用户名: 密码: 验证码:
长江口深水航道河床演变与航道回淤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是海陆相互作用的界面,受到流域来水来沙和外海波浪、潮汐、盐淡水混合等多种因子的叠加作用,形成了复杂的水流动力和泥沙运动条件。经过长期自然演变,河口形成了与自然水流和泥沙条件相适应的平衡地貌形态。人类进行的航道整治工程,即使调整或改变其中的一个因子,都将引起其它因子的变化,航道整治工程与河口动力、沉积和地貌形态之间存在复杂的响应过程。
     长江口深水航道治理是我国水运交通行业关注的热点,又是世界河口治理的难点。周边河势的新变化、河口细颗粒泥沙运动理论的不完备和现有模型试验技术的不完善,使得工程前难以精确预测工程后的实施效果。长江口深水航道治理一、二期工程取得了巨大的成功,但在二期工程完成后,北槽水流、泥沙和地形边界条件出现了新的不利航道建设维护的方向变化,上航道淤积强度增大。
     为此,本论文收集和整理了1998年长江口深水航道治理一期工程开工以来系列的原型水文、泥沙、地形和航道回淤资料,试图对长江口深水航道整治工程的河床冲淤调整作用、深水航道回淤的时空变化规律及二期工程后上航道集中回淤的机理和减淤对策等几个问题开展研究。获得的主要认识如下:“宽间距双导堤+长丁坝群”河床调整作用
     长江口深水航道整治工程采用“宽间距双导堤+长丁坝群”的平面布置形式,其设计思想为“导流、挡沙、减淤”。一、二期工程实施后,北槽(丁坝段)河床冲淤演变特点为“丁坝缩窄河道、主槽冲刷加深、坝田边滩淤涨”。一、二期工程引起的(丁坝段)主槽河床冲刷效应持续至整治工程完工1年左右,调整后的航道自然水深保持在8~9m。在一、二期工程实施阶段,(丁坝段)主槽河床冲刷量与丁坝长度具有较好的正相关关系,平均每km丁坝长度可引起主槽冲刷量达761万m~3。综上可知,“宽间距双导堤+长丁坝群”整治建筑物在工程实施阶段(1998—2005)展示出良好的“导流、挡沙、减淤”效果,具体表现为北槽水流向中泓汇聚,不同阶段工程实施后相应的(丁坝段)主槽冲刷增深,航道成槽率高,在疏浚工程的配合下,深水航道一、二期工程的预定目标(航道水深8.5m和10m)顺利实现。
     另一方面,“宽间距双导堤+长丁坝群”在北槽形成大范围的丁坝坝田。一、二期工程实施后,北槽丁坝坝田经历了持续的淤积过程,平均淤积速率约0.5m/a。随着北槽丁坝坝田淤积量增加,2002年之后北槽河槽总容积(坝田+主槽)呈现减小趋势。北槽河槽总容积减小同时伴随着潮间带面积的增大,造成北槽纳潮能力下降,落潮分流比不断减小,这不仅导致北槽进口段(非丁坝)淤积,而且使丁坝段主槽由冲转淤。若按丁坝坝田淤积至0m水深时估算,在二期工程完成后上述河床的淤积调整尚需持续6~7年。因此,二期工程完成后,伴随着丁坝坝田淤积引起的主槽河床淤积调整,整治工程实施阶段对主槽河床冲刷调整的效果将有所弱化。
     深水航道回淤的时空变化规律
     航道回淤与水流、泥沙运动和河床边界条件有关。由于整治工程引起的北槽水流、泥沙和河床边界条件的改变,长江口深水航道治理一、二期工程实施后,北槽航道回淤发生了明显的变化,表现为全槽回淤强度减小,局部区段回淤强度增大。2000~2005年,尽管航道维护水深有所增加,但北槽航道回淤强度却呈现下降趋势,航道年淤积强度由工程前的2.93m,减小至一期工程的1.46m和二期工程的1.00m,一、二期工程航道治理效果明显。
     从空间上看,一、二期工程航道主要回淤部位经历了下移和上提的过程。航道回淤强度与地形因素即滩槽高差有关,各单元回淤强度与航道两侧7m、8m河槽的宽度呈负相关关系。相同的河槽宽度,随着航道维护水深的增大,航道的回淤强度将明显增大。当8m河槽宽度等于1000m时,维护8.5m和10m航道水深,航道回淤强度分别约为5m/d和20mm/d。伴随着二期工程北槽整治段主槽的冲淤调整,航道回淤分布呈现向上航道集中的特点,回淤强度大的区段位于W3以上及附近区域。
     从时间上看,航道回淤的年际、年内变化与流域的来水来沙关系密切,航道回淤呈洪季多淤、枯季少淤;洪季淤积位置下移,枯季淤积位置上提的特点,洪季(5~10月)北槽航道回淤量约占全年回淤量的80%,8月通常为航道回淤强度最大的月份。回淤量的年内分布与来沙量的相关关系好于来水量的相关关系,径流变化可引起航道回淤重心的变化,洪枯季北槽航道回淤的重心上、下移动约7~10km。北槽上航道(W2~W3)淤积的机理
     地形因素。二期工程后北槽上航道两侧地形冲淤的非对称性,即上航道上段(G单元以上)北侧淤积,上航道下段(G单元以下)南侧淤积,致使上航道轴线与深泓线交错,滩槽高差加大。
     动力机制。①落潮分流比的减小。二期工程完成后,北槽的落潮分流比仍在减小,导致主槽落潮流优势降低,上航道下段(G单元以下)出现滞流点;②涨、落潮动力轴线分异。上航道上段受科氏力、横沙通道和长兴岛涨潮沟落潮流水流下泄的影响,落潮主流偏南。受科氏力、横沙东滩窜沟封堵的影响,上航道下段涨潮流偏北,上航道区段涨、落潮动力轴线分异,水流分散;③水流与上航道存在夹角。④盐淡水混合。上航道处在盐淡水交会活动的范围,航道主要淤积部位与洪季5‰盐度等值线、最大混浊带核心的摆动范围基本吻合,进一步说明细颗粒泥沙絮凝沉降形成近底高含沙量带,促使了上航道的集中淤积。
     泥沙来源。近几年南导堤南侧的九段沙不断淤高,部分滩面已呈跨越南导堤进入北槽之势,九段沙与北槽之间的泥沙交换明显增强。九段沙滩面相对较高浓度的含沙水体涨潮越堤进入北槽,演变成为上航道淤积的重要泥沙来源。北槽上航道(W2~W3)的减淤对策
     根据上航道回淤机理分析,结合国内、外河口航道治理的理论与经验,进一步的减淤对策有:①加高南导堤,阻挡九段沙越滩泥沙进入北槽:②修复瑞丰沙,减小上游泥沙来源;③调整航道轴线,减小上航道与深泓线之间的夹角;④延长丁坝,缩小河宽,减小主要回淤段治导线的放宽率;⑤增大治导线曲率半径,避免水流过分弯曲跨越航道;⑥南槽进口段进行防护与限流,以增加北槽的落潮流动力和落潮流优势。
By using bathymetric chart,discharged flow data,hydrological data and back-siltation data,recent change of the riverbed and silting pattern of the deep waterway in the North Passage of the Yangtze Estuary has been studied in this paper. The main contents could be reviewed as follows:
     The regulation engineering of deep waterway,including two wide spacing jetties and nineteen long groins,had led to an apparent morphological evolution in the North Passage.The main channel of the up,middle and down side in the North Passage had successively eroded and its groin field had significantly deposited.At the same time,sediment has been deposited on the entrance region.Erosion and deposition had responded rapidly to the construction of the regulation engineering.There was about one year of lagging between the time of the erosion happened in the deep channel and the time of the construction of the regulation engineering finished in different stage.The siltation lag of time in the groin field varied with the initial depth, but the average deposited thickness was about 0.Sm per year.Volumetric analysis demonstrates there is an increasing trend of the siltation in the North Passage after 2002,because of the difference in duration and quantity between erosion in the deep channel and deposition in the groin field.The water volume of the North Passage had reduced by≈9%(280 million m~3)between 2002 and 2006.Sediment budget reveals that the main sediment deposited in North Passage sourced from the river and the ocean.The decreasing water volume was attributable to shoaling in the groin field. Its triggering factors for the increased sedimentation are the navigational improvements(jetties and groins)after 1998,which altered the passage boundary and destroyed the equilibrium state on the average ebb and flood sediment fluxes.The establishment of a stable estuary is attributed to a reduction rate in depth of the groin field.The forecast on the deposited sediment quantity and continuous infilling time in the groin system is about 325×10~6m~3 and 6-7 years respectively.
     The South Passage and North Passage are the third branched reach of Yangtze Estuary.After implementing Yangtze Estuary Deepwater Navigational Improvements, there are a decreasing trend in the ratio of ebb flow diversion through the North Passage and an increasing trend through the South Passage.Sediment has deposited on the entrance region in the North Passage,with an length of about 12km long,and eroded on the upper region in the South Passage,with an length of about 18km.But the total cross-section area of the entrance reach in the North Passage and South Passage had decreased from 1998 to 2006.There is a good correlation between the total water volume and the yearly averaged ebb flow ratio in the North Passage,and between the cross-section averaged depth of the entrance reach in the North Passage and South Passage and their yearly averaged ebb flow ratio respectively.According to the relationship formula,the change of the ebb flow ratio and the cross-section averaged depth of the entrance reach in the North Passage and South Passage are evaluated.
     Due to change of boundary conditions,Back-siltation in the deep channel had undergone an obvious change after the implementing Yangtze Estuary Deepwater Navigational Improvements,which had a decrease in the back-silting intensity of the whole navigational channel and increase in local reach.The yearly back-silting thickness of the whole navigational channel decreases from 2.93m to 1.46m of the 1~(st)stage and l.00m of the 2~(st)stage,respectively.The location of the high back-siltation moves from the downstream channel during 1~(st)stage to the upstream channel during the 2~(st)stage.The spatial distribution of back-silting intensity along the navigational channel was closely related to its elevation difference between dredged trough and riverbed.The time distribution of back-silting intensity was closely related to the flow runoff.The back-silting amount increased and moved downward in the flood season and decreased and moved upward in the dry season.The main back-silting location centralized in the upstream channel after the 2~(st)stage.
     The main factors resulting in back-silting include riverbed topography,tide currents,sediment load and salinity.The mechanism of back-silting in upstream channel involves:①an increase in the elevation difference between the dredged trough and the riverbed.②the worse dynamic conditions.③the rich source of sediment.④mixing of the salt water and the fresh water.
     The dredging maintenance became difficult due to the centralization of back-silting in the upstream channel.It is necessary to take further measures to reduce the back-silting intensity.According to the theory and practical experiences of the navigational improvements,and the analysis of back-silting mechanism,six steps were proposed,including:①Heightening south jetty.②Stabilizing the upstream riverbed.③Adjusting channel axis.④Revising the width of regulation line.⑤Adjusting the radius of curvature.⑥Protecting the entrance riverbed of South Passage from further scouring.
引文
1. "U.S.A Army Engineering Waterway Experiment Station"---Bulletin of the Permanent International Association of Navigation Congress,No.23,1976
    2. Austin B.Smith, 1961.Southwest Pass-Mississippi River 40-Foot Ship Channel.The port Engineer India,Vol.10,No.2,
    3. Avoine,j, Allen, G. P., etc.Suspended sediment transport in the seine estuary,France: Effect of man-made modifications on estuary-shelf sedimentology.Marine Geology,40:119-137
    4. Butler, H. Lee,1978.NUMERICAL SIMULATION OF THE COOS BAY-SOUTH SLOUGH COMPLEX.Technical Report - US Army Engineer Waterways Experiment Station, 125p
    5. C.G. Thomas, J.R. Spearman, M.J. Turnbull, 2002. Historical morphological change in the Mersey Estuary.Continental Shelf Research 22,1775-1794
    6. Cashin, J.A.,1949. Engineering works for the improvement of the Mersey. Journal of the Institute of Civil Engineers 32,296-355.
    7. Da Silva, JF; Duck, RW. 2001. Historical changes of bottom topography and tidal amplitude in the Ria de Aveiro, Portugal - trends for future evolution. CLIMATE RESEARCH 18(1-2): 17-24.
    8. Daphne van der Wal et al,2002.Long-term morphological change in the Ribble Estuary, northwest England.MARINE GEOLOGY, 189(3-4):249-266.
    9. Dronkers, J.,1998. The morphodynamics of the Dutch Delta.In: Dronkers, J., Scheffers, M.B.A.M. (Eds.), The Physics of Estuaries and Coastal Seas. Balkema, Rotterdam, pp.297-304.
    10. Eysink W.D.,Vermaas H.,1983.Computation Methods to Estimate the Sedimentation in Dredged Channels and Harbour Basins in Estuarine Environment.International Conference on Coastal and Port Engineering in Developing Countries, Colombo, Srilanka, March 20-26, p.1072-1083.
    11. Fitzgerald, D.M., Nummedal, D., Kana, T.W., 1976. Sand circulation at Price Inlet, SC. In: Proceedings Coastal Engineering Conference, Honolulu, pp. 1868-1880.
    12. Friedrichs, C.T., Aubrey, D.G., 1988. Nonlinear tidal distortion in shallow well mixed estuaries: a synthesis. Estuarine Coastal and Shelf Science,27:521-545.
    13. H.A.Ferguson,et al., 1961.Investigation for the Europoort Project,20th International Nagivation Conference,Section II ,subj.5,p.125.
    14. Harrison A.J.M.,Owen M. W.,1971.Siltation of Fine Sediments in Estuaries.Proc.14th Congress Intern Assoc. Hyd. Res.
    15. Holle,C.G.,1951.Sedimentation at the mouth of the Mississippi river, Communication of Second Congress on Coastal Eng., Hauston.
    16. Huang sheng,Zhong Xiu-guan,1986.Classification and Process Characteristics of Estuaries in China.Proc of the Third International Symposium on River Sedimentation.
    17. Inglish, C.C., Kestner, F.J.T., 1958. The long-term effects of training walls, reclamation, and dredging on estuaries. Proc.Inst. Civil Eng. 9, 193-216.
    18. Isupova M.V.; Mikhailova M.V.,2003.Principal features of the hydrologic regime in the Loire River mouth.Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya , -/4 (66-70)
    19. Jiyu Chen et al,2002.Engineered Coasts. Kluwer Academic Publishers
    20. LEE TT, 1970. Estuary inlet channel stabilization study using a hydraulic model. ASCE,Proc 12th Coastal Eng Conf,p 1117-1136
    21. Leliavsk,S., 1955.an introduction to fluvial hydraulics,constable and co., 257
    22. Lin, Lihwa, Kraus, Nicholas C.; Barcak, Ronnie G.,2004. Modeling coastal sediment transport at the mouth of the Colorado River, Texas. Proceedings of the Eighth International Conference, p988-1006
    23. Lynn D.Wright., 1971. Hydraulics of south pass Mississippi river.Proc.ASCE., Vol.97,WW3.
    24. Michael J.; Richards, David R..1987.NUMERICAL EVALUATION OF TRAINING STRUCTURES. Hydraulic Engineering, Proceedings of the 1987 National Conference., P345-350
    25. Mikkelsen L,Mortensen P,Sorensen T, 1980.Sedimentation in dredged navigation channels.Proc. of The 17th Coastal Eng.Conf.,Sydney,Australia. 1719-1734
    26. O'Brien M.P.,1966.Equilibrium Flow Areas of Tidal Inlets on Sandy Coasts,Proc of Tenth Conference of Coastal Engineering,p676
    27. O' Connor B.A.,Lean G.H.,1977.Estimation of siltation in Dredged Channels in Open Situations. Proc. of 24th International Navigation Congress,Sec. II ,Subj.2,p.163
    28. O'Brien, M.P., 1971.Field and Laboratory Studies, Navigation Channels of the Columbia River Estuary,California Univ Berkeley Hydraulic Engineering Lab, Report Number: HEL-24-4
    29. Officer.C.R., 1975.Physical Oceanography of Estuaries,New York
    30. Parthiot F., 1981.Development of the River Seine estuary: case study. Journal of the Hydraulics Division, ASCE ,107/HY11, Proc. Paper 16678 (1283-1301)
    31. Prichard DW.,1967.What is a estuary?.Physical viewpoint in estuaries,AAAS.pub,3-5
    32. Sherwood C.R.; Jay D.A.; Harvey R.B.; Hamilton P.; Simenstad C.A.,1990. Historical changes in the Columbia River Estuary.Progress in Oceanography,25(1-4):(299-352)
    33. Simmons,H.b.,Brown,F.R.,1969.Salinity Effects on Estuarine Hydraulics and Sedimentation.I.A.H.R. Proc of the Thirteenth Congress, 13th congress, Vol.III.311 -326
    34. Smith LM, Winkley BR.1996.The response of the Lower Mississippi River to river engineering.ENGINEERING GEOLOGY, 45(1-4):433-455
    35. Thomasa, C.G., Spearman, J.R., Turnbull, M.J.,2002. Historical morphological change in the Mersey Estuary. Continental Shelf Research 22 , 1775-1794.
    36. Van Dongeren, A.R., De Vriend, H.J., 1994. A model of orphological behaviour of tidal basins. Coastal Engineering 2,287-310.
    37. Visscher G.Wolf G.,1987.Investigation using a hydraulic model of the usefulness of the location and height of the 'Pagensand-Nord' training wall in the lower Elbe Estuary.Kuste,45:(89-115)
    38. Walther,A.W.1974,Researches in the Haringvliet Estuary,Proceedings of 14th ASCE Coastal Engineering Conference,vol.3,pp.2483-2494
    39. Wolanski E.; Moore K.; Spagnol S.; D'Adamo N.; Pattiaratchi C.,2001.Rapid, human-induced siltation of the macro-tidal Ord River estuary, Western Australia.Estuarine, Coastal and Shelf Science,53(5):(717-732)
    40. Wright L.D.,1985.River deltas. In: Davis R A Jr, ed. 1985.Coastal Sedimentary Environments.pp.5-68
    41.曹祖德,侯志强,孔令双,2002.粉沙质海岸开敞航道回淤计算的统计概化模型.水道港口,23(4):253-259
    42.长江口航道建设有限公司,2002.长江口深水航道治理一期工程竣工报告.
    43.长江口航道建设有限公司.2005.长江口深水航道治理二期工程交工报告.
    44.长江口航道治理工程领导小组,1980.美国陆军T程兵团工程师代表团考察长江口技术座谈及学术报告汇编
    45.长江口航道治理工程领导小组,1982.国外河口治理文集[R].交通部水运工程科技情报站航道分站,南科院情报室
    46.长江委水文局长江口水文水资源勘测局,2007.“长江口深水航道治理三期工程2007年10月南导堤越堤流测验技术报告”[R].
    47.常福田,1995.航道整治[M].人民交通出版社,147-148
    48.陈邦林,吴玲,邱佩英,1988.长江河口南港南槽地区悬移质絮凝机理研究[A].陈吉余,沈焕庭,挥才兴等著.长江河口动力过程和地貌演变[C],上海:上海科学技术出版社,276-282.
    49.陈海龙,1987.长江流域气候特征的形成及影响因素.长江志通讯,(2):21-26
    50.陈吉余,1964.钱塘江河口沙坎的形成及其历史演变.地理学报,30(2).
    51.陈吉余,1983.有关长江河口治理的几个关键性问题.海洋科学,(2).
    52.陈吉余,1995.长江河口的自然适应和人工控制[A].长江河u最人浑浊带和河口锋研究论文选集[C].华东师范大学学报,1-14.
    53.陈吉余,1995.长江口拦门沙及水下三角洲的动力沉积、演变和深水航道治理[J].华东师范大学学报(长江口深水航道治理与港口建设专辑),1-22
    54.陈显维,许全喜,陈泽方.2006.三峡水库蓄水以来进出库水沙特性分析[J].人民长江,37(8):1-6
    55.陈志昌,1994.长江口拦门沙深水通海航道模型试验研究[R].南京水利科学研究院
    56.陈志昌,乐嘉钻,2005.长江口深水航道整治原理.水利水运T程学报,(1):1-7
    57.陈志民,蔡南树,辛文杰,2002.珠江口伶仃洋航道的回淤分析[J].海洋工程,20(3)61-68
    58.窦国仁等.长江口深水航道工程泥沙问题的数学模型研究[R].南京水利科学研究院河港所研究报告,1999.
    59.范期锦,1999.建设中的长江口深水航道[J].(3):8-13
    60.范期锦,2004.长江口深水航道治理工程的创新.中国工程科学,6(12):13-36
    61.冯学英,温令平,何荣福等,1995.天津港维护疏浚工程与同淤规律的研究[J].水道港口,(4)1-8.
    62.顾伟浩,1986.台风对长江口铜沙航槽同淤的影响[J].海洋科学,10(1):60-62
    63.顾伟浩,1996.长江口北槽航槽回淤强度预估[J].上海水利,45(4):1-8.
    64.顾伟浩,高煜铭,1988.长江口北槽挖槽段同淤率估算[J].水运工程,(4)13-16
    65.关许为,陈英祖,杜心慧,1996.长江口絮凝机理的试验研究[J].水利学报,(6):70-74.
    66.关许为,顾伟浩,1992.一九九○年寒潮对长江口北槽同淤影响的分析[J].泥沙研究,1992,(1):55-60
    67.国贤,1995.吴淞导堤的由来.交通与运输,(3)46
    68.韩其为.对“上海市水资源与可持续发展_T程对策”的两点意见[R].上海市水资源与可持续发展工程对策院士(专家)咨询会,2002
    69.韩玉芳,2003.丁坝的造床作用研究[D].南京:南京水利科学研究院
    70.胡达仁,蒋梦林,1984.闽江口马尾港治理的试验研究与工程实践,水利水运科学研究,(1):.
    71.黄建维,詹清光,2000.汕头港外拦门沙整治技术和功效.海洋工程,18(4):55-62
    72.黄利周,2001.汕头港外航道泥沙来源及一期整治工程总结.水运工程,(7):55-57
    73.黄胜,1985.河口航道整治的进展,水利学报[J],(5)35-39.
    74.黄胜,1986.联邦德国的河口海岸,海洋工程[J],4(3):1-10
    75.黄胜,韩乃斌,钟秀娟,1980.长江口拦门沙淤积分析[J].第一次河流泥沙国际学术讨论会议文集,光华出版社,447-456
    76.黄胜,卢启苗,1995.河口动力学,水力电力出版社,211-272
    77.黄胜.美国密西西比河口治理及主要经验.人民黄河,1986,(1):68-69.
    78.黄卫凯,1993.长江口拦门沙变化的经验特征函数模型[J].海洋学报,15(2):48-56
    79.黄卫凯,陈吉余,1995.长江河口拦门沙地形变化的统计预报[J].海洋与湖沼,26(4):343-349
    80.黄卫凯.长江口拦门沙变化的经验特征函数模型[J].海洋学报,1993,15(2):48-56
    81.蒋国俊,姚炎明,唐子文,2002.长江口细颖粒泥沙絮凝沉降影响因素分析[J],海洋学报,24(4):51-57.
    82.蒋雎耀,章大初,1999.关于天津港泥沙回淤程度的评价[J].水道港口,(4):10-15
    83.蒋睢耀,林光裕,1998.伶仃洋3.5万吨级航道开发选线问题的研究[A].内河航道整治工程技术交流大会文集[C].北京:人民交通出版社.
    84.交通部长江口航道管理局,2005.长江口深水航道治理二期工程竣工报告.
    85.交通部长江口深水航道试验中心.长江口深水航道模型对比试验报告[R].1999.
    86.交通部科学研究院河口海岸研究中心.一、二期工程衔接的试验研究[R].1999.
    87.金栋梁,1987.长江流域的水文特征.长江志通讯,(2):27-46
    88.金镠,1998.长江口深水航道治理前期研究成果[J].港口工程,(2):5-12
    89.金镠,范期锦,谈泽讳等,2000.长江口深水航道成槽规律的初步分析[J].水运工程,(1)34-40
    90.金镠,黄咏烨,2005.长江口深水航道治理工程在河口整治技术上的若干新进展[G].中国土木工程学会港口工程分会,港口工程分会技术交流文集.北京:人民交通出版社.
    91.金镠,谈泽讳,李文正等,2003.长江口深水航道的回淤问题[J].中国港湾建设,(3)5-9
    92.金镠,谈泽讳,李文正等,2003.长江口深水航道的回淤问题[J].中国港湾建设,(4)1-6
    93.金镠,谈泽讳,李文正等,2003.长江口深水航道的回淤问题[J].中国港湾建设,(4)1-7
    94.金镠,虞志英,陈德昌,1985.淤泥质海岸浅滩人工挖槽回淤率计算方法的探讨.泥沙研究(2):12-19(淤泥质海岸航道的冲淤计算方法)
    95.金镠,2001.“导流、挡沙、减淤”-长江口深水航道治理设计思想的新飞跃-纪念敬爱的窦国仁院士[J].海洋工程,19(3):3-4
    96.金镠.长江口深水航道的建设和维护[J].中国第一届国际疏浚技术发展会议及展览会论文集.2003,48-55
    97.金鹰,王义刚,李宇,2002.长江口粘性细颖粒泥沙絮凝试验研究[J],河海大学学报,30(3):61-63.
    98.金元欢,沈焕庭,陈吉余,1990.中国入海河口分类刍议。海洋与湖沼,21(2),132-143
    99.乐嘉钻,周海,郭豫鹏,2006.长江口深水航道治理工程前期研究工作综述和总体治理方案.的确定[J],水运工程,(S2):1-9
    100.李伯昌.1984年以来长江口北支演变分析[J].水利水运工程学报,2006,(3):9-17.
    101.李光炳,施祖蓉,1986.甬江淤积及治理的探讨[J],东海海洋,4(2):1-7
    102.李国臣,徐金环,1993.灌河口外拦门沙航道整治探讨[J].泥沙研究,(4):72-80
    103.李浩林,黄廷兰,姚兴汉,1977.温州港航道整治一、二期工程总结
    104.李九发.长江河口南汇潮滩泥沙输移规律[J].海洋学报,1990,12(1):75-82
    105.李旺生,1994.对航道回淤预报公式中交角的影响问题的商榷[J],河海科技进 展,14(3):52-56
    106.刘家驹,1980.连云港外航道的同淤计算及预报.水利水运科学研究[J],(4):31-41
    107.刘杰,2006.南港南北槽河床冲淤变化[R].上海河口海岸科学研究中心
    108.刘杰,陈吉余,乐嘉海,2004.长江口深水航道治理一期工程实施后北槽冲淤分析.泥沙研究,(5):15-22
    109.刘杰,乐嘉海,胡志峰,2003.长江口深水航道治理一期工程实施对北槽拦门沙的影响[J].海洋工程.21(2):58-64
    110.陆瑞兴,2005.潮汐河口建港研究.2005,(2)2-5
    111.罗肇森,1987.河口航道开挖后的同淤计算.泥沙研究,(2):13-20
    112.罗肇森,1995.珠江口伶仃洋深水航道开发方案的回淤研究[J].水利水运科学研究,(2):111-118
    113.南京水利科学研究所,1977.国内外河口治理概况及动向[R].
    114.南京水利科学研究院,1997.长江口深水航道全沙数学模型[R].
    115.南京水利科学研究院,1997.长江口深水航道整体物理模型试验[R].
    116.南京水利科学研究院.长江口拦门沙深水通海航道模型试验研究[R].1994
    117.潘定安,沈焕庭,茅志昌.长江口最大浑浊带的形成机理与特点[J].海洋学报,1999,21(4):62-69
    118.戚定满.长江口深水航道治理工程二期平面布置方案优化的数学模型研究[R].交通部科学研究院河口海岸科学研究中心,2003.
    119.钱宁,万兆惠,1983.泥沙运动力学[M].科学出版社,76-81
    120.钱宁,张仁,周志德,1987.河床演变学[M].北京:科学出版社.
    121.钱宁等,1964.钱塘江河口沙坎的近代过程,地理学报,30(2):124-141
    122.萨莫伊诺夫(谢金赞等译),1952.河口演变过程的理论及其研究办法.北京:科学出版社,1-50
    123.上海航道勘察设计研究院,1994.长江口深水航道治理工程一期工程工程可行性研究报告[R].
    124.上海航道勘察设计研究院,1998.长江口深水航道治理工程二、二.三期工程工程可行性研究报告[R].
    125.沈承烈,1983.甬江冲淤规律及其影响因素,杭州大学学报(自然科学版),10(4)
    126.沈承烈,1988.甬江河床演变与航道治理,地理研究,7(3)58-65
    127.沈金山,朱珍妹,张新琴,1983.长江口南槽拦门沙的成因和演变[J].海洋与湖沼,14(6):582-590
    128.孙建澎,钱平生,2001.天津港由严重回淤港变成轻淤港影响因素量化分析[J].港工技术,(12):90-92
    129.孙连成,2001.天津港泥沙淤积变化及原因分析[J].水运工程,(9):33-35
    130.孙连成,2006.天津港工程泥沙研究及其进展[J].水道港口,27(6):341-347
    131.孙志林,金元欢.分汉河口的形成机理.水科学进展,1996,7(2):144-150
    132.田向平,1986.珠江河口伶仃洋最大混浊带研究.热带海洋,5(2):27-35
    133.王谷谦,1994.长江口拦门沙航道演变规律研究[R].上海航道局.
    134.千谷谦,阮伟,周海,郭豫鹏,2002.长江口深水航道治理一期工程整治效粜分析.水运工程,(10)70-76
    135.王恺忱,1982.潮汐河口的分类探讨.1980年全国海岸带和海涂资源综台调查.海岸工程学术会议论文集北京:海洋出版社,113-117
    136.王顺中,李浩麟,2006.瓯江口拦门沙航道同淤分析[J].水利水运工程学报,(3):18-24
    137.韦直林,工运辉,付小平,2002.河口拦门沙问题初探[J].海河水利,(1)33-34
    138.魏光裕,1985.甬江L]镇海港的入海航道[J],东海海洋,3(3):1-11
    139.徐海根,茅志昌,周俊德等.长江口南北槽分水分沙变化及其原因分析[A].陈吉余,沈焕庭,恽才兴等.长江河口动力过程和地貌演变[C],上海:上海科学技术出版社,1988,404-418
    140.徐海根.长江口北槽演变趋势研究述要[J].华东师范大学学报(长江口深水航道治理与港口建设专辑),1995,42-46
    141.薛鸿超,1998.河口分类模式[J],河口与海岸工程,(4)28-30
    142.严恺,1992.中国海岸工程[M].南京:河海大学出版社
    143.严恺、梁其荀等,1996.海港工程[M].北京:海洋出版社
    144.严恺、梁其苟等,2001.海岸工程[M].北京:海洋出版社
    145.严以新,高进,诸裕良等,2001.长江口北槽优良河势机制[J].水利水运工程学报,(3)8-12
    146.严以新等.长江口九段沙分流计算模式及工程应用[J].水利学报,2001,(4):79-84.
    147.杨立信,1997.国外河口航道专题情报研究文集[R].南京水利科学研究院技术情报研究室,1-12
    148.杨世伦,丁平兴,赵庆英等.长江口拦门沙河槽季节性冲淤的主控因子探讨[J].长江流域资源与环境,2001,10(3):258-265.
    149.杨世伦,贺松林,谢文辉.长江口九段沙的形成演变及其与南北槽发育的关系[J].海洋工程,1998,16(4):55-65
    150.余文畴.长江分汊河道口门水流及输沙特性[J].长江水利水电科学研究院院报,1987,(1)14-25.
    151.恽才兴,1988.长江河口潮滩冲淤和滩槽泥沙交换[A].长江河U动力过程和地貌演变[C],上海:上海科学技术出版社,229-236.
    152.恽才兴,2004.长江河口近期演变基本规律[M].北京:海洋出版社
    153.张栋梁,孙建国,1991.长江日北槽挖槽段泥沙淤积机理探讨[J].水运工程,(11)27-35
    154.张栋梁,姚金元,1993.长江口北槽挖槽段泥沙淤积特性研究.泥沙研究,(3):66-78
    155.张莉莉,李九发,沈焕庭,2001冲国主要河口拦门沙的研究进展[J].海洋科学,25(10):33-36.
    156.张忍顺,1994.中国潮汐汊道研究的进展[J].地球科学进展,9(4):45-49
    157.张志忠,阮文杰,蒋国俊,1995.长江口动水絮凝沉降与拦门沙淤积的关系,海洋与湖沼[J],26(6):632-638
    158.张志忠,王允菊,徐志刚,1983.长江口细颗粒泥沙絮凝若干特性探讨[A].第二次河流泥沙国际学术讨论会论文集[C],北京:水利电力出版社,274-285
    159.中国河口治理考察团,1982.美国密西西比河U治理考察报告[R],北京:交通部
    160.钟修成,任苹,1988.长江口拦门沙航道(北槽)回淤分析[J].河口大学学报,16(6):50-57
    161.周海.张华,阮伟,2005.长江口深水航道治理一期工程实施前后北槽最人浑浊带分布及对北槽淤积的影响[J].泥沙研究,2005,(5)58-65
    162.周志德,乔彭年,1982.潮汐河口分类的探讨.泥沙研究,2:52-59
    163.朱慧芳,挥才兴,茅志昌,1988.长江口的风浪特性和风浪经验关系[G].陈吉余,等.K江河U 动力过程和地貌演变[C].上海:上海科技出版社.166-177
    164.朱慧芳,周纪芗,1993.长江口航道拦门沙冲淤变化的模拟和预测[J].海洋与湖沼,24(3):294-303
    165.朱留正,1984.黄浦江河口的治理
    166.朱杏珍,刘杰,2001.长江口南、北槽底沙分沙比试验研究[R].交通部科学研究院河u海岸科学研究中心.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700