用户名: 密码: 验证码:
活性碳/硬碳非对称超级电容器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学电源作为一种将化学能转换为电能的高效能量转换装置越来越受到关注和重视。超级电容器是介于常规电容器和二次电池之间的一种新型储能装置,它具有较常规电容器更大的容量和能量以及比二次电池更高的功率密度,且能够进行快速充放电,拥有极长的使用寿命和较宽的工作温度范围。超级电容器的使用十分广泛,比如在航空航天军事方面、移动通信技术、电子消费产品、燃料电池、电动汽车和城市交通以及太阳能和风能中都有重要而广阔的应用前景,其中有的应用领域还是无法代替的。将超级电容器和二次电池组合形成的混合动力电源系统,能够很好地满足高功率输出的需要,在电动汽车瞬间启动、加速和制动方面发挥很大作用。研究开发新的超级电容器电极材料具有很重要的现实意义。
     石墨(MCMB)和硬碳(hard carbon)作为商业锂离子蓄电池中最常用的负极材料,它们都具有高导电性,电化学性能优良,其中,硬碳具有独特的卡片层状结构,理论比容量比石墨高,可以考虑作为超级电容器电极材料,与活性碳(activated carbon)材料装配成非对称电容器。本论文第一部分主要是考察了MCMB电极的嵌锂性能和高比表面活性碳电极的电化学性能,第二部分则分别以高嵌锂容量的硬碳和活性碳电极作为超级电容器的负极和正极,考察了硬碳负极的嵌锂性能,并对初步研究了AC/HC非对称超级电容器的电化学性能。通过电化学实验研究得到以下结论:
     1、对MCMB电极进行循环伏安测试表明,电极表面的SEI膜基本上是在首次CV过程中形成,形成SEI膜的电压范围主要在0.75-0.2 V,而锂离子嵌入石墨层间的电压范围是0.2-0.01 V。但MCMB电极大倍率放电时衰减严重,高倍率性能不太理想。活性碳电极在有机电解液1.3 mol/L LiPF6/EC+DMC(质量比为1:3)中的电化学性能测试表明,活性碳电极在工作电压范围内稳定性良好,表现出很好的功率特性和电容特性。
     2、本文中的硬碳材料层间距较大,嵌锂比容量较高,硬碳纽扣电池嵌锂实验和循环伏安测试表明,25 mA/g电流密度时放电比容量为284.7 mAh/g,它具有较好地快速脱嵌锂性能,可进行大倍率性能实验,可以运用于非对称超级电容器中;在循环伏安扫描过程中发生了锂离子的嵌入脱出反应,基本在首次CV过程中形成SEI膜,形成SEI膜的电压范围主要在1.0-0.5 V,锂离子嵌入硬碳层间的电压范围是0.5-0 V。
     3、通过恒流充放电测试、循环伏安和交流阻抗测试手段研究了活性碳/硬碳非对称超级电容器的电化学性能。结果显示,当正负极质量比为1:1时,非对称电容器的比容量值达到最佳,在25 mA/g电流密度时,单极比电容为80.1 F/g,100 mA/g时电容值为78.9 F/g,容量保持率为98.5%。以25 mA/g电流密度的循环性能测试表明,非对称电容器的交流阻抗值小于活性碳双层电容器,且充放电效率都在98%左右,1000次循环后,比容量保持率为70.4%,此非对称超级电容器的电化学性能还有待提高。
As a high efficient energy conversion device (convert chemical energy into electric energy), chemical power sources received much attention. Among those devices, supercapacitors are a kind of intermediate systems between conventional capacitors and rechargeable batteries which have many advantages over conventional capacitors,such as possessing higher capacities and energy, higher specific power compared to batteries, and fast charge-discharge speed, extremely long cycle life and wide operating temperature range. Supercapacitors are widely used in many areas such as military aerospace, mobile telecommunication and information technology, consumer electronics, fuel cells, electric vehicles and urban transports, solar and wind energy. Some of the aeras are often irreplaceable. When the supercapacitors combined with rechargeable batteries formed the hybrid power system, which can meet the high power out-put need, and play an significant role in electric vehicles in condition of instantly starting, acceletating and braking. Consequently, it is significant to do research and development on a new kinds of electrode materials of supercapacitors.
     Graphite (MCMB) and hard carbon with good electrochemical performance and high conductivity are most uaually used as negative electrode materials in lithium-ion battery. Especially hard carbon has a "card" layered structure and its theoretical lithium insertion capacity higher than graphite. We consider using hard carbon and activated carbon as anode and cathode respecitively for a new type of asymmetric supercapacitor. In this dissertation, MCMB material and activated carbon have been researched in the former section. The second part will focus on the hybrid capacitor. The conclusions can be drawn as follows by doing a series of experiments:
     1. The CV results of graphite(MCMB) in a three-electrode using 1.3 mol/L LiPF6/EC+DMC show:the SEI formation potential range in the first cathodic process was 0.75-0.2 V, and the de-intercalation potential range was 0.2-0.01 V. The SEI film was formed mostly in the first cycle. However, the high rate performance of the MCMB electrode was not so satisfactory. The electrochemical tests of activated carbon electrode indicated its good power and capacitance characteristics. And the electrode was very stable during the whole process.
     2. The layer spacing of hard carbon in this paper was relatively large and its corresponding lithium intercalated capacity was high. The lithium intercalation experiments and CV tests of hard carbon using 1.3 mol/L LiPF6/EC+ DMC demonstrate:the SEI formation potential range in the first cathodic process was 1.0-0.5 V, and the de-intercalation potential range was 0.5-0 V. In addition, the SEI film was formed mostly in the first cycle. And the discharge capacity of hard carbon was 284.7 mAh/g at the current density of 25 mA/g. Morever, hard carbon can intercalate lithium at a fast speed, which made it suitable to work at high rate. So it can be used as electrode for supercapacitors.
     3. The AC/HC asymmetric capacitor was characterized by galvanostatic charge/discharge, cyclic voltammetry and EIS tests. The results indicate:The specific capacity of the hybrid capacitor can reach to the best value when the mass ratio of cathode to anode was 1:1. And the EIS value was lower than AC symmetric capacitor. Besides, the unipolar specific capacity was 80.1 F/g and 78.9 F/g when the current density was 25 mA/g and 100 mA/g, respectively, retained 98.5%. Finally, the cycle performance tests for the hybrid supercapacitor showed:afer 1000 cycles, the specific capacitance retained 70.4%, while the charge/discharge efficiency was 98%, and the electrochemical performance of the hybrid capacitor needs to be improved.
引文
[1]Yoda S, Lshihara K. The advent of battery-based soceieties and the global environment in the 21st century[J]. J Power Sources,1997,68:3-7
    [2]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000,123-124
    [3]B Z Fang, H S Zhou, Itaru Honma, Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application[J]. J.Phy, Chem.B,2006,110:4875-4880
    [4]A C Dillion, K M Jones, T A Bekkedah, et al. Storage of hydrogen in single-walled carbon nanotubes, Nature,1997,386:377-379
    [5]Burke A. Ultracapacitor: why, how, and where is the technology [J]. J. Power Sources,2000, 91 (1):37-50
    [6]Conway B.E. Electrochemical supercapacitors:scientific fundamentals and technology applications. New York: Plenum Publisher,1999:p.6
    [7]Atsushi N. Capacitors:operating principles, current market and technical trends[J]. J. Power Sources,1996,60(2):137-147
    [8]Soavi F. New trends in electrochemical supercapacitors[J]. J. Power Sources,2001,100 (1-2): 164-170
    [9]Nomoto S, Nakata H, Yoshioka K, et al. Advanced capacitors and their application[J]. J. Power Sources,2001,97-98:807-811
    [10]Portet C, Taberna P L, Simon P, et al. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta,2005,50 (20):4174-4181
    [11]Robert A.H. Supercapacitors and electrochemical pulse sources[J]. Solid State Ionics,2000, 134(1-2):179-195
    [12]Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles:1 Initial characterization[J]. J. Power Sources,2002,112 (1):236-246
    [13]Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles. J. Power Sources,1999,84 (2):261-269
    [14]Burke A F, Murphy T C. Matrrial characteristics and the performance of electrochemical capacitors for electric/hybrid vehicle applications[J]. Mat Rfes soc Symp Proc,1995,393: 375-395
    [15]杨书廷,张焰峰,刘利君等,锂离子电池正负极材料研究进展[J],河南师范学报,2000,28(4):46-49
    [16]彭文杰.锂离子电池正极材料的合成与性能及电池制作技术研究[D].中南大学,博士学位论文.2001:3-4
    [17]J M Tarascon, M Amrnad. Issues and challenges facing rechargeable lithium battery[J]. Nature,2001,414:359-367
    [18]任学佑.锂离子电池及其发展前景[J].电池,1996,26(1):38-40
    [19]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002:57-59
    [20]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].化学工业出版社2007:130-131
    [21]H Shi, J Barker, M Y Saidi, R Koksbang.Structure and lithium intercalation properties of synthetic and natural graphite[J]. J.Electrochem.Soc,1996,143 (11):3466-3472
    [22]Masataka Wakihara, Recent developments in lithium ion batteries[J]. Materials Science and Engineering R,2001,33 (4):109-134.
    [23]王涛.胶态锂离子电池及其材料的研究[D].复旦大学博士学位论文,上海,2003
    [24]Bruno Scrosati, Lithium rocking chair batteries:an old concept[J]. J. Electrochem.Soc,1992, 139 (10):2776-2781
    [25]汪艳,冯熙康,杜友良,王伯康.锂离子蓄电池材料的研究现状[J].电源技术,2001,25:242-245
    [26]W H Qiu, R Q Zhou, L L Yang. Lithium-ion rechargeable battery with petroleum coke anode and polyaniline cathode[J]. Solid State Ionics.1996,88:903-906
    [27]J R Dan, A K Sleigh, Huang Shi.Carbons and graphites as substitutes for the Lithium Anodes[J]. Lithium Batteries.2002,25:34-41
    [28]吴国良.锂离子电池负极材料的现状与发展[J],电池,2001,31(2):54-57
    [29]孙灏,蒲薇华,何向明,李建军,姜长印,万春荣.锂离子电池硬碳负极材料研究进展[J].化工新型材料2005.33(11)
    [30]吴升辉,尤金跨,林祖赓.锂离子电池碳负极材料的研究.电源技术,1998,22(1):37-38
    [31]A Mabuchi, K Tokumitsu, H Fujimoto, T Kasuh, Charge-Discharge Characteristics of the Mesocarbon Miocrobeads Heat-Treated at Different Temperatures [J]. J.Electrochem.Soc. 1995,142(4):1041-1046
    [32]T Zheng, J S Xue, J R Dalln. Lithium Insertion in Hydrogen-Containing Carbonaceous Materials[J]. Chem Mater.,1996,8 (2):389-393
    [33]仇卫华,张刚.锂离子电池负极材料-树脂包覆复合碳的性能[J].电源技术,1999,23:7-9
    [34]王保峰,杨军,解晶莹等.锂离子电池用硅/碳复合材料[J].化学学报,2003,61:1571-1576
    [35]尹鸽平,高云智.掺磷对硬碳及软碳嵌锂性能的影响研究[J].材料科学与工艺,2003,11:159-163
    [36]Y E Eli, V R Koch, Chemical Oxidation:A Route to Enhanced Capacity in Li-lon Graphite Anodes[J]. J.Electrochem.Soc,1997,144 (9):2968-2972
    [37]M Nishjima, T Kgaohashi, M Imnaishi. Synthesis and elecrtoehemical studies a new material Lil-xCoxN[J]. Solid State Ionics,1996,83 (1-2):107-111.
    [38]D H Gergory, P.M.O"Meara, A G Gordon.Layered ternay transition metal nitrides, synthesis, structure and physical properties. J.Alloys and compounds,2001,317-318:237-244
    [39]M Nishjiima, T Kagohashi, Y Takeda. Elecrochemical studies of a new naode maetrial, Li3-xMxN(M=Co,Ni.Cu) [J]. J.PowerSources,1997,68 (2):510-514
    [40]刘宇.先进嵌锂材料研究与应用[D].中科院上海微系统与信息技术研究所博十学位论文,上海,2003.
    [41]庄大高.锂离子电池正极材料LiFePO4的合成及其电化学性能研究[D].浙江大学博士学位论文,2006
    [42]B V Ratnakumar, M C Smart, C K Huang, D Perrone, S Surampudi, S G Greenbaum. Lithium ion batteries for Mars exploration missions[J]. J. Electrochimica Acta,2000,45 (8-9):1513-1517
    [43]T B Atwater, P J Cygan, F C Leung. Man portable power needs of the 21st century:I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources[J]. J. Power Sources,2000,91 (1):27-36
    [44]Y A Maletin, N G Strizhakova, et al. Novel type of storage cells based on eleetrochemical double-layer capacitors [J]. NATOASI Series,1996,6(3):363-372
    [45]王晓峰,孔祥华等,新型化学储能器件—电化学电容[J].化学世界,2001,42(2):103-108
    [46]B.E.Conway, Transition from supercapacitor tobattery behavior in Electroehemical energy storagefJ]. J.Electrochem Soc,1991,138 (6):1539-1548
    [47]肖超,唐斌,吴孟强,张树人.超级电容器电极材料的研究进展[J].绝缘材料2007,40(1):44-47
    [48]Conway B.E, Electrochemical supercapacitors:scientific fundamentals and technology applications[J]. New York:Plenum Publisher,1999:p.6
    [49]Atsushi N. Capacitors:operating principles, current market and technical trends[J]. J. Power Sources,1996,60 (2):137-147
    [50]C Arbizzani, M Mastragostino, Soavi F. New trends in electrochemical supercapacitors[J]. J. Power Sources,2001,100 (1-2):164-170
    [51]Nomoto S, Nakata H., Yoshioka K., et al. Advanced capacitors and their application[J]. J. Power Sources,2001,97-98:807-811
    [52]Portet C, Taberna P L, Simon P, et al. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta,2005,50 (20):4174-4181
    [53]Robert A H. Supercapacitors and electrochemical pulse sources[J]. J. Solid State Ionics,2000, 134(1-2):179-195
    [54]Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles:I Initial characterization[J]. J. Power Sources,2002,112(1):236-246
    [55]Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles[J]. J. Power Sources,1999,84 (2):261-269
    [56]田金顺次.电极用固体活性炭的开发与应用[J].化学工业,1992(7):21-27
    [57]K Babel, K Jurewicz. Electrical capacitance of fibrous carbon compositesin supercapacitors[J]. Fuel Processing Technology,2002(77-78):181-189.
    [58]R Sallger, U Pischer. High surface area aerogels for supercapacitors[J]. J Non-Crystalline Solids,1998,225:81-85.
    [59]P V Adhyapak, Trupti Meddanimath, Sushama Pathdar, et al. Application of eleetrochemically prepared carbon nanofibers in supercapacitors[J]. J Power Sources,2002, 109(1):105-110.
    [60]E Frackowiak, F Beguin. Eleetrochemieal storage of enegy in carbon nanotubes and nanostructured carbons[J]. Carbon,2002,40:1775-1787
    [61]E Frackowiak, K Jurewiez, et al. Nanotubular material for supercapacitors[J]. J Power Sources,2001(98-98):822-825
    [62]王晓峰,王大志等.碳基电化学双电层电容器的研制[J].研究与设计,2002,26(增):225-227
    [63]K Jurewiez, S Delpeux et al. Supercapacitors from nanotubes/polypyrrole composites[J]. Chemphys Lett,2001,347:36-40.
    [64]F. Salver-Disma, A Du Pasquier, J M Tarascon, J C Lassegues, J N Rouzaud. Physical characterization of carbonaceous materials prepared by mechanical grinding[J]. J Power Sources,1999,82,291.
    [65]F Disma, L Aymard, L DuPont, J M Tarascon. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons [J]. J Electrochem.Soc,1996,143,3959
    [66]J Gamby, P L Taberna, P Simon,et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. J PowerSources,2001,101 (1):109-116
    [67]R Saliger, U Fischer, et al. High surface area carbon aerogels for supercapacitors[J]. J. Non-Crystalline Solids,1998,225 (1):81-85
    [68]E.Frackowiak, K.Jurewicz, et al. Nanotubular materials for supercapacitors[J]. J PowerSources,2001,6 (97-98):822-825
    [69]C Sehmittm, H Probstle, J Frieke. Carbon cloth-reinforced and activated aerogel films for supercapacitors[J]. J Non-CrystallineSolids,2001,285 (1-3):277-282
    [70]CONWAY B E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications[M]. New York:Plenu m Publishers,1999.
    [71]Zheng J P, Jowr J.A new Charge storage mechanism for electrochemical capacitors[J]. J. Electrochem. Soc.,1995,142 (1):L6-L8
    [72]Zheng J P, Jow T R. High energy and high power density electrochemical capacitors[J]. J. Power. Sources,1996,62 (2):155-159
    [73]Zheng J P, Jow T R. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide[J]. J. Electrochem. Soc,1998,145 (1):49-52
    [74]Manthiarm A, JeongY U. Amorphous Tungsten oxide/Ruthenium oxide composites for electrochemical capacitors [J]. J.Electorehem.Soc.,2001,148(3):A189-A193
    [75]陈野,张春霞,舒畅等.Mn02/C超级电容器的组装及性能研究[J].电子元件与材料,2006,25(7):75-77.
    [76]Toupin M, Brousse T, Belanger D. Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide[J]. Chem Mater,2002,14 (9): 3946-3952.
    [77]Lee H Y, Goodenough J B. Supercapercator behavior with kcl electrolyte[J]. J. Solid state. chem.,1999,144:220-223
    [78]Kyung Wan Nam, Kwang Bum Kim. A Study of the NiOx Electrode Via Electrochemical Route for Supercapactor Ap-plications and their Charge Storge Mechanism[J]. Elec-trochem Soc,2002,149(3):346-354.
    [79]Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. J Electrochm Soc,1996,143:124-130.
    [80]梁边,陈艾,吴孟强,等.热处理温度及掺杂对氧化镍电极鹰电容器特性的影响[J].硅酸盐学报,2002,30(1):1-4.
    [81]Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·H2O in potassium chloride (KCl) aqueous solution[J]. J Solid State Chemistry,1999,148:81-84.
    [82]Grupio nl A A F, Lassali T A F. Effect of the Co3O4 Introduction in the Pseudocapacitive Behavior of IrO2 Based Electrode[J]. Electrochem Soc,2001,148 (9):1015-1022.
    [83]S C Pang, M A Anderson, Mat. Res. Symp.Proc,2000,575,415.
    [84]Kim H J, Koizhaiganova R, Vasudevan T, et al. Single step synthesis of poly(3-octylthiophene)/multi-walled carbon nanotube composites and their characterizations [J]. Polymers Adv.Technol,2009,20(9):736-741
    [85]Fusalba Florence, Gouerec Pascal, et al. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors[J]. J Electrochem Soc,2001,148(1):A1.
    [86]Sun W, Chen X Y. Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor [J]. J. Power Sources,2009,193 (2):924-929
    [87]M Okamura, Introducing the "nanogate" capacitors, IEEE Power Electronics Sociey NEWS LETTER,2004,16(10),9.
    [88]M Okamura, The 15th International Semiar on Double Layer Capacitors and Hybrid Energy Storage Devices, DeerfieldBeach,2005, Proeeedings of the 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Deviees, P203.
    [89]邓梅根,杨邦朝,胡永达.用于超电容器的高性能活性碳研究[J],电子元件与材料,(2005).24(5)
    [90]Yongjian Huai, Xuebu Hu, Ziji Lin, Zhenghua Deng, Jishuan Suo, Preparation of nano-TiO2/activated carbon composite and its electrochemical characteristics in non-aqueous electrolyte[J]. Materials Chemistry and Physics,2009,113 962-966.
    [91]白锋,王树林,苏丹,丁浩冉.超级电容器MnO2/活性炭复合电极的研究[J],中国粉体技术,(2007)4
    [92]刘操,邓正华,万国祥.碳纳米管/活性碳复合电极的电容特性[J].电源技术,2002,26(1):36-38.
    [93]彭友谊,张海燕,贺春华,谢慰,曾志峰.磷酸铁锂离子电池正极材料复合碳纳米管的研究[J].电化学,2009,15(3):331-335.
    [94]E Frackowiak, K Meterier, V Bertagna, et al. Supercapacitor electrodes from multiwalled carbon nanotubes[J]. Appl Phy Lett,2000,77(15):2421-2423.
    [95]Pekala R, Wetal J. Organic aerogels:microstructural dependence of mechanical properties in compression. J. Non-crystsolids 1990,125 (1-2):67-75
    [96]Pekala R W, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci.,1989,24 (9):3221-3227
    [97]Mayer S T, Pekala R W, Kashmitter J L. J Electrochem Soc,1993,140(2):446-451.
    [98]Pekala R.W., Farmera J.C. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids,1998,225 (1):74-80
    [99]Y Z Wei, B Fang, S Iwasa, et al. A novel electrode materials for electrode double-layer capacitors. J Power Sources,2004
    [100]Saliger R, Fischer U Herta C, Fricke J. High surface area carbon aerogels of supercapacitors[J]. Joumal of Non-Crystalline Solids,1998,225:81-85.
    [101]M G Sullivan, R Kotz, O Haas. Thick active layers of eleetrochemically modified glassy carbon electrochemical impedance studies[J]. J Electrochem.Soc.,2000,147(1),308.
    [102]Wen Y H, Cao G P, Yang Y S. Study on nanoporous glassy carbon as a new electrochemical capacitor material[J]. J. Power Sources,2005,148 (1):121-178
    [103]Mayer S T, Pekala R W, Kaschmitter J L. The aerocapacitor: an electrochemical double-layer energy-storage device[J]. Journal of Electrochemical Society,1993,140 (2): 446-451
    [104]F P Campana, M Hahn, A Foelske, P Ruch, R KOtz, H Siegenthaler. Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrode (C2H5)4NBF4/propylene carbonate[J]. Electrochemistry Communications 8 (2006) 1363-1368
    [105]M S Michael, S R S Prabaharan. High voltage electrochemical double layer capacitors using conductive carbons as additives[J]. Journal of Power Sources,136 (2004):250-256
    [106]Guo Chun-yu, Wang Cheng-yang, Study on preparation of activated mesocarbon microbeads/expanded graphite composite for electrical double layer capacitors[J]. Composite Science and Technology 67(2007) 1747-1750
    [107]Amatucci G G, Badway F, Pasquier A D. An asymmetric hybrid nonaqueous energy storage cell[J]. J. Electrochem Soc,2001,148:A930-A939.
    [108]Pasquier A D, Alexis L, Patrice S. Li4Ti5O12/poly (methyl) thiophene asymmetric hybrid electrochemical device[J]. J Power Sources,2004,125:95-102.
    [109]胡学步,怀永建,林子吉.一种(LiFeO4-AC)/Li4Ti5O12混合电池—超级电容器的研究[C].第二届中国储能与动力电池及关键材料学术研讨与技术交流会.成都,2007(11),24-25.
    [110]Hao Y J, Wang Y Y, Lai Q Y, et al. Study of capacitive properties for L T-Li4Ti5O12 in hybrid supercapacitor[J]. J Solid State Electrochem,2009,13:905-912.
    [111]黄柏辉,杨萍,张宝宏,石庆沫. LiCoO2/AC复合电极作为超级电容器电极材料[J].2006, 150(7):560-562
    [112]Oxley J E. High-rate, solid-state electrochemical capacitors. Inter-national Electrochemical Society. Proceedings of the 34th international power sources symposium. The Hyat CherryHill,1990, New Jersey:JES Pre,1991:346-350.
    [113]Landau. M, Knorr. R, Wilier. B et al. Double-layer-capacitors for PV-applications. ISETed.2nd world conference and exhibition on photovoltaic solar energy conversion. 1998.
    [114]Hongyu Wang, Masaki Yoshio, Arjun Kumar Thapa, Hiroyoshi Nakamura. From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capaci-tors [J]. J Power Sources,2007,169(2):375-380.
    [115]Hongyu Wang, Masaki Yoshio. Performance of AC/graphite capacitors at high weight ratios of AC/graphite [J]. J Power Sources,2008,177(2):681-684.
    [116]K Dokko, Y Fujita, M Mohamedi et al. Electrochemical impedance of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅱ Disordered carbon [J]. Electrochim. Acta,2001,47:933-938.
    [117]Chen Libao, Wang Ke, Xie Xiaohua et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J]. J Power Sources,2007,174:538-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700