefully by Scanning electron microscopy (SEM), Raman spectra (Raman) and X-ray diffraction (XRD), etc.. Furthermore, the cutting performance of the boron-doped diamond coated inserts and drills were studied by cutting tests of composite materials, the machining effect of boron-doped diamond coated drawing dies were tested by practical drawing brass tubes.
     The research results indicated:①The deposited mechanism and growth law of boron-doped diamond coatings are similar with conventional diamond coatings, which can be interpreted by the non-equilibrium thermodynamics model.②The diamond thin film deposited on round silicon wafers existed internal stress, the grains size and resistance of diamond films decreased as the boron concentration increased.③Diamond films doped with different boron concentrations grown on WC-Co cemented carbide inserts (SCMT120408-HM) showed the two-step pretreatment method could improve mechanical interlocking effect and adhesion between diamond coating and WC-Co substrate effectively. Diamond nucleation density increased as the boron doping concentration was moderate. Meanwhile, the stable cobalt boride compounds were produced on the substrate surface in the process of nucleation, which suppressed outward diffusion of cobalt, reduced the catalytic effect of cobalt. Surface morphology analysis showed a great decrease of grain size as a function of boron concentration increase. Raman spectra of diamond coatings showed that the diamond peaks decreased and downshifted to lower energy as the boron concentration increased. Turning tests displayed that the cutting performance of boron-doped diamond coated inserts have been greatly improved when the boron doping concentration was 3000ppm.④Diamond coatings deposited on conventional cemented carbides YG8(Co 8%) drills showed the grains were faceted with uniform texture. The boron doping decreased the grains size and improved the quality of diamond film, so the machining performance of boron-doped diamond coated drill was better than that of conventional diamond coated drill.⑤The diamond coatings deposited on the inner holes shape of the drawing dies had small surface roughness, uniform thickness and excellent adhesive strength. The films surface was even and the average grain size was 2-5μm. The practical drawing brass tubes test demonstrated the boron-doped diamond coated drawing dies had excellent machining performance, which can prolonged the dies lifetime, saved resource materials, improved the quality of drawing brass tubes and increased production efficiency.
引文
[1] 戴达煌, 周克崧等, 金刚石薄膜沉积制备工艺与应用, 北京: 冶金工业出版社, 2001
    [2] K.E.Spear, Diamond-ceramic coating of the future, Journal of American ceramic society, 1989, 72(2):171-191
    [3] Coe S E, Sussmann R S, Optical thermal and mechanical properties of CVD diamond, Diamond and related materials, 2000,9(9-10):1726-1729
    [4] M Werner, R Locher, Growth and application of undoped and doped diamond films, Journal of report process of physics, 1998, 61:1665-1710
    [5] Jones M H, Jones S H, The general properties of Si, SiGe, SiO2 and Si3N4, Virginina Semiconductor, 2002,7
    [6] 蒋翔六, CVD 金刚石薄膜的应用和市场前景, 薄膜科学与技术, 1991, 4(3):9-14
    [7] Okushi, Hideyo, Diamond semiconductor for electronic device application, Carbon, 1997, 35(10-11):1682
    [8] 蒋翔六, 金刚石薄膜研究进展, 北京: 化学工业出版社, 1991:10
    [9] A. J. Miller, D. M. Reece, M. D. Hudson, etc., Diamond coatings for IR window applications, Diamond and Related Materials, 1997, 6(2-4): 386-389
    [10] Yin Z, Akkerman Z, Yang B X, etc., Optical properties and microstructure of CVD diamond films, Diamond and related materials, 1997, 6(1):153-158
    [11] 顾毓沁, 余立新, 朱德贵, 金刚石薄膜的导热性质研究, 中国科学(E 辑), 1996, 26(1):103-108
    [12] 殷声, 现代陶瓷及其应用, 北京科学技术出版社, 1990:10
    [13] Bakon A, Szymanski A, Practical uses of diamond, PWN-polish scientific publishers, 1993:29
    [14] Marka Prelas, Galina Popovic, Louis K Bigelow, Handbook of industrial diamonds and diamond films, MARCEL. Dekker. Inc., 1997
    [15] 田民波, 刘德令, 薄膜科学与技术手册(下册), 北京: 机械工业出版社, 1991: 855
    [16] Matsumoto S, Sato Y, Kamo M, etc., Vapor deposition of diamond particles from methane, Japanese Journal of applied physics, 1982, 21(4):183-185
    [17] Jubber M G, Wilon J I, Drummond I, etc., Microwave plasma CVD of high purity diamond films, Diamond and related materials, 1993, 2:402-406
    [18] 李惠琪, 钟国仿, 吕反修, DC PJ-CVD 等离子体炬通道中的电弧行为, 北京科技大学学报, 1994, 16(12):547-550
    [19] Y Hirose, S Amanuma, K Komaki, The synthesis of high-quality diamond in combustion flames, Journal of applied physics, 1990, 68(25):6401-6405
    [20] Huimin Liu, David D, Dandy, Studies on nucleation process in diamond CVD: an overview of recent developments, Diamond and related material, 1994, 4:1173-188
    [21] 扬国伟, 化学气相沉积金刚石薄膜的成核机理研究, 人工晶体学报, 1999, 28:409-415
    [22] Kalto Ohtake, Masanori Yoshikawa, Kunia Suzuki, etc., Growth process of diamond deposition film by arc discharge plasma jet CVD, Application of diamond films and related material, 1991,434-438
    [23] P Renke, P Kania, Oelhafen, Investigation of the nucleation mechanism in bias-enhanced deposition silicon and molybdenum, Thin solid films, 1995, 270:124-129
    [24] R C Devries, Synthesis of diamond under metastable cpnditions, Annual review of material science, 1987, 17(8):161-187
    [25] B V Spitsyn, In “handbook of crystal growth”, ed.D T Jhurle, Elsevier Science, 1994, 3(10):419
    [26] Sommer M,K Mui, Smith F W, Thermodynamic analysis of the chemical vapor deposition of diamond films, Solid state communications, 1989, 69(7):775-778
    [27] W A Yarbrough, R Misser, Current issues and problems in chemical vapor deposition, Science, 1990, 247:688-696
    [28] Y Bar-Yam, Moustakas T D, Defect-induced stabilization of diamond films, Nature, 1989, 342(6251):786-787
    [29] M Frenlach, KE Spear, Growth mechanism of vapor-deposited diamond, Journal of material research, 1988, 3(1):133-140
    [30] Stepen J Harris, Mechanism for diamond growth from methyl radicals, Journal of applied physics letters, 1990, 56(23):2298-2300
    [31] 王季陶, 张卫, 刘志杰, 金刚石气相生长的热力学耦合模型, 北京: 科学出版社, 1998
    [32] J T Wang, J O Carlsson, A thermochemical model for diamond growth from the vapor phase, Surface and coatings technology, 1990, 43-44:1-9
    [33] 王季陶, 非平衡定态相图, 北京: 科学出版社, 2000, 91:137-140
    [34] Johan F. Prins, Improved activation of boron-dopant atoms implanted into diamond, Nuclear Instruments and Methods in Physics Research Section B, 1988, 35(3-4):484-487
    [35] Johan F Prins, Annealing effects when activating dopant atoms in ion-implanted diamond layers, Nuclear Instruments and Methods in Physics Research Section B, 1991, 59-60(1-2):1387-1390
    [36] Hideo Kiyota, Eiichi Matsushima, Keisuke Sato, et al, Electrical properties of B-doped homoepitaxial diamond (001) film, Diamond and Related Materials, 1997, 6(12):1753-1758
    [37] Yiben Xia, Takashi Sekiguchi, Wenjun Zhang, etc., Effects of hydrogen ion bombardment and boron doping on (001) polycrystalline diamond films, Journal of Crystal Growth, 2000, 213(3-4):328-333.
    [38] 韩佳宁, 赵庆勋, 辛红丽, 文钦若, 金刚石 n 型掺杂的研究进展, 河北大学学报,2002, 22(1):87-90
    [39] P. Bergonzo, F. Foulon, R. D. Marshall, etc., Thin film diamond alpha detectors for dosimetry applications, 1999, 8(2-5):952-955
    [40] 俞琳, 刘东红, 胡连军等,氘化硼掺杂金刚石 n 型电导的研究, 功能材料, 2005, 36(12):1837-1838
    [41] Kajihara S A, Antonelli A, Bernholic J, etc., Nitrogen and potential n-type dopants in diamond, Physical Review Letters, 1991, 66(15):2010-2013.
    [42] S. A. Kajihara, A. Antonelli and J. Bernholc, Impurity incorporation and doping of diamond, Physica B: Condensed Matter, 1993, 185(1-4):144-149
    [43] S Prawer, C Uzan-Saguy, G Braunstein, etc., Can n-type doping of diamond be achieved by Li or Na ion implantation? Appl. Phys. Lett, 1993, 63:2502
    [44] H. Sternschulte, M. Schreck, B. Stritzker, etc., Lithium addition during CVD diamond growth:influence on the optical emission of the plasma and properties of the films, Diamond and Related Materials, 2000, 9(3-6):1046-1050
    [45] T. H. Borst, O. Weis, Electrical characterization of homoepitaxial diamond films doped with B,P,Li and Na during crystal growth, Diamond and Related Materials, 2000, 9(3-6):1046-1050
    [46] Satoshi Koizumi, Tokuyuki Teraji and Hisao Kanda, Phosphorus-doped chemical vapor deposition of diamond, Diamond and Related Materials, 2000, 9(3-6): 935-940
    [47] Mariko Suzuki, Satoshi Koizumi, Masayuki Katagiri, etc., Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers, Diamond and Related Materials, 2004, 13(11-12):2037-2040
    [48] Hiromitsu Kato, Satoshi Yamasaki and Hideyo Okushi, Carrier compensation in (001) n-type diamond by phosphorus doping, Diamond and Related Materials, 2007, 16(4-7):796-799
    [49] Hiromitsu Kato, Satoshi Yamasaki and Hideyo Okushi, n-type conductivity of phosphorus-doped homoepitaxial single crystal diamond on (001) substrate, Diamond and Related Materials, 2005, 14(11-12):2007-2010
    [50] Tsao-Ming Hong, Sheng-Hsiung Chen, Yih-Song Chiou, etc., Effect of nitrogen on diamond growth using unconventional gas mixtures, Thin Solid Films, 1995, 270(1-2):148-153
    [51] Hassan Chatei, Jamal Bougdira, Michel Remy, etc., Combined effect of nitrogen and pulsed microwave plasma on diamond growth, Diamond and Related Materials, 1997, 6(2-4):505-510
    [52] P. Hartmann, R. Haubner and B. Lux, Effects of simultaneous boron and nitrogen addition on hot-filament CVD diamond growth, Diamond and Related Materials, 1997, 6(2-4):456-462
    [53] F.A.M. K?ck, J.M. Garguilo, R.J. Nemanich, Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films, Diamond and Related Materials, 2005, 14(3-7): 704-708
    [54] Sally C. Eaton, Alfred B. Anderson, John C. Angus, etc., Diamond growth in the presence of boron and sulfur, Diamond and Related Materials, 2003, 12(10-11):1627-1632
    [55] Sachiko Fujii, Shigeru Hino, Takeshi Kobayashi, Improved surface morphology of sulfur-doped homoepitaxial diamond films by plasma CVD method with SF6 Grading–Doping profile, Applied Surface Science, 2003, 216(1-4):596-602
    [56] E. Gheeraert, N. Casanova, A. Tajani, etc., n-Type doping of diamond by sulfur and phosphorus, Diamond and Related Materials, 2002, 1(3-6):289-295
    [57] J. R. Petherbridge, P. W. May, G. M. Fuge, etc., In situ plasma diagnostics of the chemistry behind sulfur doping of CVD diamond films, Diamond and Related Materials, 2002, 1(3-6):301-306
    [58] Mikka Nishitani-Gamo, Eiji Yasu, Changyong Xiao, etc., Isao Sakaguchi, Toshimitsu Suzuki and Toshihiro Ando, Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties, Diamond and Related Materials, 2000, 9(3-6):941-947
    [59] Nakazawa Kazushi, Tachiki Minoru, Kawarada Hiroshi, etc., Cathodoluminescence and hall-effect measurements in sulfur-doped chemical-vapor-deposited diamond, Applied Physics Letters, 2003, 82(13):2074-2076
    [60] C. Saguy, R. Kalish, C. Cytermann, etc., n-type diamond with high room temperature electricalconductivity by deuteration of boron doped diamond layers, Diamond and Related Materials, 2004, 13(4-8):700-704
    [61] C. Saguy, R. Kalish, J. Chevallier, etc., The p-to-n-type conversion of boron-doped diamond layers by deuteration: New findings, Diamond and Related Materials, 2007, 16(8):1459-1462
    [62] 杨小倩, 胡晓君, 沈菏生, 张志明等, CVD 金刚石薄膜的掺硼研究, 机械工程材料, 2002, 26(1):16-18
    [63] Nobuteru Tsubouchi, M. Ogura, H. Kato, etc., p-type doping by B ion implantation into diamond at elevated temperatures, Diamond and Related Materials, 2006, 15(1):157-159
    [64] A. Hatta, S. Sonoda, T. Ito, Electrical Properties of B-doped homoepitaxial diamond films grown from UHP gas sources, Diamond and Related Materials, 1999, 8(8-9):1470-1475
    [65] Hideo Kiyota, Eiichi Matsushima, Keisuke Sato, etc., Electrical properties of B-doped homoepitaxial diamond (001) film, Diamond and Related Materials, 1997, 6(12):1753-1758
    [66] T. Tsubota, T. Fukui, T. Saito, etc., Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond (100) substrate, Diamond and Related Materials, 2000, 9(7):1362-1368
    [67] K. Chirakawikul, T. Sujaridchai, B. Ratwises, etc., Preparation of p-type polycrystalline diamond films and their applications to hole injection layers in amorphous SiC:H thin film light emitting diodes, Journal of Non-Crystalline Solids, 1998, 227-230(2):1156-1159
    [68] R.J. Zhang, S.T. Lee, Y.W. Lam, Characterization of heavily boron-doped diamond films, Diamond and Related Materials, 1996, 5(11):1288-1294
    [69] X. Z. Liao, R. J. Zhang, C. S. Lee, etc., The influence of boron doping on the structure and characteristics of diamond thin films, Diamond and Related Materials, 1997, 6(2-4):521-525
    [70] Norio Tokuda, Takeyasu Saito, Hitoshi Umezawa, etc., The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth-Study of surface morphology, Diamond and Related Materials, 2007, 16(2):409-411
    [71] Sung-Gi Ri, Hiromitsu Kato, Masahiko Ogura, etc., Growth and characterization of boron-doped (111) CVD homoepitaxial diamond films, Journal of Crystal Growth, 2007, 299(2):235-242
    [72] N. G. Ferreira, E. Abramof, E. J. Corat, etc., Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction, Carbon, 2003, 41(6):1301-1308
    [73] I. Gerger and R. Haubner, Gradient layers of boron-doped diamond on titanium substrates, Diamond and Related Materials, 2007, 16(4-7):899-904
    [74] 薛泉林, 新型电子功能材料-金刚石膜及其应用, 电子商务, 1997, 7:30-32
    [75] 范建兴, 陈启秀, 金刚石薄膜半导体器件, 半导体情报, 1998, 35(5):29-35
    [76] A. Mainwood, CVD diamond particles detectors, Diamond and Related Materials, 1998, 7(2-5):504-509
    [77] M. Marinelli, E. Milani, A. Paoletti, etc., Diamond film-based particle detectors, Diamond and Related Materials, 1998, 7(2-5):519-522
    [78] Rainer S. Wallny, Status of diamond detectors and their high energy physics application, Nuclear Instruments and Methods in Physics Research Section A, 2007, 582(3):824-828
    [79] M. Pomorski, E. Berdermann, W. de Boer, etc., Charge transport properties of single crystal CVD-diamond particle detectors, Diamond and Related Materials, 2007, 16(4-7):1066-1069
    [80] Y. Gurbuz, W. P. Kang, J. L. Davidson, etc., A PECVD diamond device for chemical gas sensing applications, Diamond and Related Materials, 1998, 7(11-12): 1723-1726
    [81] 莘海维, 张志明, 戴永斌等, 压阻式金刚石压力传感器的优化设计, 传感器器技术, 2002, 21(3):21-24
    [81] 廖波, 林鸿溢, 王越, 场发射压力传感器的研究进展, 真空科学与技术学报, 2000, 20(6):413-418
    [82] Hongbin Yu, Hua Wang, Xie Quan, etc., Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor, Electrochemistry Communications, 2007, 9(9):2280-2285
    [83] Adenilson J. Chiquito, Olívia M. Berengue, Edgar Diagonel, etc., Temperature sensors based on synthetic diamond films, Diamond and Related Materials, 2007, 16(8):652-1655
    [84] 臧建兵, 黄浩, 赵玉成, 含掺杂的金刚石, 金刚石与磨料磨具工程, 2002, 1(127):16-18
    [85] 孙再吉, 金刚石半导体器件的研究与展望, 电子工程师, 2000, 2:39-42
    [86] Ekimov E A, Sidorov V A, Bauer E D, etc., Superconductivity in diamond, Letters to nature, 2004, 428(6982):542-545
    [87] V.A. Sidorov, E.A. Ekimov, E.D. Bauer, etc., Superconductivity in boron-doped diamond, Diamond and Related Materials, 2005, 14(3-7):335-339
    [88] Takano Yoshihiko, Naqao Masanori, Sakaquchi Isao, etc., Superconductivity in diamond thin films well above liquid helium temperature, Applied Physics Letters, 2004, 85(14):2851-2853
    [89] Z.L. Wang, Q. Luo, L.W. Liu, etc., The superconductivity in boron-doped polycrystalline diamond thick films, Diamond and Related Materials, 2006, 15(4-8) 659-663
    [90] 常明, 高成耀, 朱亚东等, P 型掺杂金刚石电极双电层电容器研究, 天津理工大学学报, 2005, 21(1):21-24
    [91] 胡成果, 高硼掺杂金刚石膜电极的电化学应用研究, 物理, 2003, 1(2):93-97
    [92] 朱沛林, 朱建中, 杨申仲, 张国雄, 硼掺杂金刚石薄膜电极电化学特性的研究, 功能材料与器件学报, 1996, 2(4):207-214
    [93] Yan Li Zhou, Ru Hai Tian, Jin Fang Zhi, Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode, Biosensors and Bioelectronics, 2007, 22(6):822-828
    [94] Robson T.S. Oliveira, Giancarlo R. Salazar-Banda, Mauro C. Santos, etc., Electrochemical oxidation of benzene on boron-doped diamond electrodes, Chemosphere, 2007,66(11): 2152-2158
    [95] M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochimica Acta, 2005, 51(2):191-199
    [96] C.Lévy-Clément, N.A.Ndao, A.Katty, etc. Boron doped diamond electrodes for nitrate elimination in concentrated wastewater, Diamond and Related Materials, 2003, 12(3-7): 606-612
    [97] A. Mor?o, A. Lopes, M. T. Pessoa de Amorim, etc., Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment, Electrochimica Acta, 2004,49(9-10):1587-1595
    [98] A. Manivannan, M. S. Seehra, A. Fujishima, Detection of mercury at the ppb level in solution using boron-doped diamond electrode, Fuel Processing Technology, 2004, 85(6-7):513-519
    [99] Prerna Sonthalia, Elizabeth McGaw, Yoshiyuki Show, etc., Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode, Analytica Chimica Acta, 2004, 522(1):35-44
    [100] Tata N. Rao, B. V. Sarada, D. A. Tryk, etc., Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, Journal of Electroanalytical Chemistry, 2000, 491(1-2):175-181
    [101] A. Fujishima, Tata N. Rao, E. Popa, etc., Electroanalysis of dopamine and NADH at conductive diamond electrodes, Journal of Electroanalytical Chemistry, 1999, 473(1-2):179-185
    [102] T. N. Rao, A. Fujishima, Recent advances in electrochemistry of diamond, Diamond and Related Materials, 2000, 9(3-6):384-389
    [103] T. A. Ivandini, B. V. Sarada, C. Terashima, etc., Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes, Journal of Electroanalytical Chemistry, 2002, 521(1-2):117-126
    [104] A. R. Mahon, J. H MacDonald, A. Mainwood, etc., Characterisation of CVD diamond as a detector of DNA, Diamond and Related Materials, 1999, 8(8-9):1748-1752
    [105] M. Yoshimura, K. Honda, T. Kondo, etc., Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes, Electrochimica Acta, 2002, 47(27):4387-4392
    [106] K. Honda, M. Yoshimura, R. Uchikado, etc., Electrochemical characteristics for redox systems at nano-honeycomb diamond, Electrochimica Acta, 2002, 47(27):4373-4385
    [107] K. Honda, M. Yoshimura, Tata N. Rao, etc., Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes, Journal of Electroanalytical Chemistry, 2001, 514(1-2):35-50
    [108] M. Yoshimura, K. Honda, R. Uchikado, etc., Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes, Diamond and Related Materials, 2001, 10(3-7):620-626
    [109] 王丽敏, 李晓峰, 侯鹤岚等, 刀具涂层技术的应用与发展, 真空, 2000, 2:5-6
    [110] 叶毅, 叶伟昌, 金刚石切削刀具及其应用, 机械制造, 1997, 8:4-5
    [111] 满卫东, 汪建华, 提高 CVD 金刚石薄膜刀具膜-基附着力的工艺方法评述, 工具技术, 2001, 9:3-8
    [112] K. Shibuki, K. Sasaki, M. Yagi, etc., Diamond coating on WC-Co and WC for cutting tools, Surface and Coatings Technology, 1994, 68-69:369-373
    [113] M. Alam, D.E. Peebles, D.R. Tallant, Diamond deposition onto WC-6%Co cutting tool material: coating structure and interfacial bond strength, Thin Solid Films, 2004, 447-448:455-461
    [114] S. Marinkovic, S. Stankovic, Z. Rakocevic, Effects of cemented carbide surface pretreatment in combustion flame chemical vapour deposition of diamond, Thin Solid Films, 1999, 354(1-2): 118-128
    [115] H. Hanyu, Y. Murakami, S. Kamiya, etc., New diamond coating with finely crystallized smooth surface for the tools to achieve fine surface finish of non-ferrous metals, Surface andCoatings Technology, 2003, 169-170:258-261
    [116] 苗晋琦, 王成彪, 张鬲君等,渗硼并两步处理硬质合金微晶金刚石涂层工具研究, 人工晶体学报, 2006, 35(3 ):518-524
    [117] F.X. Lu, W.Z. Tang, Y.M. Tong, etc., Novel pretreatment of hard metal substrate for better performance of diamond coated cutting tools, Diamond and Related Materials, 2006, 15:2039-2045
    [118] W. D. Man, J. H. Wang, Z. B. Ma, etc., Plasma boronitriding of WC(Co) substrate as an effective pretreatment process for diamond CVD, Surface and Coatings Technology, 2002, 171(1-3):241-246
    [119] Mingjiang Dai, Kesong Zhou, Zhenghai Yuan, etc., The cutting performance of diamond and DLC-coated cutting tools, Diamond and Related Materials, 2000, 9(9-10):753-1757
    [120] 张志明, “金刚石涂层技术”成果简介, 材料导报, 2001, 2:25
    [121] Yong Tae Kim, Chang Woo Lee, etc., New method to improve the adhesion strength of tungsten thin film on silicon by W2N glue layer, App. Phys. Lett., 1992, 61(5):537-539;
    [122] V J Trava-Airoldi, B N Nobrega, etc., Low temperature chemical vapor deposition of diamond on tungsten carbides using CF4 gas doping for machine tool applications, Vacuum, 1995, 46(1):5-8
    [123] 夏琦, 张志明, 沈菏生等, 微波等离子刻蚀脱碳预处理对金刚石涂层刀具附着力和切削性能的影响, 机械工程材料, 2000, 24(4):11-14
    [124] Okuzumi Ayanori, Matsuda Junichi, Diamond coated die for wire drawing, JP01062213
    [125] M. Murakawa, S, Takeuchi, K.Yoshida, Fabrication of a diamond-coated drawing die and performance test, The 2th International Conference on Application of Diamond Films and Related Materials, 1993:589-594
    [126] M Murakawa, S Takeuchi, Wire drawing die for thin wire using polycrystalline diamond synthesized by vapor deposition method, JP09220610, 1997
    [127] Dieguez Ivan, Bsuer Grosse Elizabeth, Reactor for diamond synthesis assisted by microware plasma has system for forcing and depositing diamond germination species on inner walls of holes in wire, FR2850116, 2004
    [128] 苟立, 安晓明, 冉均国, CVD 金刚石涂层拉拔模的制备, 工具技术, 2007, 41(6):62-64
    [129] 张志明, 沈菏生, 孙方宏等, 大孔径金刚石涂层拉拔模的制备方法, CN1401818A, 2003
    [130] 张志明, 沈菏生, 孙方宏等, 纳米金刚石复合涂层紧压模的制备及应用, 电线电缆, 2003, 4:9-12
    [131] Z M Zhang, H S Shen, F H Sun, etc., Fabrication and application of chemical vapor deposition diamond-coated drawing dies, Diamond and Related Materials, 2001, 10:33-38
    [132] 郭松寿, 张志明, 沈荷生等, 纳米金刚石复合涂层焊接套及拉拔套的特性与应用, 光线与电缆及其应用技术, 2007, 1:9-12
    [133] 张志明, 沈菏生, 孙方宏等, CVD 金刚石涂层拉丝模的研制与应用, 工具技术, 2000, 34(4):13-15
    [134] Azevedo A F, Mendes de Barros R C, Serrano S H P, etc., SEM and Raman analysis of boron-doped diamond coating on spherical textured substrates. Surface and Coating Technology,2006, 200:5973-5977
    [135] Ferreira N G, Abramof E, Corat E J, etc., Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction, Carbon, 2003, 41:1301-1308
    [136] Ferreira N G, Abramof E, Corat E J, etc., Stress study of HFCVD boron doped diamond films by X ray diffraction measurements, Diamond and Related Materials, 2001, 10:750-754
    [137] F.H. Sun, Z.M. Zhang, M. Chen, etc., Fabrication and application of high quality diamond-coated tools, Journal of Materials Processing Technology, 2002, 129: 435-440
    [138] F.H.Sun, Z.M.Zhang, M.Chen, etc., Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools, Diamond and Related Materials, 2003, 12:711-718
    [139] C.R.Lin, C.T.Kuo, R.M.Chang, Improvement in adhesion of diamond films on cemented WC substrate with Ti-Si interlayer, Diamond and Related Materials, 1998, 7:628-1632
    [140] M.Nesladek, K.Vandierendonck, C.Quaeyhaegens, etc., Adhesion of diamond coatings on cemented carbides, Thin Solid Films, 1995, 270:84-188
    [141] S.Silva, V.P.Mammana, M.C.Salvadori, etc., WC-Co cutting tool inserts with diamond coatings, Diamond and Related Materials, 1999, 8:1913-1918
    [142] Azevedo A F, Mendes de Barros R C, Serrano S H P, etc., SEM and Raman analysis of boron-doped diamond coating on spherical textured substrates, Surface and Coating Technology, 2006, 200:5973-5977
    [143] Ferreira N G, Abramof E, Corat E J, etc., Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction, Carbon, 2003, 1:1301-1308.
    [144] Wang W L, Liao K J, Feng B, Piezoresistivity of p-type homoepitaxial diamond films on Si(100), Diamond and Related Materials, 1998, 7:528-532
    [145] Alam M, Peebles D E, Tallant D R, Diamond deposition onto WC-6%Co cutting tool material:coating structure and interfacial bond strength, Thin Solid Films, 1997, 300:164-170
    [146] Johnson, Metal initiated nucleation of diamond, US Patent 5686152, 1997, 11
    [147] 张林荣, 张福林, 么茂秀等, CVD涂层在硬质合金拉丝模上的应用, 稀有金属, 1995, 19(2):94-97
    [148] 胡三媛, YG6拉丝模渗硼的试验研究, 中国农业大学学报, 2000, 5(4):81-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700