用户名: 密码: 验证码:
超级电容器电极材料氧化镍的改性及电解液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是介于电池与传统电容器之间的一种新型的储能装置,由于其具有比功率高,循环性能好,可快速充电等优点,日益受到人们的重视。对于超级离子电容器的研究,主要集中在电极材料方面。本文选定氧化镍作为超级电容器的电极材料,研究了氧化镍的制备及其影响因素,以及其与活性碳的混合超级电容器的组装。
     本文研究了不同电解质溶液对NiO电极性能的影响。在KOH水溶液中能形成赝电容,最终确定KOH水溶液为最优电解液,并对KOH进行了添加剂的研究,得出在电解液KOH溶液中添加LiOH能够提高电容器的比容量,并且在4.5mol·L'KOH+0.5molLiOH·L'的混合电解液中比容量在5mA·cm~(-2)下达369.75 F·g~(-1),且循环性能好。
     用沉淀法制备NiO。结果表明,以碳酸铵作为沉淀剂并流沉淀法制备的NiO,10mA·cm~(-2)时,其放电比容量可达352.7 F·g~(-1),溶液电阻R_L为0.5Ω,电极电阻R_E为0.6Ω,经12mA·cm~(-2)恒电流循环100次,表现出良好的循环稳定性能。以Ni(NO_3)_2·6H_2O和(NH_4)_2CO_3为起始原料,聚乙二醇400为表面活性剂,采用醇-水法合成团聚少的NiO。这样制备的氧化镍在10 mA·cm~(-2)恒流充放电条件下,放电比容量可达395.5 F·g~(-1)。
     应用醇-水法制备掺杂Al~(3+)、Zn~(2+)、CO~(2+)的氧化镍复合材料。结果表明:在最佳工艺参数为Ni~(2+):Al~(3+):Zn~(2+):Co~(2+)=0.88:0.05:0.02:0.05时制备的电极比容量为716.45 F·g~(-1),比容量远高于未掺杂时。由XRD和SEM图看出,掺杂的氧化镍电极材料的晶粒细化,形状不规则,且分散均匀。
     用活性炭电极和氧化镍电极组装超级电容器。电化学性能测试结果:其充放电电压可达1.45V,具有优良的大电流充放电性能较低的自放电率,负/正极质量比为2:1时得到最大比容量,达82.68 F·g~(-1),不同电流密度下的等效内阻数值基本相同,为0.45Ω,在恒流充放电5000次时容量仍然维持在初始容量的80%以上,由此可见复合电容器的性能良好。
The supercapacitor is a new type of electrochemical energy storage devices between the typical rechargeable batteries and the typical dielectric capacitors and have advantages of high power densities and have very long cycle life, and have drawn more and more attention in recent years. The dissertation focus on the preparation, structure properties of electrode material and study on electrochemical hybrid supercapacitors composed with activated carbon and nickel oxide electrodes.
     The effects of different electrolytes on capacitor properties of NiO were investigated. Nickel oxide film electrodes be have pseudocapacitance in aqu eous KOH.The results showed that the KOH electrolyte ware feasible. LiO H additives were studied. On the condition of 5mA·cm~(-2) constant current, t he specific capacitance is 369.75F·g~(-1) in mixed electrolytes containing 4.5m ol KOH and 0.5mol LiOH every one litre. The cycle capability of NiO in mixed electrolytes is excellent.
     NiO was prepared by depositing methods. Taking (NH)_2CO_3 as precipit ator, the NiO was prepared by Parallel Flow Precipitation Process, The val ues of R_L and R_E by test of AC impedance are 0.5Ωand 0.6Ωrespectivel y.The specific discharge capacitance is 352.7 F·g~(-1) at 10mA·cm~(-2) current de nsity. Long cycle life was also demonstrated after charge/discharge 100 cyc les at 12 mA·cm~(-2).Taking Ni(NO_3)_2 and (NH)_2CO_3 as main raw materials, taking PEG-400 as surfactant, NiO was prepared by alcohol-water method. Compared with water solution method, the distribution of the NiO powder obtained by alcohol-water method is narrow. The addition of surfactant PE G-400 can reduce powder agglomeration. The specific capacitance of the re suiting NiO reached 395.5 F·g~(-1) at 10mA·cm~(-2).
     NiO was prepared that multi-ion instituted the Ni~(2+) by alcohol-water m ethod. By using orthogonal test method optimum technological conditions ar e Al~(3+):Zn~(2+):Co~(2+)=0.88:0.05:0.02:0.05.The specific capacitance of the resultin g NiO reached 716.45 F·g~(-1) at 10mA·cm~(-2).XRD and SEM show that particl e size of the NiO is smaller and its distribution is narrow.
     Electrochemical hybrid supercapacitor composed with activated carbon and nickel oxide electrodes were studied in 5mol·L~(-1) KOH aqueous solutions.The result: The maximum charge-discharge voltage was about 1.45V and excellent characteristic of high power discharge was attained in this way. This type of hybrid supercapacitor exhibited much lower self-discharge rate than capacitor composed of two identical activated carbon electrodes. The specific capacitance of electrochemical hybrid supercapacitor reached 82.68F·g~(-1) at 10mA·cm~(-2) on quality proportion of anodexathode is 4:1, its inner resistance is 0.45Ωat different current density. Long cycle life was also demonstrated after charge/discharge 5000 cycles, and its specific capacitance is above 80% initiatory capacitance. The high performance obtained indicates that the AC/NiO hybrid supercapacitorsare promising.
引文
[1] Thounthong P., Ra(?)l S.,Davat B.. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle[J]. Journal of Power Sources. 2006,158(1):806-814.
    [2] Malcolm D. Ingram, H. Staesche., et al. "Ladder-doped" polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors[J]. Journal of Power Sources, 2004,129(1): 107-112.
    [3] Malcolm D. Ingram, H. Staesche., et al. "Ladder-doped" polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors[J]. Journal of Power Sources. 2004,129(1): 107-112.
    [4] 朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390.
    [5] Eugenio F., Piergeorgio R.,Veronique D., et al. Supercapacitors for the energy management of electric vehicles[J]. Journal of Power Sources, 1999,84: 261-269.
    [6] 薛洪发.超大容量电容器在内燃机车启动中的应用[J].内燃机车.
    [7] 王国庆,胡宁彪.无轨电车脱线运行新型动力源-超级电容器[A].全国电动车电池系统技术研讨会论文集[C].上海,2004:15-20.
    [8] 梁逵,吴孟强,周旺,等.电池型电容器-超大容量离子电容器[J].电子元件与材料,2001,20(4):24-26.
    [9] Jung D.Y., Kim Y.H., et al Development of ultracapacitor modules for 42V automotive electrical systems[J]. Journal of Power Sources. 2003, 114(2):366-373.
    [10] Phatiphat T., Stephane R., Bernard D. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle[J]. Journal of Power Sources. 2006,158(1): 806-814.
    [11] Mastragostino M.,Arbizzani C. Polymer Selection and cell for electric vehicle supercapacitors[J]. Journal of the Electrochemical Society. 2000,147 (2):407-412.
    [12] M. Winter,R. J. Brodd. What are batteries,Fuel Cells and Supercapacitors[J]. Chem.Rev,2004,104:4245-4269.
    [13] 李荻.电化学原理[M].北京:北京航空航天大学出版社,1998,143-145.
    [14] K(?)tz R.,Carlen M.. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta.2000,45:2483-2498.
    [15] K(?)tz R.,Carlen M.. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta. 2000,45:2483-2498.
    [16] Matsumoto M.. Electrical phenomena at interfaces: fundamentals,measure ments and applications[J].Surfactant science series,New York: Marcel Dekker,1998,76:87-99.
    [17] Darryl D.,John N.. Predition of Specific Energies and Specific Powers of Double-layer Capacitors Using a Simplified Model[J]. Journal of The Electrochemical Society,2000,147(3): 820-830.
    [18] 王晓峰,解晶莹,孔祥华,等.“超电容”电化学电容器研究进展[J].电源技术,2001,25(5):166-170.
    [19] Reichenauer L W,Fricke G H. Carbon aerogels derived from cresol-resorcinol-formaldehyde or supercapacitors[J]. Carbon,2002,40(15):2955-2959.
    [20] Naoi K,Suematsu S J. Electrochemical supercapacitors using conducting polymers[J]. Electrochem Soc,2000,147(2): 420-426.
    [21] Mastragostino M.,Paraventi R. Zanelli A.. Supercapacitor based on composite Polymer electrodes[J]. Journal of theElectrochemical Soeiety, 2000,147(9):3167-3170.
    [22] 李建玲,梁吉,徐景明,等.双电层电容器有机电解液研究进展[J].电源技术,2001,25(3):229-234.
    [23] Kang Xu,Michael S. Ding,Richard Jow T.. Quaternary onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors[J]. Journal of The Electronchemical Society,2001,148(3):267-274.
    [24] Yoshiharu Matsuda,Masayuki Monta,Masashi Ishikawa,et al.New Electric Double-Layer Capacitors Using Polymer Solid Electrolytes Containing Tetraalky Lmonium Salts[J]. Journal of The Electrochemical Soeiety,1993,140(7):109-110.
    [25] 王建立,刘文华.碳基电化学电容器及其研究进展[J].电源技术,2000,24(2):57-60.
    [26] 刘志祥,张密林,闪星.千法级超级电容器的制备[J].电源技术,2001,25(5):354-370.
    [27] 顾温国,李劲,夏云发.钮扣型液体双电层电容器的研制[J].电子元件与材料,2000,19(3):23-24.
    [28] Songhun Yoon,Jinwoo Lee,Taeghwan Hyeon,et al. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon[J]. Journal of The Electrochemical Society,2000,147(7): 2507-2512.
    [29] Hiroguki Nakagawa,Atsushi Shudo,Kouichi Miura. High-Capaeity Electric Double-layer Capacitor with High-Density-Activated Carbon Fiber Electrodes[J]. Journal of The Electrochemical Soeiety,2000,147(1): 38-42.
    [30] Jow T. R.,Zheng J. P.. Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium oxide[J]. Journal of The Electrochemical Soeiety,1998,145(1): 49-52.
    [31] Chi-Chang Hu,Yao-Huang Huang. Cyclic Voltammetric Depostion of Hydrous Ruthenium oxide for Electrochemical Capacitors[J].Journal of The Electrochemical Soeiety,1999,1467:2465-2471.
    [32] Fraekowiak E.,Metenier K.,Bertagna V.,et al.Supercapacitor eleetrodes from Multuwalled carbon nanotubes[J]. Appl.Phys.Lett.,2000,77(15):2412-2423.
    [33] Manikandan Raman,Bala S.Haran,RalPh E.White,et al. Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors[J].Journal of The Electrochemical Soeiety,2001,148(4): 374-380.
    [34] Yuiehi Sato,Koichi Yomogida,Takesi Nanaumi,et al. Electrochemical Behavior of Activated-Carbon Capacitor Materials Loaded with Rutheniumoxide[J]. Electrochemical and Solid-State Letters,2000,33:113-116.
    [35] 闪星.纳米氧化物的制备及在超级电容中的应用[D].哈尔滨工程大学,2002.
    [36] 王晓峰,孔祥华,刘庆国,等.氧化镍超电容的研究[J].电源技术,2001,25(3):219-222.
    [37] Chuan L,James A,Branko N. Characterization of solgel devived cobalt oxide xergels as electrochemical capacitors[J]. Electrochemical Sec,1998,145(12): 4097-4101.
    [38] 李胜,丁士华,梁逵,等.真空烧结制备氧化镍及其超级电容器特性的研究[J].西华大学学报:自然科学版,2007,26(3):9-11.
    [39] Venkat Srinivasan,John W. Weidner. An Electrochemical Route for Making Porous Niekel Oxide Electrochemical Capacitors[J]. Journal of The Electrochemical Soeiety,2002,144(8): 210-213.
    [40] 梁逵,陈艾,吴孟强,等.热处理温度及掺杂对氧化镍电极赝电容器特性的影响[J].硅酸盐学报,2002,30(1):1-3.
    [41] Natarajan C. Improvement in Electrichromic Stability of Electrodeposited Nickel Hydroxide Thin Film[J]. Journal of the Electrochemical Society. 1997,144(1):18
    [42] 马仁志.碳纳米管压制体的性能及工程应用的研究[D].北京:清华大学,2004.
    [43] Conway B E. Briss V.Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. J Power Sources,1997,66: 1-14.
    [44] 胡辉,高艳阳.低热固相法制备纳米氧化镍[J].应用化工.2003,32(5):30.
    [45] 景茂祥,沈湘黔,沈裕军.柠檬酸盐凝胶法制备纳米氧化镍的研究[J].无机材料学报,2004,19(2):289.
    [46] 赵胜利,文九巴,张玉兰,李洛利.氧化镍薄膜的制备及电化学性质[J].化学通报,2006,69(1):62.
    [47] Wang X F,Ruan D,Liang L.Pseudocapacitive behavior of nickel Oxide/carbon nanotubes composite prepared by cathodic deposition[J].Chinese Journal of Chemical Physics,2005,18(3): 421-427.
    [48] 闪星,张密林.纳米氧化镍在超大容量电容器中的应用[J].功能材料与器件学报,2002,8(1):3.
    [49] 李国军,黄校先,郭景坤,等.醇-水法制备纳米晶NiO粉体[J].功能材料,2002,33(4):398.
    [50] 李健,向兰,金涌.水热改性法制备分散性纳米氧化镍[J].稀有金属材料与工程,2004,33(4):425.
    [51] 刘长久,叶乃清,刁汉明.纳米氧化镍氢氧化镍复合电极材料的制备及其电化学性能[J].应用化学,2001,18(4):335.
    [52] 王玉棉,王胜,侯新刚,等.并流沉淀法制备纳米氧化锌[J].有机金属,2003(6):43-46.
    [53] 华东理工大学技术物理研究所.超细颗粒制备科学与技术[M].上海:华东理工大学出版社,1996.
    [54] Tessier C The Structure of Ni(OH)_2:From the Ideal Material to the Electro chemically Active One[J]. Journal of the Electrochemical Society.1999,146(6): 2059-2067.
    [55] Liu S. F.,Wu C. Y.,Han X. Z.. Preparation of nanoscale NiO powders by polymer-network gel process[J]. Journal of Inorganic Chemistry in Chinese,2003,19(6): 624-626.
    [56] Li X.,Yu D.,Yu J.. Experimental study on synthesis of NiO nano particles[J]. Scripta Materialia. 2002,47(4): 219-224.
    [57] Arm strong R D. Some effects of the addition of cobalt to the nickel hydroxide electrode[J]. J Appl Electrochem,1988,18 (18): 215-219.
    [58] Kamath P V,Dixit M,Indira L,et al.Stabilized α-Ni(OH)_2 as electrode material for alkaline secondary cells[J]. J Electrochem Soc,1994,141(11):2956-2959.
    [59] 冷拥军,王凤军,刘兵,等.铝取代氢氧化镍的制备、结构与电化学性能Ⅰ电化学性能[J].电源技术,2000,24(2):77-80.
    [60] 冷拥军,刘兵,王凤军,等.铝取代氢氧化镍的制备、结构与电化学性能Ⅱ结构分析[J].电源技术,2000,24(6):326-329.
    [61] 任欢鱼,刘勇健,等.醇-水共热法制备Fe_3O_4磁流体[J].化工进展,2003,(1):49-52.
    [62] 余丹梅,陈昌国,周上祺,等.Cu对纳米氢氧化镍的掺杂修饰研究[J].电池.2005,35(2):102-104.
    [63] 田昭武.电化学研究方法[M],北京:科学出版社.1984:232.
    [64] 梁逵,陈艾,何莉,等.热处理气氛及掺钴对NiO电极赝电容器性能的影响[J].研究与试制,2001,5:1-2.
    [65] 丁士华,梁逵,庄凯,等.掺CeO_2纳米MnO_2非对称超级电容器的研究[J].电子原件与器材,2006,25(4):4-6.
    [66] 吴浩青,李永舫.电化学动力学[M],北京:高等教育出版社,1989:41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700