用户名: 密码: 验证码:
多西紫杉醇同步放射对小鼠Lewis肺癌生长抑制作用及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:每年全世界大约新增一百万的肺癌患者,其中非小细胞肺癌的发病率约占肺癌发病总数的75%-85%,其2/3的患者确诊时已失去手术机会,即为Ⅲ_B~Ⅳ期患者,预后不良。随机临床试验和meta分析都发现同步放化疗可以有效的提高无法手术切除的Ⅲ期患者的生存率,是目前的标准治疗模式,多西紫杉醇联合同步放射治疗是目前比较推崇的肺癌综合治疗方案。但是,多西紫杉醇同步放射的生物学机制复杂,目前认为可能与细胞周期阻滞、诱导部分细胞凋亡及残留乏氧细胞再氧合有关。涉及基因调控的分子生物学机制尚未明了。
     目的:本研究观察多西紫杉醇联合同步放射对小鼠移植性Lewis肺癌的生长抑制作用及对原癌基因表达产物EGFR和凋亡抑制基因bcl-2的影响,初步探讨多西紫杉醇与放射二者之间的可能协同作用机制,希望能够为临床应用多西紫杉醇同步放射提供理论依据。
     方法:建立Lewis肺癌移植瘤模型60只,从中选取位于C_(57)BL/6小鼠右后腿的肿瘤直径大小约6mm(5.8mm~6.2mm)的40只,随机分成4组,分别是对照组A(腹腔内注射生理盐水0.2ml,第12,15,19,22,26,29,33,36天各注射1次)、化疗组B(腹腔内注射浓度为200ug/ml的多西紫杉醇1ml,时间同A组),放疗组C(DT=2.5Gy/F,第13,20,27天各照射一次)和同步放化疗组D(化疗同B组,24小时内放疗,放疗同C组)。隔日一次测量瘤块的最长径(a)和与其垂直的短径(b),绘制各组小鼠的肿瘤生长曲线。并记录各组肿瘤直径从6.0mm长至12.0mm的时间,观察肿瘤生长延迟和肿瘤治愈的情况。肿瘤接种第40天处死小鼠,完整剥离瘤体并称重,计算抑瘤率,并用流式细胞术检测各组肿瘤细胞凋亡率及EGFR、Bcl-2蛋白的表达。
     结果:同步放化疗组肿瘤体积明显小于其他各组(P<0.05)。同步放化疗组的绝对延迟时间为(19.8±0.3)d,其标准化的延迟时间为(12.5±0.7)d,增益因子为1.21。与对照组相比,各治疗组的瘤重显著降低(P<0.01),放疗组、同步放化疗组的瘤重又显著低于化疗组(P<0.01)。但同步放化疗组与放疗组差异不明显(P>0.05)。单纯化疗、放疗均可促进肿瘤细胞凋亡(P<0.01),且单纯放射比多西紫杉醇更能诱导凋亡(P<0.01),二者联合后能更进一步抑制肿瘤细胞凋亡(P<0.01)。放疗组和同步放化疗组的Bcl-2表达与对照组相比均有下降(P<0.05),化疗组对Bcl-2表达无明显影响。而同步放化疗组与放疗组差异不显著(P>0.05)。5、化疗组、同步放化疗组可以显著抑制肿瘤细胞EGFR的表达(P<0.01),而放疗组与对照组比较,EGFR表达无明显差异(P>0.05)。同步放化疗组的EGFR表达分别低于各单独治疗组,差异均具有统计学意义(P<0.01)。
     结论:多西紫杉醇联合同步放射能明显抑制Lewis肺癌移植瘤的生长,其抑制作用可能与二者协同诱导肿瘤细胞凋亡,协同抑制EGFR的表达和放疗抑制Bcl-2蛋白表达有关。
Background:Almost one million new cases of lung cancer occur worldwide each year.Non-small cell lung cancer(NSCLC)accounts for approximately 75%-85%of all cases,2/3 of patients confirmed to have been lost surgery, which isⅢ_B-Ⅳpatients with poor prognosis.Randomized clinical trials and meta-analysis found that concurrent radiochemotherapy can effectively raise the survival rate of the unresectable patients with StageⅢand is the current standard treatment modalities,docetaxel-based concurrent radiochemotherapy is one of the relatively respected comprehensive treatment of lung cancer. However,the biological mechanism of concurrent radiochemotherapy is complex,now it is thought to be related to cell cycle arrest,inducing cell apoptosis and re-oxygenation of the redidued hypoxia cells.The molecular biology mechanisms of gene regulation have not yet clear.
     Objective:To investigate the efficacy of docetaxel-based concurrent radiochemotherapy in inhibiting the growth of Lewis lung cancer in vivo, explore the effect of inducing apoptosis,inhibiting bcl-2 and EGFR in the models,study the maybe corrdination mechniam between docetaxel and radiation and provide a theoretical basis for the clinical application of docetaxel-based concurrent radiochemotherapy.
     Methods:Treatment was initiated on the 12th day after 60 Lewis lung cancer models established.Every 10 mice bearing 6mm(5.8-6.2mm)xenograft tumor were assigned randomly into cohorts A,B,C and D.Group A(control group)received 0.2ml saline water intraperitoneally on day12,15,19,22,26,29,33,36.Group B received 1ml(200ug/ml)docetaxel intraperitoneally on day12,15,19,22,26,29,33,36.Group C delivered radiation on day13,20,27 to dose 7.5Gy/3F with 6MV X rays.Group D was given induction chemotherapy just same as Group B and concurrent radiation just like Group C within 24 hours after chemotherapy.The tumor volume was measured respectively before the mice were sacrificed on the 40th day and drawed the mice tumor growth curve.Observed the tumor growth delay and calculated the enhancement factors.The characters of apoptosis,expression of bcl-2 and EGFR were detected by Flowcytometry.
     Results:The xenograph volume of Group D was significantly smaller than Group A,B and C.For tumor growth delay analysis in the 40 mice,the absolute growth delay(AGD)for Group B and C were(7.3±1.1)and (10.3±1.0)d,respectively.The AGD and the normalized growth delay in Group D were(19.8±0.3)and(12.5±0.7)d,respectively.The enhancement factors was 1.21.The tumor weight of Group B,C,D was significantly lower than Group A(P<0.01),but there was no significant meaning between the Group C and D(P>0.05).The apoptotic rate of Group B and C were significantly higher than Group A(P<0.01),and Group D was significantly higher than Group A, B and C(P<0.01).The EGFR expression in Group D was significantly lower than Group A,B and C(P<0.01).And the Bcl-2 expression in Group D was lower than Group A and B(P<0.05).
     Conclusions:Concurrent radiochemotherapy can enhance inhibiting growth of Lewis lung cancer in vivo.The mechanism may be correlated with inducing cell apoptosis,depressing EGFR expression and inhibiting bcl-2 expression by radiotherapy.
引文
1.Wanger HJ.Radiation therapy in the management of patients with unresectable stage Ⅲa and Ⅲb non-small-cell lung cancer[J].Semin Onco,1997,24(4):423-428.
    2.Non-small cell lung cancer collaborative group.Chemotherapy in non-small cell lung cancer:a Meta analysis using update date on individual patients from 52 randomized clinical trials.Br Med J,1995,311:899-909.
    3.Lau D,Leigh B,Gandara D,et al.Twice-Weekly paclitaxed and weekly carboplatin with concurrent thoracic radiation followed by carboplatin/paclitaxel consolidation for stage Ⅲ non-small-cell lung cancer:a California Cancer Consortium phase Ⅱ trial.J Clin Oncol,2001,19:442-447.
    4.David R,Barb H,Daniel CC,et al.The effects of Cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer.Clinical Cancer Research,2005;11:795-805.
    5.程文芳,钱飞宇,陈强,等.序贯与同步放化疗治疗中晚期非小细胞肺癌的疗效观察[J].临床肿瘤学杂志,2005,10(4):407.
    6.Giorgio VS,Andrew TT,Ⅲ.Docetaxel-based Combined-modality chemoradiotherapy for locally advanced non-small cell lung cancer[J].The Oncologist,2003,8(4):361-374.
    7.任振义,白春学,洪群英,等.多西紫杉醇对Lewis肺癌放射增敏作用的实验研究.辐射研究与辐射工艺学报,2002,20(3):191-95.
    8.杨伟志,沈瑜.以LD_(50)为基础的观察指标//沈瑜,糜福顺.肿瘤放射生物学.北京:中国医药科技出版社.2002,121-122.
    9.Milas L,Mason K,Hunter N,et al.In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antiboby[J].Clin Cancer Res,2000,6(2):701-708.
    10.Morkve O,Laerum OD.Flow cytometric measurement of p53 protein express and DNA content in paraffin-embedded tissue from bronchial carcinomas[J].Cytometry.1991,2(5):438-44.
    11.Molina JR,Yang P,Cassivi SD,et al.Non-small cell lung cancer:epidemiology,risk factors,treatment,and survivorship[J].Mayo Clin Proc, 2008 May,83(5):584-94.
    12. Yang L, Parkin DM, Ferlay J, et al. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev.2005Jan,14(1):243-50.
    13. Yang L, et al. Estimation and projection of the national profile of cancer mortality in China; 1991-2005.BJC 2004.
    14. Jemal A, Murray T, Samuels A, et al. Cancer statistics. CA Cancer J Clin,2003,53 :5-26.
    15. Socinski MA, Rosenman JG. Chemotherapeutic issues in the management of unresectable stage Ⅲ non-small cell lung cancer. Semin Oncol,2005,32(2 Suppl 3):S 18-24.
    16. Bourhis J, Pignon JP, Domenge L, et al. Meta-analysis of chemotherapy in head and neck squamous cell carcinoma, on behalf of the MACH-NC collaborative group [abstract] [J]. Proc Am Soc Clin Oncol, 1998,16:1486A.
    17. Leborgne F, Leborgne JH, Doldan R, et al. Induction chemotherapy and radiotherapy of advanced cancer of the cervix : a pilot study and a phase Ⅲ randomized trial [J]. Int J Radiat Oncol Biol Phys, 1997,37(2):343-350.
    18. kiyoyuki Furuse, Masahiro Fukuoka, Masaaki Kawahara, et al. Phase Ⅲ study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage Ⅲ non-small-cell lung cancer [J]. Clin Oncol, 1999,17:2692-2699.
    19. Petr Zatloukal, Lubos Petruzelka, et al. Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small cell lung cancer :a randomized study. Lung Cancer, 2004,46:87-98.
    20. Ohe Y. Chemoradiotherapy for lung cancer: current status and perspectives. Int J Clin Oncol, 2004,9:435-443.
    21. Penland SK, Socinski MA. Management of unresectable stage Ⅲ non-small cell lung cancer: the role of combined chemoradiation. Semin Radiat Oncol, 2004,14:326-334.
    
    22. Curran WJ, Scott CB, Langer CJ, et al. Long-term benefit is observed in a phase Ⅲ comparison of sequential vs concurrent chemo-radiation for patients with unresected stage Ⅲ NSCLC : RTOG 9410. Proc Am Soc Clin Oncol, 2003,22:621.
    23. Rakovitch E, Tsao M, Ung Y, et al. Comparison of the efficacy and acute toxicity of weekly versus daily chemoradiotherapy for non-small-cell lung cancer: a meta-analysis [J]. Int J Radiat Oncol Biol Phys, 2004,58(1):196-203.
    24. Fournel P, Vergenenegre A, Robinet G, et al. Induction or consolidation chemotherapy with cisplatin and paclitaxel plus concurrent chemo-radiation with cisplatin and vinorelbine for unresectable non-small cell lung cancer patients: Randomized phase Ⅱ trial GFPC-GLOT-IFCT 02-01 [J]. J Clin Oncol, 2006,24(18S):7048.
    25. Belani CP, Choy H, Bonomi P, et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: a randomized phase Ⅱ locally advanced muti-modality protocol [J]. J Clin Oncol, 2005,23(25):5883-5891.
    26. Kelly K, Gaspar L, Chansky K, et al. Low incidence of pneumonitis on SWOG 0023 : prelininary analysis of an ongoing phase Ⅲ trial of concurrent chemoradiotherapy followed by consolidation docetaxel and Iressa/placebo maintenance in patients with inoperable stage Ⅲ non-small cell lung cancer [J]. Proc Am Soc Clin Oncol, 2005,(abstr 7058).
    27. Blumenschein G, Moughan J, Curran W, et al. A phase Ⅱ study of cetuximab(C225) in combination with chemoradiation(CRT) in patients(pts) with stage ⅢA/B non-small cell lung cancer(NSCLC): An interim report of the RTOG 0324 trail [J]. J Clinial Oncol, 2007,25(18S):7531.
    28. Choy H. Taxanes in combined modality therapy for solid tumors. Clin Rev Oncol Hematol, 2002,37:237-47.
    29. Gigrgio VS, Andrew TT,Ⅲ. Docetaxel-based combined-modality chemoradiotherapy for locally advanced non-small cell lung cancer [J]. The Oncologist, 2003,8(4):361-374.
    30. Vanselow B, Eble MJ, Rudat V, et al. Oxygenation of advanced head and neck cancer :prognostic marker for the response to primary radiochemotherapy. Otolaryngol Head Neck Surg, 2000,122(6): 856-62.
    31.Ann M,Mauer,Gregory A.Phase Ⅰ study of docetaxel with concomitant thoracic radiation therapy[J].J Clin Oncol,1998,16:159-164.
    32.Lori J,Wirth,Joan Lucca,Patricia Oster.Induction docetaxel and carboplatin followed by weekly docetaxel and carboplatin with concurrent radiotherapy,then surgery in stage Ⅲ non-small cell lung cancer:A phase Ⅰ study.Clin Cancer Res,2003,9:1698-1704.
    33.Janne PA.Concurrent docetaxel and thoracic radiation in non-small cell lung cancer[J].Clin Lung Cancer,2002,3:S37-S41.
    34.Choy H,Devore RF,Hande KR,et al.Phase Ⅰ trial of outpatient weekly docetaxel,carboplatin and concurrent thoracic radiation therapy for stage Ⅲ unrectable non-small cell lung cancer:a Vanderbilt Cancer Center Affiliate Network(VCCAN)trail.Lung Cancer,2001,34:441-449.
    35.吕纪马,王绿化,等.放射治疗同步紫杉醇化疗局部晚期非小细胞肺癌的Ⅱ期临床研究.中华放射肿瘤学杂志,2004,13:89-91.
    36.张萍,吴式磅等.紫杉醇和顺铂同步放化疗治疗局部晚期非小细胞肺癌的临床分析.中华放射肿瘤学杂志,2005,14:410-413.
    37.Assis GF,Ceolin DS,Marques ME,et al.Cigarette smoke affects apoptosis in rat tongue mucosa:role of bcl-2 gene family[J].2005,36(8-9):483-489.
    38.Hakem R,Hakem A,Duncan GS,et al.Differential requirement for caspase 9 in apoptotic pathways in vivo[J].Cell,1998(3)339-352.
    39.Yoichiro Hosokawa,Yasunori Sakakura,Likinobu Tanaka,et al.Radioation-induced apoptosis is independent of caspase-8 but dependent on cytochrome c and the caspase-9 cascade in human leukemia HL60cells[J].J Radiat Res,2005,46(3):293-303.
    40.Embree-Ku M,Venturini D,Boekelheide K.Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis [J].Biol Reprod,2002,66(5):1456-1461.
    41.Newton K,Strasser A.Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1signaling[J].J Exp Med,2000,191(1):195-200.
    42.Kukhta VK,Marozkina NK,Sokolchik IG,et al.Molecular mechanisms of apoptosis[J].Ukr Biokhim Zh,2003,75(6):5-9.
    43. Kane DJ, Sarafian TA, Anton P, et al. Bcl-2 inhibition of neural death :decreased generation of reactive oxygen species. Science, 1993,262:1274.
    44. Yin XM, Oitvai ZN, Korsmeyer SJ. BH1 and BH2 domain of.Bcl-2 are required for inhibition of apoptosis and heterodimeriation with BAX. Nature, 1994,369:321.
    45. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 1993,74:609.
    46. Koty PP, Zhang H, Levitt ML. Antisense bcl-2 treatment increased programmed cell death in non-small cell lung cancer cell lines. Lung Cancer, 1999,23:115-127.
    47. Kim KY, Seol JY, Yang H, et al. The combined treatment of aspirin and radiation induces apoptosis by the regulation of bcl-2 and caspase-3 in human cervical cancer cell. Cancer Lett, 2003,189(2): 157-66.
    48. Hanahan D, Weinberg R. The hallmarks of cancer. Cell, 2000,100(1):57-70.
    49. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal [J]. J Biol Chem, 1962,237:1555-1562.
    50. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity[J]. Cell, 1990,31:637-643.
    51. Franklin WA, Veve R, Hirsch FR, et al. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol, 2002,29(1 Suppl 4):3-14.
    52. Hunter T. Signaling—2000 and beyond. Cell, 2000,100(1):113-127.
    53. Deb TB, Su L, Wong L, et al. Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF. J Biol Chem, 2001,276(18): 15554-15560.
    54. Kim HG, Kassis J, Souto JC, et al. EGF receptor signaling in prostste morphogenesis and tumorgenesis. Histol Histopathol, 1999,14(4):1175-1182.
    55. Bergstrom JD, Westermark B, Heldin NE. Epideramal growth factor receptor signaling activates met in human anaplastic thyroid carcinoma cells. Exp Cell Res, 2000,259(1):293-299.
    56. Denning MF, Dlugosz AA, Cheng C, et al. Cross-talk between epidermal growth factor receptor and protein kinase C during calcium-induced differentiation of keratinocytes. Exp Dermatol, 2000,9(3):192-199.
    57. Piyathilake CJ, Frost AR, Marine U, et al. Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clinical Cancer Research, 2002, 8(3):734-744.
    58. Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression[J]. Oncol Rep, 2000 May-Jun, 7(3):603-7.
    59. Chakravarti A, Winter k, Wu CL, et al. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with lung squamous cell carcinomas treated by concurrent radiation and ciaplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group[J]. Int J Radiat Oncol Biol Phys, 2005 Jun 1,62(2):309-17.
    60. Fontanini G, Vignati S, Bigini D, et al. Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype [J]. Eur J Cancer, 1995,31:178-83.
    61. Artor CI. Biological modifiers as potential radiosensitizers : targeting the epidermal growth factor receptor family. Semin Oncol, 2000,27(6 Suppl 11): 15-20.
    62. Thomas TP, Shukla R, Kotlyar A, et al. Dendrimer-epidermal growth factor conjugate displays superagonist activity[J]. Biomacromolecules, 2008 Feb,9(2):603-9.
    63. Mason KA, Komaki R, Cox JD, et al. Biology-based combined modality radiotherapy: workshop report. Int J Radiat Oncol Biol Phys, 2001,50:1079-1089.
    64. Akimoto T, Hunter NR, Buchmiller L, et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res, 1999,5:2884-2890.
    65. Akimoto T, Hunter NR, Buchmiller L, et al . Inverse relationship between epidermal growth factor receptor expression and radiocurability of murin carcinomas. Clin Cancer Res, 1999,5:2884-2890.
    66. Lammering G, Hewit TH, Contessa JN, et al. EGFR and its mutant EGFR Ⅷ as modulators of tumor cell radiosensitivity(Abstract). Pro Am Soc Ther Radiol Oncol, 2002:103.
    67. Willman R, Yahalom J, Maxy R, et al. Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol Biol Phys, 1994,35:751-757.
    68. Kavanagh BD, Dent P, Schmidt-Ullrich RK, et al . Calcium-dependent simulation of mitogen-activated protein kinase activity in A431 cells by low doses of ionizing radiation. Radiat Res, 1998,149:579-587.
    69. Lammering G, Hewit TH, Contessal JN, et al. EGFR and its mutant EGFRvⅢ as modulators of tumor cell radio sensitivity. Int J Radiat Oncol Biol Phys, 2001,51(3 Suppl 1):103.
    70. Turner NA, Ball SG, Balmforth AJ. The mechanism of angiotensin Ⅱ induced extracellular signal regulated kinase-1/2 activation independent of angiotensin AT(IA) receptor internalization [J]. Cell Signal, 2001,13(4):269-277.
    71. Baselga, The EGFR as a target for anticancer therapy-foucus on cetuximab. Eur J Cancer, 2001(37 Suppl 4):S16-S22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700