用户名: 密码: 验证码:
用于深度脱硫的苯并噻吩类无水催化氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并噻吩(包括一苯并噻吩及二苯并噻吩)类化合物是石油产品中最稳定的一类硫化合物,有效氧化这部分硫化物是达到煤油和柴油深度氧化脱硫的基础。本文采用烷基过氧化物和分子氧为氧化剂,在无水条件下,对模拟燃油和工业柴油中的苯并噻吩类硫化物进行催化氧化反应的研究。
     首先,以二苯并噻吩(DBT)为靶向物质,DBT的十氢化萘溶液为模拟燃油,过氧化环己酮(CYHPO)为氧化剂,在不同反应条件下,进行催化剂筛选和反应条件优化。采用不同无机和金属有机催化剂,根据氧化反应实验结果,筛选出适合的催化剂为钼氧化物(MoO_3)。为了进一步提高催化剂的活性,进行了载体和其它杂元素对催化活性影响的探讨,结果发现三种载体(弱酸性阳离子交换树脂D113、D751和Al_2O_3)都能提高MoO_3的活性,其中性能最好的是D113;Co和Ni元素的加入明显降低MoO_3/Al_2O_3的催化活性。对催化剂十次重复使用使用效果评定,及等离子体发射光谱检测和定量分析显示:MoO_3/D113和MoO_3/D751十次重复使用效果理想;滤失小于MoO_3/Al_2O_3;。选择其它烷基过氧化物:过氧化叔丁醇(TBHP)和过氧化叔戊醇(TAHP)为氧化剂,在相同条件下进行DBT的氧化反应,结果发现烷基过氧化物的氧化活性顺序为:CYHPO>TAHP>TBHP,与它们的过氧键电子密度大小成相反趋势。研究进一步扩大靶向物质范围,在模拟燃油中引进4,6-二甲基二苯并噻吩(DMDBT)和一苯并噻吩(BT)两个具有代表性的模型硫化物,以转化率为活性评定参数,确定它们反应活性顺序为:DMDBT>DBT>BT。选择性研究发现,在模拟燃油中加入4,6,8-三甲基-2-壬烯、1-十四烯和2-甲基萘对DBT的转化率没有产生明显影响。咔唑对不同氧化剂产生不同影响,实验表明在咔唑存在下TBHP对DBT的氧化效率显著下降;TAHP受到微小影响;而CYHPO对DBT的氧化反应不受影响,氧化剂的空间位阻可能在选择性上起决定性作用。动力学研究发现,该氧化反应对模型硫化物的反应级次均为一级;推论了CYHPO在MoO_3存在下对DBT氧化的协同机理。
     其次,进行了分子氧对DBT非均相催化氧化反应的研究。为激发分子氧的氧化活性,采用具有仿生效能的取代酞菁铁为催化剂。合成系列取代酞菁铁:四硝基酞菁铁(FePc(NO_2)_4)、氨基-三硝基酞菁铁(FePc(NO_2)_3NH_2)和四氨基酞菁铁(FePc(NH_2)_4)。探讨了取代基电子效应对酞菁铁催化活性的影响。结果表明:催化剂的活性顺序为:FePc(NO_2)_4>FePc(NO_2)_3NH_2>FePc(NH_2)_4,与酞菁环上的电子密度成反比,吸电子基有利于提高催化活性。FePc(NO_2)_4不仅具有最佳催化活性且具有最好的化学稳定性。IR光谱进一步证实FePc(NH_2)_4在第一次氧化反应后,Pc环的典型特征峰(1405 cm~(-1)和1605 cm~(-1))消失;而FePc(NO_2)_4在重复使用5次后,结构保持不变。在反应温度100℃,反应压力0.3 MPa,FePc(NO_2)_4用量1%的条件下,反应时间为2 h时,DBT的转化率达到98.7%。LC-MS认证了氧化产品中有DBT的亚砜存在。
     最后,以CYHPO为油溶性氧化剂,在包括氧化反应器和Al_2O_3吸附过滤器的实验室单管连续反应装置上,对实际工业柴油进行了连续催化氧化脱硫。柴油脱硫率达到94%以上,回收率大于99%;200μg/g硫含量的柴油,处理后硫含量达到5.1μg/g,符合目前国际超低硫柴油标准(<10μg/g);400μg/g和600μg/g硫含量的柴油,处理后硫含量达到14.8μg/g和36.0μg/g,符合我国目前一些城市(北京、上海等)率先使用的低硫柴油标准(<50μg/g)。
The effective oxidation of benzothiophenes and dibenzothiophenes,which are the most stable sulfur-containing compounds in the distillates of petroleum,is the base for developing a deep oxidative desulfurization(ODS) of fuels.This thesis presents the study on the catalytic oxidations of benzothiophene and dibenzothiophenes using alkyl peroxides and molecular oxygen as oxidants in the simulated and industrial diesel fuels under water-free conditions.
     The catalytic oxidation of dibenzothiophene(DBT) in decahydronaphthalene(decalin) as stimulated fuel was first performed using oil-soluble oxidant,cyclohexanone peroxide (CYHPO),under various conditions to screen adapted catalyst and optimize reaction conditions.The catalyst with high activity for this oxidation is molybdenum oxide(MoO_3), and its catalytic activity may increased remarkably by attaching on the macroporous polyacrylic cationic exchange resin D113,weak acidic chelating resin D751 and Al_2O_3,where D113 display the highest performance among the three supporters.The addition of Co and Ni onto the MoO_3/Al_2O_3 led to a significant decrease of its catalytic activity in the oxidation of DBT.Analyses with weight calculation and Inductively Coupled Plasma Spectrum demonstrated that the losses of MoO_3/D113 and MoO_3/D751 were less than MoO_3/Al_2O_3 during 10 consecutive batch reactions,where the catalyst was recycled and reused,meanwhile the catalyst activity was not decreased.When oxidations of DBT using TBHP and TAHP were performed in the same way as using CYHPO,activity of alkyl oil-soluble peroxides showed the decreases in the order:CYHPO>TAHP>TBHP.The oxidations of model sulfur-containing compounds,4,6-dimethyl dibenzothiophene(DMDBT) and benzothiophene (BT),were also carried out.The results indicated that the oxidation activities of these sulfur compounds decreased in the order of DMDBT>DBT>BT.The effect of the model unsaturated compounds and nitrogen-containing compounds found in the middle distillates on the oxidation of DBT were also investigated.The results demonstrated that the DBT oxidation was not influenced by 1-tetradecylene,4,6,8-trimethyl-2-nonylene,and 2-methylnaphthalene; whereas influenced differently by carbazole depending on the different oxidants,i.e. conversion of DBT in the oxidation using TBHP was decreased greatly with adding of carbazole,using TAHP was decreased slightly,but using CYHPO was not changed.The reaction kinetics of model sulfur compounds was further investigated.The results suggested that the oxidative reaction of each sulfur compound could be treated as a first-order reaction. Finally,the coordinate mechanism of oxidation of DBT using CYHPO in the presence of MoO_3 was presumed.
     Next,Oxidation of dibenzothiophene(DBT) using molecular oxygen was performed in an unpolar hydrocarbon solvent under water-free condition.To stimulate the activity of molecular oxygen,iron phthalocyanines(FePc) substituted were employed as catalyst.Three kinds of catalysts with different substituents,FePc(NO_2)_4,FePc(NO_2)_3NH_2 and FePc(NH_2)_4, were synthesized to investigate the effect of substituent on activity and stability of iron phthalocyanines.The results indicated that the catalytic activity of these phthalocyanines decreased in the order of FePc(NO_2)_4>FePc(NO_2)_3NH_2>FePc(NH_2)_4,reversing the order of electronic density of Pc resonance ring.FePc(NO_2)_4 not only has the highest activity but also best stability.The decreased activity of FePc(NH_2)_4 may decomposed during the first run of oxidation according to the typical Pc peaks(1405 cm~(-1) and 1605 cm~(-1)) of IR;whereas the catalytic activity and structure of FePc(NO_2)_4 was kept during 5 runs of oxidations.At a temperature of 100℃and an initial pressure of 0.3 MPa,conversion of DBT in decalin reached to 98.7%in presence of 1%of FePc(NO_2)_4 as catalyst.The sulfoxide was detected by LC-MS in this oxidation using molecular oxygen in the presence of FePc(NO_2)_4.
     Finally,The oxidative desulfurization of industrial diesel fuels was examined in a fixed bed stainless single steel flow reactor and an adsorption column.More than 94%of sulfur of fuels was removed with more than 99%recovery of fuels.The sulfur content of oxidized diesel fuel with an initial sulfur content of 200μg/g was reduced to 5.1μ/g,which is under the ultra sulfur content restriction(<10μg/g);with an initial sulfur content of 400μg/g and 600μg/g were reduced respectively to 14.8μg/g and 36.0μg/g,which are under the level of sulfur content of diesel fuel for some special cities such as Beijing and Shanghai etc taking the lead in performing low sulfur regulation of diesel fuels(<50μg/g).
引文
[1]Song C S,Ma X L.New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization.Appl Catal B:Environ,2003,41:207-238.
    [2]Mester Z C.Trends in diesel fuel sulfur regulations.219th National Meeting,Acs Division Petroleum Chemistry Preprints,2000:681 - 685.
    [3]Song C.An overview of new approaches to deep desulfurization for ultraclean gasoline,diesel fuel and jet fuel.Catalysis Today,2003,86:211 -263.
    [4]US EPA.Regulatory Announcement:Heavy-Duty Engine and Vehicle Standards and Highway Fuel Sulfur Control Requirements,December,2000.
    [5]张杰,王少军,凌凤香等,HPLC-GC-AED法研究柴油中硫化物组成及分布.辽宁石油化工大学学报,24(1):15-18.
    [6]梁朝林.高硫原油加工.北京:中国石化出版社,2001.
    [7]Nag N K,Sapre A V,Broderiek D H,Gates B C.Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided Co0-Mo03/γ-A1203:The relative reactivities.J Catal,1979,57:509-512.
    [8]Van Parijs,Hosten L n,Forment G F.Kinetics of the hydrodesulfurization on a cobalt-molybdenum/gamma-alumina catalyst.Ind Eng Chem Prod Res,1986,25:437-443.
    [9]Houalla M,Broderiek D H,Sapre A V,Nag N K,Debeer V n J,Gates B C,Kwart H.Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/γ-A1203.J Catal,1980,61:523-527.
    [10]Ma X,Saknaishi K,Mochida I.Hydrodeuslfurizationreaetivitiesofvarioussulfur Compounds in dieselfuel.Ind.Eng.Chem.Res.,1994,33:218-222.
    [11]李大东,石亚华,杨清雨.生产低硫低烯烃汽油的RIDOS技术.中国工程科学,2004,6(4):1-8.
    [12]赵乐平,周勇,段为宇等.OCT-M催化裂化汽油选择性加氢脱硫技术.炼油技术与工程,2004,34(2):6-8.
    [13]钱伯章.生产清洁汽柴油燃料脱硫工艺的进展.天然气与石油,2002,20(3):28-31.
    [14]冯钰,高金森,徐春明.清洁汽油生产技术现状及发展趋势.石化科技,2002,9(4):238-242.
    [15]李智勇,朱庆云.降低催化汽油硫含量的技术.石化技术,2004,11(2):59-62.
    [16]Yang R T,Takahashi A,Yang F H.New sorbents for desulfurization of liquid fuels by π-complexation.Ind Eng Chem Res,2001,40(26):6236-6239.
    [17]Takahashi A,Yang F H,Yang R T.New sorbents for desulfurization by π-complexation:thiophene / benzene adsorption.Ind Eng Chem Res,2002,41(10):2487-2496.
    [18]King D L,Faz C,Flynn T.Desulfurization of gasoline feedstocks for application in fuel reforming.Detroit,Michigan:Society of Automotive Engineers(SAE),2000.
    [19]Larrubia M A,Ramirez J,Busca G A.A FT-IR study of the adsorption of indole,carbazole,benzothiophene,dibenzothiophene and 4,6-dibenzothiophene over solid adsorbents and catalysts.Applied Catalysis A:General,2002,224(1):167-168.
    [20]Union Oil Company of California.Desulfurization of hydrocarbons.USP:4419224,1983-12-06.
    [21]Exxon Research and Engineering Company.Nickel adsorbent for sulfurremoval from hydrocarbon feeds.USP:4634515,1987-01-06.
    [22]Yuji H,Hitioshi O,Sadddi D et al.Desulfurization and denitrogenation of light oil by extraction.USP:5494572,1998.
    [23]UOP LLC.Process for removing sulfur compounds from hydrocarbonstreams.USP:5807475,1998-09-15.
    [24]Vicic D A,Jones W D.Room-temperature desulfurization of dibenzothiophene mediated by [(i-Pr2PCH2)2NiH].J Am Chem Sue 1997,119(44):10855-10856.
    [25]单国彬,刘会洲,邢建民等.汽油吸附脱硫的研究进展.现代化工,2003,23(6):18-20.
    [26]Yuji B,Hitioshi O,Sadddi D et al.Desulfurization and denitrgenation of light oil by extraction.USP:5494572,1996.
    [27]Funakoshi,Ryutodu,Miyadad-Machi et al.Process for recovering organic sulfur compounds from fuel oil.USP:5753102,1998.
    [28]杨丽娜,由宏君,王强.萃取法脱除催化裂化柴油中的酸性硫化物.辽宁化工,2003,32(11):489-492.
    [29]田龙胜,唐文成.FCC汽油溶剂抽提脱硫的研究.石油炼制与化工,2001,32(9):7-9.
    [30]王军民,房少华.催化裂化汽油溶剂萃取脱硫工艺的研究.炼油设计,2000,30(10):32-34.
    [31]夏道宏,苏贻勋,徐家麟.汽油中硫醇的分离及结构、组成分析.炼油设计,1995,25(1):46-49.
    [32]Bauer L N.Seperation and concentration of sulfur-containing compounds based on complexation.Probl Khim,1992:34-39.
    [33]Huang C,Chen B,Zhang J et al.Desulfurization of gasline by extraction with new ionic liquids.Energy &Fuels,2004,18(6):1862-1864.
    [34]Gerald Parkinson.Another new route to deep-desulfurization of diesel fuel.Chemical Engineering,2000,107(4):19-19.
    [35]Broettel F G.New routes for diesel desulfurization.Chemical Engineering,2001,108(8):15-18.
    [36]杨洪云,赵德智,毛徽.柴油碱洗-络合萃取脱硫工艺.抚顺石油学院学报,2003,23(1):45-49.
    [37]Christopher O,Olga P,Julie S et al.Elucidation of the metabolic pathway for dibenzothiophen desulfurization by Rhodococcus sp.Strain IGTS8(ATTCC53968).Microbiology,1997,143:2961-2973.
    [38]Ohshiro T,Hirata T,Izumi Y.Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon.Appl Microbiol Biotechnol,1995,44:249-252.
    [39] Christopher O, Olga P, Julie S et al. Elucidation of the metabolic pathway for dibenzothiophen desulfurization by Rhodococcus sp. Strain IGTS8 (ATTCC53968) Microbiology, 1997,143:2961-2973.
    
    [40] Sato K, Hyodo M, Aoki M et al. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent and halogen free conditions. Tetrahedron, 2001, 57(13): 2469-2476.
    
    [41] Otsuki S, Nonaka T, Takashima N et al.Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232-1239.
    
    [42] Te M, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Appl Catal A:General, 2001, 219: 267-280.
    
    [43] 康东华,杨丽娜,沈健等. 固体酸催化氧化脱硫的实验室研究. 石油炼制与化工, 2006, 37(4): 38-41.
    
    [44] Collins F M, Lucy A R, Sharp C. Oxidative desulphurization of oils via hydrogen peroxide and heteropolyanion catalysis. J.Mol. Catal A, 1997:117-397.
    
    [45] Vasily H, Fajula F,Bousquet J.Mild oxidation with H_2O_2 over Ti-containing molecular sieves-a very efficient method for removing aromatic sulfur compounds from fuels. J. Catal, 2001,198:179-186.
    
    [46] Yu G, Lu S, Chen H et al.Oxidative desulfurization of diesel fuels with hydrogen peroxide in the presence of activated carbon and formic acid. Energy & Fuels, 2005,19: 447-452.
    
    [47] Pavel T, Hynek B, Jiri R et al. Metathesis of 1-octene over M0O3 supported on mesoporous molecular sieves: The influence of the support architecture.Microporous and Mesoporous Materials, 2006, 96:44 - 54.
    
    [48] St V, Kotov St, Boneva Ts., Kolev. Some molybdenum-containing chelating ron-exchange resins/polyampholites as catalysts for the epoxidation of alkenes by organic hydroperoxides. Journal of Molecular Catalysis A: Chemical, 2000, 154: 121-129.
    
    [49] Zhang B, Liu N, Lin Q et al. The effects of Mo oxidation states on olefin metathesis. J. Mol. Catal., 1991, 65:15-28.
    
    [50] Shelimov B N, Elev L V, Kazansky V B.Use of photoreduction for activation of silica-molybdena catalysts for propylene metathesis: Comparison with thermal reduction. J. Catal., 1986, 98:70-81.
    
    [51] Handzlik J, Ogonowski J. Dynamic chemical counting of active centers of molybdena-aluminametathesis catalysts. Catal. Lett., 2003,88:119-122.
    
    [52] Sheldon R A. Synthetic and mechanistic aspects of metal-catalysed epoxidations with hydroperoxides. J Mol Catal, 1980, 7:107-126.
    [53] Otsuki S, Nonaka T, Qian W et al. Oxidative desulfurization of middle distillate-Oxidation of dibenzothiophene using t-butyl hypochlorite. Sekiyu Gakkaishi, 2001, 44(1): 18-24.
    [54] Parton R F, Vankelecom F J, Diedrik T et al, Membrane occluded catalysts: a higher order mimic with improved performance. J.Mol. Cat. A:Chemical, 1996,113:457-464.
    [55] Robertson J M. An X-ray study of the sturcture of the phthalocyanines, Part I: the metal-free, Nickel, Copper, and Platinum compounds. J. Chem. Soc. 1935:615-621.
    [56] Trynda L. Complexes of iron, cobalt and copper tetrasulfonated phthalocyanines with apomyoglobin. Inorg Chim Acta, 1983, 78(5):229-237.
    [57] Alvaro M, Carbonell E, Espla M et al. Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles. Applied Catalysis B:Environmental, 2005, 57:37-42.
    [58] Yu L, Zub A B, Pecheny A A et al. Metalphthalocyanines fixed onto polyorganosiloxane metrices as oxidation catalysts for HS groups. Catalysis Today, 1993, 17:31-40.
    [59] Sun A H, Xiong Z G, Xu Y M. Removal of malodorous organic sulfides with molecular oxygen and visible light over metal phthalocyanine. Journal of hazardous materials, 2008, 152(1):191-195.
    [60] Mondal S, Hangun-Balkir Y, Alexandrova L et al. Oxidation of sulfur components in diesel fuel using Fe-TAML1 catalysts and hydrogen peroxide. Catalysis Today, 2006, 116: 554-561.
    [61] Collins T. TAML Oxidant Activators:A New Approach to the Activation of Hydrogen Peroxide for Environmentally Significant Problems. J Acc Chem Res. 2002, 35:782-790.
    [62] Alessandro N, Tonucci L, Bressan M et al. Rapid and selective oxidation of metallosulfophthalocyanines prior to their usefulness as precatalysts in oxidation reactions Eur. J. Inorg. Chem., 2003:1807-1814.
    [63] Aida, T, Yamamoto D. Oxidative desulfurization of liquid fuels. Am. Chem. Soc:Div Fuel. Chem. ,1994,39:623.
    [64] Otsuki S, Nonaka T, Takashima N et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000,14(6): 1232-1239.
    [65] Yu G, Lu S, Chen H et al. Oxidative desulfurization of diesel fuels with hydrogen peroxide in the presence of activated carbon and formic acid. Energy & Fuels, 2005, 19:447-452.
    [66] Filippis P D, Scarsella M. Oxidative desulfurization: oxidation reactivity of sulfur compounds in different organic matrixes. Energy & Fuels, 2003, 17 (6): 1452-1455.
    [67] Shiraishi Y, Tachibana K, Hirai T et al. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction. Ind. Eng. Chem. Res., 2002,41(17):4362-4375.
    [68] Shiraishi Y, Naito T, Hirai T. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil. Ind. Eng. Chem. Res., 2003, 42:6034-6039.
    [69]相田哲夫.过氧化水素に ょ ゐ に石油の酸化脱硫.Petrotech,2000,23(6):483-486.
    [70]姚秀清,王少军,凌凤香等.模拟轻质油品的氧化脱硫.燃料化学学报,2004,32(3):318-322.
    [71]吕志凤,战风涛,李林等.用H202-有机酸氧化脱除催化裂化柴油中的硫化物.石油化学学报(自然科学版),2001,25(1),26-29.
    [72]Komintarachat C,Trakarnpruk W.Oxidative desulfurization using polyoxometalates.Ind.Eng.Chem.Res.,2006,45:1853-1856.
    [73]康东华,杨丽娜,沈健等.固体酸催化氧化脱硫的实验室研究.石油炼制与化工,2006,37(4):38-41.
    [74]张艳维,沈健,袁兴东等.Ti3(PWl2040)4催化氧化吸附脱硫的研究.石油炼制与化工,2005,36(3):20-24.
    [75]Huang D,Wang Y J,Yang L Met al.Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization.Ind.Eng.Chem.Res,2006,45:1880-1885.
    [76]Collins F M,Lucy h R,Sharp C.Oxidative desulphurization of oils via hydrogen peroxide and heteropolyanion catalysis.J.Mol.Catal.A,1997:117-397.
    [77]Vasily H,Fajula F,Bousquet J.Mild oxidation with H_0_2 over Ti-containing molecular sieves-a very efficient method for removing aromatic sulfur compounds from fuels.J.Catal.,2001,198:179-186.
    [78]王云,李钢,王祥生等.Ti-HMS催化氧化脱除模拟燃料中的硫化物.催化学报,2005,26(7):567-570.
    [79]孔令艳,李钢,王祥生等.TS-1/过氧化氢催化体系中有机硫化物的选择氧化.催化学报,2004,25(10):775-778.
    [80]Wang Y,Li G,Wang X et al.Oxidative desulphurization of 4,6-dimethydibenzothiop-hene with hydrogen peroxide over Ti-HMS.Energy &Fuels,2007,21:1415.
    [81]Cui S H,Ma F,Wang Y Q.Oxidation desulfrization of model diesel oil over Ti-containing molecular ieves using hydrogenperoxide.React.inet.Catal.Lett:Akadémiai Kiadó,2007,92(1),155-163.
    [82]Mei H,Mei B W,Yen T F.A new method for obtaining ultra desulfurization.Fuels,2003,82(4):405-414.
    [83]Deshpande A,Bassi A,Prakash A.Ultrasound-asisted base-catalyzed oxidation of 4,6-dimethyldibenzothiophene in a biphasic diesel-acetonitrile system.Energy & Fuels,2005,19(1):28-34.
    [84]Gerald P.Oxidation rids diesel fuel of sulfur and so does this ultrasonic oxidation method.Chemical Engineering,2001,108(4):23-23.
    [85]Aboel-Magd A,hbdel-Wahab,Abd El-Aal M Gaber.TiO2-photocatalytic oxidation of selected heterocyclic sulfur compounds.Journal of photochemistry and photobiology A:Chemistry,1998,114:213-218.
    [86]Matsuzawa S, Tanaka J, Sato S et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:effect of hydrogen peroxide and ultrasound irradiation. Journal of photochemistry and photobiology A: Chemistry, 2002, 149:183-189.
    [87] Hirai T, Shiraishi Y, Ogawa K et al. Effect of photosensitizer and hydrogen peroxide on desulfurization of light oil by photochemical reaction and liquid-liquid extraction. Ind. Eng. Chem. Res., 1997, 36(3):530-533.
    
    [88] 战风涛,吕志凤,徐永强等. 柴油的光诱导氧化脱硫研究. 炼油技术与工程,2005,35(4): 40-43.
    
    [89] Shiraishi Y, Hirai T, Komasawa LA Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System. Ind. Eng. Chem. Res., 1998, 37(1): 203-211.
    
    [90] Shiraishi Y, Hara H, Hirai T et al. A deep desulfurization process for light oil by photosensitized oxidation using a triplet photosensitizer and hydrogen peroxide in an oil/water two-phase liquid-liquid extraction system, Ind. Eng. Chem. Res, 1999, 38: 1589-1595.
    
    [91] Shiraishi Y, Hirai T, Komasawa I. Identification of desulfurization products in the photochemical desulfurization process for benzothiophenes and dibenzothiophenes from light oil using an organic two-phase extraction system. Ind. Eng. Chem. Res., 1999, 38(9): 3300-3309.
    
    [92] Shiraishi Y, Taki Y, Hirai T et al. Visible light-induced deep desulfurization process for light oils by photochemical electron-transfer oxidation in an organic two-phase extraction system. Ind. Eng. Chem. Res., 1999, 38(9): 3310-3318.
    
    [93] Shiraishi Y, Taki Y, Hirai T et al. Vsible light-induced desulfurization process for catalytic-cracked gasoline using an organic two-phase extraction system. Ind. Eng. Chem. Res., 1999, 38(12):4538-4544.
    
    [94] Patrick S T, James R K, Eldridge J W. Desulfurization of fuel oil by oxidation and extraction. 1. enhancement of extraction oil yield. Ind. Eng. Chem. Res., 1990,29:321-324.
    
    [95] Patrick S T, James R K, Eldridge J W. Desulfurization of fuel oil by oxidation and extraction. 2. kinetic modeling of oxidation reaction. Ind. Eng. Chem Res. 1990, 29: 324-329.
    
    [96] Otsuki S, Nonaka T, Qian W et al. Oxidative desulfurization of middle distillate-Oxidation of dibenzothiophene using t-butyl hypochlorite. Sekiyu Gakkaishi, 2001,44(1) :18-24.
    
    [97] Wang D, Qian E W, Amano H et al. Oxidative desulfurization of fuel oil part I . oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: General, 2003, 253: 91-99.
    
    [98] Busing W R, Levy H A.Crystal and molecular structure of hydrogen peroxide: a neutron diffraction study. J. Chem. Phys., 1965,42: 3054-3059.
    [99]Ishihara A,Wang D,Dumeignil F et al.Oxidative desulfurizationand denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process.Applied Catalysis A:General,2005,279:279-287.
    [100]Stanger J K,Angelici J R.Silica-catalyzed tert-butyl hydroperoxide oxidation of dibenzothiophene and its 4,6-dimethyl derivative:a route to low-sulfur petroleum feedstocks.Energy & Fuels,2006,20,1757-1760.
    [101]Brouwer M W,Piet P,German L A.Autoxidation of thiols with cobalt(Ⅱ) phthalocyanine tetrasodiunm sulfonate attached to poly(vinylamine).Ⅱ.Kinetic measurements.Journal Molecular Catalysis,1985,29,347-361.
    [102]Sorokin A,Meunier B.Oxidation of polycyclic aromatic hydrocarbons catalyzed by iron tetrasulfophthalocyanine FePcS:inverse isotope effects and oxygen,labeling studies.Eur.J.Inorg.Chem.1998,1269-1281.
    [103]Zub Y I,Pecheny A B,Chuiko A A et al.Metal phthalocyanines fixed onto polyorganosiloxane metrices as oxidation catalysts for HS groups.Catalysis Today,17,1993,31-40.
    [104]Murata S,Murata K,Kidena K et al.A Novel Oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes.Energy &Fuels,2004,18(1):116-121.
    [105]Lu H Y,Gao J B,Jiang Z X et al.Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis.Chem.Commun.,2007,150-152.
    [106]唐晓东,税蕾蕾,刘亮.直馏柴油Nox-空气催气催化氧化脱硫研究.催化学报,2004,25(10):789-792。
    [107]Ma X,Zhou A,Song C.A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupledwith selective adsorption.Catalysis Today,2007,123:276 -284.
    [108]李建源,周新锐,赵德丰.过氧化环己酮对二苯并噻吩的氧化脱硫研究.燃料化学学报,2006,34(2):249-251.
    [109]张志贤,张瑞镐编著.有机官能团定量分析.北京:化学工业出版社,1990.
    [110]Milas N A,Harris S A,Panagiotakos P C.Studies in organic peroxides Ⅵ:cyclane peroxides.J.Am.Chem.Soc.,1939,61(3):2430-2432.
    [111]段长强,孟庆芳,张泰等编著.现代化学试剂手册,第一分册(通用试剂).北京:化学工业出版社,1988.
    [112]Milas N A.Peroxidic products.USA Patent:2176407,1939.
    [113]Philopotts A R,Thain w.Infrared abosorption spectra of teroxides.Anal.Chem.,1952,24(4):638-643.
    [114]黄庆云,徐瑞秋.萜烯环氧化反应的研究(Ⅰ)烃基过氧化氢非均相催化萜烯环氧化反应的研究.北京大学学报(自然科学版),1989,25(4):427-430.
    [115] Kotov St V, Boneva St, Kolev Ts. Some molybdenum-containing chelating ion-exchange resins polyampholites as catalysts for the epoxidation of alkenes by organic hydroperoxides. Journal of Molecular Catalysis A: Chemical, 2000, 154: 121 - 129.
    
    [116] Kotov St V, Balbolov E. Comparative evaluation of the activity of some homogeneous and polymeric catalysts for the epoxidation of alkenes by organic hydroperoxides. Journal of Molecular Catalysis A: Chemical, 2001,176:41-48.
    
    [117] Sorokin A B, Tuel A. Metallophthalocyanine functionalized silicas: catalysts for the selective oxidation of aromatic compounds. Catalysis Today, 2000, 57, 45 - 59.
    
    [118] Achar B N, Lokesh K S. Studies on tetra-amine phthalocyanines, J. of Organometallic Chem., 2004, 689, 3357-3361.
    
    [119] McLendon G, Martell A E. A reinvestigation of the reaction of dioxygen with (phthalocyaninetetrasulfonate) iron(II). Inorg. Chem., 1977, 16(7): 1812-1813.
    
    [120] Gupta S, Huang H, Yeager E. Studies of the adsorption of tetrasulfonated phthalocyanines on graphite substrate. Electrochim. Acta., 1991, 36(14): 2165-2169.
    
    [121] Story P R, Lee B, Clyde E B et al. Macrocyclic synthesis. II. cyclohexanone peroxides. J. Org. Chem., 1970, 36(9): 3059-3062.
    
    [122] Van Veen J A R, Hendriks P A J M, Romers E J G M et al. Chemistry of phosphomolybdate adsorption on alumina surfaces. 1. The molybdate/alumina system. J. Phys. Chem. 1990,94: 5275-5282.
    
    [123] Mensch C T J, Van Veen J A R, Van Wingerden B et al. Extended X-ray absorption fine structure study of molybdenum/alumina samples prepared by equilibrium adsorption of ammonium heptamolybdate. J. Phys. Chem. 1988,92:4961-4964.
    
    [124] Kasztelan S, Grimblot J, Bonnelle J P. Surface analysis of alumina-supported molybdenum oxide (MoO3), nickel oxide (NiO), and NiO-MoO3 by low energy ion scattering spectroscopy. J. Phys. Chem. 1987,91:1503-1508.
    
    [125] Topsoe H, Clausen B S. Active sites and support effects in hydrodesulfurization catalysts. Appl. Catal., 1986, 25:273-293.
    
    [126] Delannay F, Haeussler E, Delmon B. The surface structure of the oxidic precursor of CoMo/γ-Al_2O_3 hydrodesulfurization catalysts. J. Catal., 1980, 66:469-472.
    
    [127] Chica A, Corma A, Domine M E .Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. Journal of Catalysis, 2006, 242:299-308.
    
    [128] Gilman H, Esmay D L. The oxidation of dibenzothiophene and phenoxathiin with hydrogen peroxide. J. Phys. Chem., 1952, 74:2021-2024.
    
    [129] Zeuthen P, Knudsen K G., Whitehurst D D. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catalysis Today 65 (2001): 307 - 314.
    [130] Topka P, Balcar H, Rathousky J et al. Metathesis of 1-octene over MoO3 supported on mesoporous molecular sieves: The influence of the support architecture. Microporous and Mesoporous Materials, 2006, 96(1): 44-54.
    
    [131] Sun A H, Zhang G C, Xu Y M. Photobleaching of metal phthalocyanine sulfonates under UV and visible light irradiation over Ti02 semiconductor. Materials Letters, 2005, 59 (29-30): 4016-4019.
    
    [132] Ma X L, Zhou A N, Song C S. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catalysis Today, 2007,123:276-284.
    
    [133] Dawson, J. H. Science, 1988, 240, 433-439.
    
    [134] Groves J T, Adhyam D V. Hydroxylation by cytochrome P-450 and metalloporphyrin Models. Evidence for allylic rearrangement. J. Am. Chem. Soc., 1984,106:2177-2181.
    
    [135] Traylor T G, Tsuchiya S. Perhalogenated tetraphenylhemins: stable catalysts of high turnover catalytic hydroxylations. Inorg. Chem., 1987, 26:1338-1339.
    
    [136] Castellino A J, Bruice T C. Intermediates in the epoxide of alkenes by cytochrome P-450 models. 1. cis-Stilbene as a mechanistic probe. J. Am. Chem. Soc, 1988, 110:158-162.
    
    [137] Hoffmann P, Robert A, Meunier B. Preparation and catalytia activity of the manganese (III) dodecachlorotetramesitylporphyrin complex. Bull. soc. Chim. Fr. 1 992, 129:85-97.
    
    [138] Artaud I, Gregoire N, Battioni J P et al. Heme model studies related to cytochrome P-450 reactions: preparation of iron complexes with carbenes bearing a beta-oxygen atom and their transformation into iron-N-alkylporphyins and iron-metallacyclic complexes. J. Am. Chem. Soc. 1988,110:8714-8716.
    
    [139] Collman J P. Funcational Analogs of Heme Protein Active Sites. Inorg. Chem., 1997, 36(23): 5145-5155.
    
    [140] Nappa M J, Tolman C A. Steric and electronic control of iron porphyrin catalyzed hydrocarbon oxidations. Inorg. Chem., 1985, 24:4711-4719.
    
    [141] Naruta Y, Tani F, Ishihara N et al. Catalytic and asymmetiic epoxidation of olefins with iron complexes of twin-coronet porphyrins. A Mechanistic insight into the chiral induction of styrene derivatives. J. Am. Chem. Soc., 1991,113:6865-6872.
    
    [142] Lee K A, Nam W. Determination of reactive intermediates in iron porphyrin complexe-catalyzed oxygenations of hydroncarbons using isotopically labelled water: mechanistic insights. J. Am. Chem. Soc., 1999,119:1916-1922.
    
    [143] Urano Y, Higuchi T, Hirobe M et al. Pronounced axial thiolate ligand effect on the reactivity of high-valent oxo-iron porphyrin intermediate. J. Am. Chem. Soc., 1999, 119:12008-12009.
    [144] Kevin T M, Istvan T H, Therien M J. Mechanistic Studies of (Porphinato) Iron-Catalyzed Isobutane Oxidation. Comparative Studies of Three Classes of Electron-Deficient Porphyrin Catalysts. Inorg. Chem.,2000, 39:3125-3139.
    
    [145] Nthapo S, Tebello N. catalytic of activity of iorn and cobalt phthalocyanine complexes towards the oxidation of cyclohexene using butylhydroperoxide and chloroperoxybenzoic acid. J. of Molecular Catalysis A:Chemical, 2004, 209:51-57.
    
    [146] Alessandro N, Tonucci L, Bressan M et al. Rapid and selective oxidation of metallosulfophthalocyanines prior to their usefulness as precatalysts in oxidation rections.Eur. J. Inorg. Chem. ,2003: 1807-1814.
    
    [147] Kabe T, Ishihara A, Qian W. Hydrodesulfurization and hydrodenitrogenation, Kodansha Scientific, Wiley/VCH, Tokyo, New York, 1999.
    
    [148] Barood A A, Stanislaus A. Ultra-deep desulfurization of coker and straight-run gas oils: effect of lowering feedstock 95% boiling point. Fuel Processing Technology, 2007, 88(3):309 - 315.
    
    [149] Vazquez-Duhalt R, Westlakc D W S, Fedorak P M. Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds, Appl. Microbiol Biotechnol 42 (1995): 675-681.
    
    [150] Gerald E K, Branch W. Oxidation of carbazole by silver oxide. J. Am. Chem. Soc, 1923, 46:438-445.
    
    [151] Luiza G, Pereira a, Antonio S, MoO3-based HDS catalyst obtained by the polymeric precursor method, Materials Letters 60 (2006) 2638-2641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700