用户名: 密码: 验证码:
金属氧化物的制备及其催化氧化降解水中四环素和苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于羟基自由基反应的高级氧化技术(AOPs)已被广泛的应用于生物难降解有机污染物的去除中。随着高级氧化技术的不断发展,其定义有了新的内涵。除了羟基自由基,其他活性极强的自由基,如硫酸根自由基也可以与难降解的有机污染物之间发生电子转移等反应,使水体中有毒的大分子难降解有机物氧化降解为无毒的小分子物质,从而实现有机污染物的有效去除。目前,最常用的氧化剂有双氧水、臭氧及过硫酸盐类物质。这些氧化剂可以被均相催化剂或非均相催化剂活化而产生自由基类活性物质。然而,均相催化体系有诸多缺点,所产生铁泥对环境会造成二次污染,限制均相催化体系在实际废水处理中的应用。为了解决这些问题,非均相催化体系得到了极大的关注。铁氧化物及一些过渡金属氧化物被用来替代均相催化剂,极大的简化了废水处理的后续分离过程,在氧化降解过程结束后被回收利用,避免了对环境的二次污染。不同种类的氧化剂在催化剂表面得以活化,所产生的羟基自由基及其他活性自由基物质可以有效的分解难生化类有机污染物,而且矿化效果较好。
     铁及过渡金属氧化物在自然环境中的含量丰富。特别是铁氧化物,常用于催化体系中。本论文选用了三种具有不同组分、结构、比表面积、粒径及活性位浓度的金属氧化物(四氧化三铁、镧钴及镧锰复合态氧化物)作为非均相催化剂,以双氧水、过硫酸盐及臭氧为活化剂,构筑高效催化氧化体系用于有机物污染的废水的氧化降解。在我们的工作中,我们通过对两种有机污染物的催化降解的研究,着重考察了非均相催化氧化体系中的催化机理、有机污染物的生物毒性的变化及矿化度的变化趋势。此外,通过采用与其他高级氧化技术耦合的技术,提高了催化剂的稳定性和其催化活性。本论文主要的工作包括以下几部分:
     (1)采用超声强化四氧化三铁活化双氧水,对此过程中产生的羟基自由基降解四环素类抗生素-四环素(TC)进行了研究。在该非均相Fenton体系中,研究了不同影响因素对四环素降解的影响、催化反应过程中生物毒性变化及催化反应机制。这些研究结果表明,催化剂的稳定性在超声存在的条件下得到了极大的提高。在该催化体系中,一种新型的膜分离体系被成功的应用于研究表面催化氧化机制,并得出表面羟基自由基是该催化体系的主要活性物质。
     (2)过二硫酸盐被作为另外一种氧化剂,也可以被四氧化三铁、超声所活化,从而产生硫酸根自由基和羟基自由基两种活性物质,实现对四环素的有效催化降解。在超声强化四氧化三铁活化过二硫酸盐的催化体系中,考察了不同的影响因素,如过二硫酸盐浓度、四氧化三铁投加量、超声功率、初始四环素浓度及溶液初始pH值对四环素的降解率的影响。通过采用乙醇、叔丁醇及1,4-对苯醌为自由基捕获剂,对该反应体系下硫酸根自由基、羟基自由基及超氧自由基的作用进行了评估。研究结果表明,在反应中起主要作用的活性自由基为硫酸根自由基和羟基自由基。
     (3)臭氧作为一种强氧化剂也可以被四氧化三铁所活化。在超声强化四氧化三铁催化臭氧化体系中对四环素的降解进行了研究。对催化氧化体系中影响四环素降解的因素、生化性及生物毒性的变化进行了全面评估。研究结果表明,四环素的降解速率受溶液的pH值、超声功率的影响而发生变化。但在0.3至1.0克/升的催化剂投加量范围内,四环素的降解速率没有收到明显影响。此外,四环素的降解速率会随着自由基捕获剂叔丁醇、异丙醇及氟化钠的投加而收到抑制。在最佳反应条件下,四环素在20分钟内达到完全去除,化学需氧量(COD)的去除率可达41.8%。当催化氧化反应时间延长为120分钟时,COD的去除率可高达89.1%,生物需氧量与化学需氧量的比值(BOD5/COD)为0.694。在反应进行60分钟后,出水的生物毒性达到最大值。随着反应的继续进行,出水的生物毒性逐渐得以下降。最后,通过对催化剂在三次循环使用中四环素降解率的变化及反应溶液中溶出铁的测试,对催化剂在该催化氧化体系中的稳定性进行了考察。
     (4)尝试改善催化剂的表面特性以提高催化剂的催化性能。以离子液体辅助水热合成法制备出了不同形貌的纳米态四氧化三铁颗粒。对催化剂的形貌、微孔结构进行了X-射线衍射能谱、N2-物理吸附测试、透射电镜和程序升温还原测试。所制备的四氧化三铁样品呈微立方体、纳米球及多孔纳米棒状形态。在非均相Fenton体系中对催化剂的活性进行了测定。商用四氧化三铁的活性较为有限,棒状纳米结构的四氧化三铁在对苯酚的催化氧化降解中呈现出了超常的活性,98%的苯酚被降解,矿化度高达74%。在采用多孔棒状结构的四氧化三铁为催化剂的催化剂重复利用的实验得出,催化剂的稳定性良好,在催化氧化降解有机污染物中有着广阔的应用前景。
     (5)采用一种新型的溶剂热合成法,成功的制备出了镧锰及镧钴钙钛矿系列的高度结晶纳米复合材料。对样品进行了X-射线衍射谱图、透射电镜、N2-物理吸附等常规表征。与传统溶胶凝胶法制得的纳米颗粒相比,由溶剂热法制得的催化剂具有较大的比表面积、较强的氧化还原性能(通过氢气程序升温还原测试所得)及较小的粒径尺寸。此外,运用氧同位素交换技术对其催化活性进行了评估。研究结果表明,催化剂活性提升的主要原因是催化剂的粒径及比表面积的提高。这些提升都一一与其在非均相Fenton体系中对苯酚催化氧化活性相关联。
Hydroyxl radical based advanced oxidation processes (AOPs) are extensively applied to degrade non-biodegrable organic compounds. In these processes, active radical species are produced with the activation of oxidants in an aqueous solution, leading to destroy organic pollutants efficiently. Up to now, the most commonly used oxidants are hydrogen peroxide, ozone, and persulfate. They can be active by the homogeneous catalysts or the heterogenous catalysts. However, the homogenous catalytic processes have some drawbacks, such as iron sludge was produced during the reactions, causing secondary pollution, and the oxidation conditions were limited in narrow pH range. To address these problems, the heterogeneous catalytic processes were of great concern. Iron oxides, minerals, and transition metal oxides were used instead of homogeneous catalysts, simplying the separation processes, and avoiding the secondary pollutions. In this case, the solid catalysts can be recycled after the oxidation processes, and can be further reused. The activiation of the oxidants can initiate on the catalyst surface, and then generated·OH or other active species, leading to obtain high removal and mineralization of non-biodegradable organic compounds.
     Iron oxide and transistion metal oxides are rich in natural environment. Especially, the iron oxides were the most used in the catalytic processes. In our studies, three kinds of metal oxides, such as iron oxide, lanthanum cobalt oxides and lanthanum manganese mixed oxides, were chosen as the heterogenous catalysts, which have different components, structures, special surface areas, crystal sizes, and active site densities. Two kinds of model organic compounds, hydrochloride tetracycline and phenol, were selected. They are widely used, non-biodegradable, and toxic to the environment. In this work, we focused on the mechanism of the heterogeneous catalytic processes based on degraded two kinds of model pollutants. Batch of experiment showed the heterogeneous catalytic processes are considered as a surface reaction over the metal oxides. In addition, combined with other advanced processes (such as ultrasound, UV) can enhance the catalyst stability and its catalytic activity. The main work of this thesis can separate into followed parts.
     (1) hydrogen peroxide was selected as an oxidant, and it can be active by the magnetite (Fe3O4). Hydrochloride tetracycline was selected as the model organic compound, and its degradation efficiency over this catalyst was investigated using a coupled ultrasound/heterogeneous Fenton process. The effects of the reaction parameters, the evolution of the toxicity of the system, and the reaction mechanism were addressed. The results demonstrated that the stability of the catalyst was significantly improved when ultrasound was employed during the reaction. More intrestingly, a novel membrane separation system was used to explore the surface oxidation mechanism. It should be noted that the surface hydroxyl radicals were determined to be the major reactive species during this oxidation process.
     (2) sodium peroxydisulfate (Na2S2O8) can be acted as another oxidant, and it also be activated by magnetite (Fe3O4) and ultrasound to produce sulfate radicals and hydroxyl radicals on the degradation of tetracycline effectively. The effects of Na2S2O8concentration, Fe3O4addition, ultrasonic power, initial concentration and initial pH on the degradation of tetracycline were investigated in the process of Na2S208/Fe3O4/ultrasound. The results showed that the removal efficiency of tetracycline increased with the increase of Fe3O4dosage, but decreased with the increase of initial pH and initial tetracycline concentration. The quenching effect was examined by using ethanol, tert-butyl alcohol and1,4-benzoquinone under ultrasound irradiation to evaluate the roles of sulfate radicals, hydroxyl radicals and superoxide radicals. The results indicated that sulfate radicals and the hydroxyl radicals played the major roles for the degradation.
     (3) ozone was employed as the oxidant, and it also can be activated by magnetite catalyst. The degradation of tetracycline was investigated using the ultrasound-enhanced magnetite catalytic ozonation process (US/Fe3O4/O3). Thorough assessments of the operational parameters, biodegradability and acute toxicity were performed. The results indicated that the TC degradation rate was strongly influenced by the initial pH and the ultrasonic power density over the range investigated, but it was almost independent of the dosage of Fe3O4at the range of0.3-1.0g L-1. The TC degradation rate was diminished in the presence of tert-butanol, isopropanol and NaF. Under the optimized conditions, TC was almost completely removed after20min of treatment, and the COD removal reached41.8%. The COD removal further increased to89.1%when the reaction time was extended to120minutes, and the corresponding biochemical degradability (BOD5/COD) rose to0.694. The acute toxicity reached its maximum value after60min treatment and then decreased with further reaction time. The catalyst stability was evaluated by measuring the TC removal rate and iron leaching for three successive cycles.
     (4) to enhance the catalytic performance, we try to optimize the catalyst surface properites. Nanostructured Fe3O4particles with different shapes were obtained via an ionic liquid assisted hydrothermal process. The morphology and microstructure of the nano-sized Fe3O4particles were characterized using X-ray diffraction, N2physisorption, transmission electron microscopy, and temperature-programmed reduction. As-prepared magnetite samples show microcube, nanosphere, and porous nanorod morphologies. Activity of the nanostructures was evaluated for the Fenton reaction, using phenol as model molecule. While commercial Fe3O4presents very limited activity, rod-type nanostructure exhibited exceptional activity toward phenol removal under mild conditions;98%phenol was removed, and the TOC removal efficiency was74%. The reusability of porous nanorods of Fe3O4was also investigated after three successive runs, which demonstrated the promising application of the catalyst in the oxidative degradation of organic pollutants. Interestingly, the material activity is strongly affected by the reduction degree, highlighting the beneficial effect of Fe0/Fe3O4mixed phase formation to achieve higher activity.
     (5) the successful synthesis of highly crystalline nanocomposites, based on LaAxO3(A=Co, Mn) perovskites, are reported via a novel non-aqueous thermal route. The final materials were characterised by X-ray diffraction, transmission electron microscopy and N2physisorption. The solid obtained by this non-aqueous route presents a large difference in specific surface area, redox properties (as measured by reduction by H2), and lower crystallite size, when compared to conventional methods. The reactivity was evaluated using oxygen isotopic exchange (OIE). The results obtained from the exchange reaction showed that the activity was strongly influenced by the crystal size and surface area. These observations correlated well with catalytic activity for phenol conversion under the heterogenous Fenton processes.
引文
[1]刘继凤,刘继永,朱进勇.浅谈工业废水中难降解有机污染物处理技术及发展方向[J].环境科学与管理,2008,33(4):120-122.
    [2]R.S. Boethling, E. Sommer, D. Difore. Designing small molecules for biodegradability [J]. Chem. Rev.,2007,107 (6):2207-2237.
    13]塔里克,王雪松,陈春城,马万红,赵进才.有毒难降解有机污染物的光催化降解[J].催化学报,2007,28(12):1117-1122.
    [4]王连生.有机污染物在环境中的行为及生态效应[J].中国科学基金,1994,160:160-163.
    [5]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境,2005,14(6):947-952.
    [6]O.V. Enick, M.M. Moore. Assessing the assessments:pharmaceuticals in the environment [J]. Environ. Impact Assess. Rev.,2007,27(8):707-729.
    [7]P. Westerhoff, Y. Yoon, S. Snyder, E. Wert. [J]. Environ. Sci. Technol.,2005,39 (17): 6649-6663.
    [8]M. Rabiet, A, Togola, F. Brissaud, J.L. Seidel, H, Budzinski, F, Elbaz-Poulichet. Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment [J]. Environ. Sci. Technol.,2006,40(17):5282-5288.
    [9]American Conference of Governmental Industrial Hygienists Standards (ACGIH) Mannual [C]. United States:United States Environmental Protection Agency, EPA: 816-F-01-007,2006.
    [10]B. Zakeri, G.D. Wright. Chemical biology of tetracycline antibiotics [J]. Biochem. Cell. Biol.,2008,86 (2):124-136.
    [11]A.K. Sarmah, M.T. Meyer, A.B.A. Boxall. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere,2006,65(5):725-759.
    [12]D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams,1999-2000:a national reconnaissance [J]. Environ. Sci. Technol.,2002,36: 1202-1211.
    [13]H.T. Pawelzick, H. Hoper, H. Nau, G. Hamscher. A survey of the occurrence of various tetracyclines and sulfamethazine in sandy soils in northwestern Germany fertilized with liquid manure [In]. SETAC Euro 14th Annual Meeting [C]. Prague, Czech Republic, 2004:18-22,
    [14]K.G. Karthikeyan, W.F. Bleam. DNR Project#163 Final Project Report; Wisconsin Department of Natural Resources; Wisconsin Department Agriculture, Trade, and Consumer Protection:Wisconsin, http://www.dnr.state.wi.us/org/water/dwg/gw/research/reports/169.pdf,2003.
    [15]X.S. Miao, F. Bishay, M. Chen, C.D. Metcalfe. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada [J]. Environ.Sci. Technol.,2004,38: 3533-3541.
    [16]F. Baquero, J.L. Martinez, R. Canton. Antibiotics and antibiotic resistance in water environments [J]. Curr. Opin. Biotechnol.,2008,19:260-265.
    [17]B. Halling-Sorensen. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere,2000,40:731-739.
    [18]K. Sushil, K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chem. Rev.,2007,107(6):2319-2364.
    [19]L. Wollenberger, B. Halling-Sorensen, K.O. Kusk. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna [J]. Chemosphere,2000,40:723-731.
    [20]C.D. Didelupis, A. Macri, C. Civitareale, L. Migliore. Antibiotics of zootechnical use: effects of acute high and low dose contamination on Daphnia magna Straus[J]. Aquat. Toxicol.,1992,22:53-59.
    [21]B. Halling-Sorensen, G. Sengelov, J. Tjornelund. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria [J]. Arch. Environ. Contam. Toxicol.,2002,42: 263-271.
    [22]鲍艳宇.四环素类抗生素在土壤中的环境行为及生态毒性研究[R].天津:南开大学环境科学与工程学院,2008.
    [23]李钦,周庆,李爱民.水体中四环素类抗生素的去除技术研究进展[J].环境保护科学,2012,38(4):15-18.
    [24]S. Kim, P. Eichhorn, J.N. Jensen, A.S. Weber, D.S. Aga. Removal of antibiotics in wastewater:effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process [J]. Environ. Sci. Technol.,2005,39 (15):5816-5823.
    [25]石翠霞.吸附法去除四环素效果及影响因素研究[D].济南:山东大学,2012.
    [26]唐礼庆,何成达,罗亚红,李悦,吴彩芳.四环素类抗生素生产废水处理技术进展[J].环境科学与管理,2006,31(7):99-102.
    [27]陈瑞萍,张丽,于洁,陶芸,张忠品,李克勋,刘东方.活性污泥对四环素的吸附性能研究[J].环境科学,2012,33(1):156-162.
    [28]J. Prousek. Advanced oxidation processes for water treatment. Chemical processes [J]. Chem. Listy.,1996,90 (4):229-237.
    [29]K.V. Bao, E.W. Shin, O. Snisarenko, W.S. Jeong, H.S. Lee. Removal of the antibiotic tetracycline by Fe-impregnated SBA-15 [J]. Korean J. Chem. Eng.,2010,27:116-120.
    [30]Y. Chen, C. Hu, J.H. Qu, M. Yang. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation [J]. J. Photochem. Photobio. A:Chem.,2008,197:81-87.
    [31]A.N. Sapadin, R. Fleischmajer. Tetracyclines:nonantibiotic properties and their clinical implications [J]. J. Am. Acad. Dermatol.,2006,54(2):258-265.
    [32]张文军,王旭,李强.含酚废水处理技术的研究进展[J].工业用水与废水,2011,42(1):25-27.
    [33]姜涛,刘荣春.治愈大面积苯酚烧伤并多脏器功能衰竭一例(血液透析治愈急性肾衰)[A].中华医学会烧伤外科学分会.中华医学会第五次全国烧伤外科学术会议论文汇编[D].中国重庆,1997.
    [34]J. Michalowicz, W. Duda. Phenols-sources and toxicity[J]. Pol. J. Environ. Stud.,2007, 16(3):347-362.
    [35]张威,张文卿.国内外含酚废水处理技术的研究与进展[J].环境保护与循环经济,2008,2:29-31.
    [36]林华宝.含酚废水处理技术的研究进展lJ].化学工程与设备,2010,7:131-133.
    [37]胡文伟,高亚岳.焚烧法处理含酚废水[J].工业用水与废水,2000,31(4):28-29.
    [38]A.H. Aktas, N. Sanh, G. Pkecan. Spectrometric determination of pKa values for some phenolic compounds in acetonitrile-Water mixture [J]. Act. Chim. Slov.,2006,53:214-218.
    [39]R. Munter, R. Advanced oxidation processes-current status and prospects [J]. Proc. Estonian Acad. Sci. Chem.,2001,50(2):59-80.
    [40]黄红勋,孙亚全,陈明发.高级氧化技术在水处理中的应用[J].黑龙江环境通报,2012,36(3):60-63.
    [41]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展[J].能源环境保护,2004,18(3):5-13.
    [42]张广超,李宇庆.高级氧化技术在废水处理中的应用[J].化肥设计,2006,44(5):57-60.
    [43]魏奇锋,张珺,王伟杰,代更明.高级氧化技术在难降解有机废水处理中的应用[J]. 科技传播,2009,Z1:101-102.
    [44]R. Oliveira, M.F. Almeida, L. Santos, L.M. Madeira. Experimental design of 2,4-dichlorophenol oxidation by Fenton's reaction [J]. Ind. Eng. Chem. Res.,2006,45(4): 1266-1276.
    [45]M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas. Degradation of chlorophenols by means of advanced oxidation processes:a general review [J]. Appl. Catal. B:Environ.,2004,47(4):219-256.
    [46]J.G Lin, Y.S. Ma. Oxidation of 2-chlorophenol in water by ultrasound/Fen ton method [J]. J. Environ. Eng.,2000,126(2):130-137.
    [47]M.P. Ormad, J.L. Ovelleiro, J. Kiwi. Photocatalytic degradation of concentrated solutions of 2,4-dichlorophenol using low energy light:identification of intermediates [J]. Appl. Catal. B:Environ.,2001,32(3):157-166.
    [48]S. Sabhi, J. Kiwi. Degradation of 2,4-dichlorophenol by immobilized iron catalysts [J]. Water Res.,2001,35(8):1994-2002.
    [49]S.G. Huling, R.G. Arnold, R.A. Sierka, P.K. Jones, D.D. Fine. Contaminant adsorption and oxidation via Fenton reaction [J]. J. Environ. Eng.2000,126(7):595-600.
    [50]Y. Sun, J.J. Pignatello. Photochemical reactions involved in the total mineralization of 2, 4-D by iron (3+)/hydrogen peroxide/UV[J]. Environ. Sci. Technol.1993,27(2):304-310
    [51]W.G. Barb, J.H. Baxendale, P. George, K.R. Hargrave. Reactions of ferrous and ferric ions with hydrogen peroxide [J]. Nature,1949,163:692-694.
    [52]W.G. Barb, J.H. Baxendale, P. George, K.R. Hargrave. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction [J]. Trans. Faraday Soc., 1951,47:462-500.
    [53]W.G Barb, J.H. Baxendale, P. George, K.R. Hargrave. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.-The ferric ion reaction. Trans. Faraday Soc.,1951, 47:591-616.
    [54]J.I. Nieto-Juarez. Virus inactivation by homogeneous and heterogeneous Fenton-like processes [D]. Switzerland, Ecole Polytechnique Federale de Lausanne (EPFL),2012:
    [55]Q. Yang, H. Choi, Y. Chen, D.D. Dionysiou. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:the effect of support, cobalt precursor, and UV radiation [J]. Appl. Catal. B:Environ.,2008,77(3):300-307.
    [56]P. Neta, V. Madhavan, H. Zemel, R.W. Fessenden. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds [J]. J. Am.Chem. Soc.,99(1): 163-164.
    [57]S.H. Do, J.H. Jo, Y.H. Jo, H.K. Lee, S.H. Kong. Application of a peroxymonosulfate/cobalt (PMS/Co (II)) system to treat diesel-contaminated soil. Chemosphere,2009,77(8):1127-1131.
    [58]G.P. Anipsitakis, D.D. Dionysiou. Radical generation by the interaction of transition metals with common oxidants [J]. Environ. Sci. Technol.,2009,38(13):3705-3712.
    [59]A. Rastogi, S.R. Al-Abed, D.D. Dionysiou. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems [J]. Appl. Catal. B:Environ.,2009,85(3):171-179.
    [60]I.M. Kolthoff, I.K. Miller. The chemistry of persulfate. I. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium [J]. J. Am. Chem. Soc.,1951, 73(7):3055-3059.
    [61]D. House. Kinetics and mechanism of oxidations by peroxydisulfate [J]. Chem. Rev., 1962,62(3):185-203.
    [62]G.P. Anipsitakis, E. Stathatos, D.D. Dionysiou. Heterogeneous activation of oxone using Co3O4 [J]. J. Phys. Chem. B.,2005,109(27):13052-13055.
    [63]S. Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron [J]. J. Hazard. Mater.,2009, 168(1):346-351.
    [64]J. Zhao, Y. Zhang, X. Quan, S. Chen. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature [J]. Sep. Purif. Technol.,2010,71(3):302-307.
    [65]G.J. Price, A.A. Clifton. Sonochemical acceleration of persulfate decomposition [J]. Polymer,1996,37(17):3971-3973.
    [66]P. Gayathri, R Praveena Juliya Dorathi, K. Palanivelu. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions [J]. Ultrason. Sonochem.,2010,17(3):566-571
    [67]G.J. Price, A.A. Clifton. Ultrasonically enhanced persulfate oxidation of polyethylene surfaces [J]. Polymer,1996,37:5825-5829.
    [68]I.A. Balcioglu, M. Otker. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J]. Chemosphere,2003,50:85-95.
    [69]Y. Wang, H. Zhang, L. Chen, S. Wang, D.B. Zhang. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor [J]. Sep. Purf. Technol.2012,84:138-146.
    [70]N.C. Shang, Y.H. Yu, H.W. Ma, C.H. Chang, M.L. Liou. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols [J]. J. Environ. Manage, 2006,78 (3):216-222.
    [71]R.F. Dantas, M. Canterino, R. Marotta, C. Sans, S. Esplugas, R. Andreozzi. Bezafibrate removal by means of ozonation:primary intermediates, kinetics, and toxicity assessment [J]. Water Res.,2007,41 (12):2525-2532.
    [72]R.H. Huang, B.Y. Lan, Z.Y. Chen, H.H. Van, Q.Y. Zhang, J.H. Bing, L.S. Li. Catalytic ozonation of p-chlorobenzole acid over MCM-41 and Fe loaded MCM-41 [J]. Chem. Eng. J.,2012,180:19-24.
    [73]C.V. G6mez-Pacheco, M. Sanchez-Polo, J. Rivera-Utrilla, J. Lopez-Penalver. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation [J]. Chem. Eng. J.,2011,178:115-121
    [74]G. Moussavi, M. Mahmoudi. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals [J]. Chem. Eng. J.,2009,152(1):1-7.
    [75]R. Keykavoos, R. Mankidy, H. Ma, P. Jones, J. Soltan. Mineralization of bisphenol A by catalytic ozonation over alumina [J]. Sep. Purif. Technol.,2013,107,310-317.
    [76]P. Pocostales, P. Alvarez, F.J. Beltran. Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water [J]. Chem. Eng. J.,2011,168:1289-1295.
    [77]J. Akhtar, N.S. Amin, A. Aris. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon [J]. Chem. Eng. J.,2011,170,136-144.
    [78]J. Ma, M.H. Sui, T. Zhang, C.Y. Guan. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene [J]. Water Res.,2005,39 (5):779-786.
    [79]T. Zhang, C.J. Li, J. Ma, H. Tian, Z.M. Qiang. Surface hydroxyl groups of synthetic a-FeOOH in promoting'OH generation from aqueous ozone:property and activity relationship [J]. Appl. Catal. B:Environ.,2008,82 (1-2):131-137.
    [80]F.J. Beltran, F.J. Rivas, R. Montero-de-Espinosa. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalyst.2. Heterogeneous catalytic ozonation [J]. Ind. Eng. Chem. Res.,2003,42(14):3218-3224.
    [811 Y.M. Dong, H.X. Yang, K. He, S.Q. Song, A.M. Zhang. β-MnO2 nanowires:A novel ozonation catalyst for water treatment [J]. Appl. Catal. B:Environ.,2009,85 (3-4):155-161.
    [82]F.J. Rivas, M. Carbajo, F. Beltran, O. Gimeno, J. Frades. Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites, J. Hazard. Mater., 2008,155 (3):407-414.
    [83]Y.M. Dong, K. He, B. Zhao, Y. Yin, L. Yin, A.M. Zhang. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite [J]. Catal. Commun., 2007,8(11):1599-1603.
    [84]H.W. Chen, Y.L. Kuo, C.S. Chiou, S.W. You, C.M. Ma, C.T. Chang. Mineralization of reactive Black 5 in aqueous solution by ozone/H202 in the presence of a magnetic catalyst [J]. J. Hazard. Mater.,2010,174 (1-3):795-800.
    [85]H. Zhao, Y.M. Dong, G.L. Wang, P.P. Jiang, J.J. Zhang, L. Wu, K. Li. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant:NiFe2O4 and their performances [J]. Chem. Eng. J.,2013,219:295-302.
    [86]H. Liu, B. Qing, X. Ye, Q. Li, K. Lee, Z. Wu. Boron adsorption by composite magnetic particles [J]. Chem. Eng. J.,209,151 (1-3):235-240
    [87]A. Lv, C. Hu, Y.L. Nie, J.H. Qu. Catalytic ozoantion of toxic pollutants over magnetic cobalt and manganese co-doped y-Fe2O3 [J]. Appl. Catal. B:Environ.,2010,100 (1-2): 62-67.
    [88]A.H. Lv, C. Hu, Y.L. Nie, J.H. Qu. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions [J]. Appl. Catal. B:Environ.,2012,117-118:246-252.
    [89]Y. Wang, H. Zhang, L. Chen. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor [J]. Catal. Today,2011,175 (1):283-292.
    [90]L. Zhao, J. Ma, X.D. Zhai. Enhanced mechanism of catalytic ozonation by ultrasound with orthogonal dual frequencies for the degradation of nitrobenzene in aqueous solution [J]. Ultrason. Sonochem.,2010,17 (1):84-91.
    [91]B. Neppolian, J.S. Park, H. Choi. Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation [J]. Ultrason. Sonochem.,2004,11 (5):273-279.
    [92]H. Zhang, Y.L. Lv, F. Liu, D.B. Zhang. Degradation of CI acid orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor [J]. Chem. Eng. J.,2008,138:231-238.
    [93]J.K. Kim, F. Martinez, I.S. Metcalfe. The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for the degradation of p-chlorophenol [J]. Catal. Today,2007,124 (2-3):224-231.
    [94]孙志忠.臭氧/多相催化氧化去除水中有机污染物效能与机理[D].哈尔滨,哈尔滨工 业大学,2006:
    [95]J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew. In situ chemical reduction of aquifer sediments:Enhancement of reactive iron phases and TCE dechlorination [J]. Environ. Sci. Technol.,2004,38(17):4656-4663.
    [96]S. Farhadi, M. Zaidi. Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method:A novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions [J]. J. Mol. Catal. A:Chem.,2009,299 (1-2):18-25.
    [97]F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, J.M. Liu. Visible-Light photocatalytic properties of weak magnetic BiFeO3 nanoparticles [J]. Adv. Mater.,2007, 19(19):2889-2892.
    [98]W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst [J]. Environ. Sci. Technol.,2010,44(5):1786-1791.
    [99]J.M. Wu, W. Wen. Catalyzed degradation of azo dyes under ambient conditions [J]. Environ. Sci. Technol.,2010,44(23):9123-9127.
    [100][100] G. Kreysa, B. Hakansson. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution [J]. J. Electroanal. Chem. Interfacial Electrochem., 1986,201(1):61-83.
    [101]K.E. Heusler. Some remarks on the mechanism of the iron-group metal electrodes [J]. Electrochim. Acta.,1985,30 (12):1741-1742.
    [102]W.P. Kwan, B.M. Voelker. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems [J]. Environ. Sci. Technol.,2003,37(6):1150-1158.
    [103]J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew. In situ chemical reduction of aquifer sediments:Enhancement of reactive iron phases and TCE dechlorination [J]. Environ. Sci. Technol.,2004,38(17):4656-4663.
    [104]S.H. Joo, A.J. Feitz, T.D. Waite. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron [J]. Environ. Sci. Technol.,2004,38 (7):2242-2247.
    [105]F.C.C. Moura, M.H. Araujo, R.C.C. Costa, J.D. Fabris, J.D. Ardisson, W.A.A. Macedo, R.M. Lago. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites[J]. Chemosphere,2005,60 (8):1118-1123.
    [106]N. Wang, L.H. Zhu, D.L. Wang, M.Q. Wang, Z.F. Lin, H.Q. Tang. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2 [J]. Ultrason. Sonochem.,2010,17 (3): 526-533.
    [107]P.G. Tratnyek, M.M. Scherer, B. Deng, S. Hu. Effect of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron [J]. Water Res.,2001,35 (18):4435-4443.
    [108]T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. J. Am.Chem.Soc.,2001,123:12781-12801.
    [109]S.H. Yu, M. Yoshimura. Ferrite/metal composites fabricated by soft solution processing [2002]. Adv. Funct. Mater.,2002,12 (1):9-15.
    [110]K. Woo, H.J. Lee, J.P. Ahn, Y.S. Park. Sol-gel mediated synthesis of Fe2O3 nanorods [J]. Adv. Mater.,2003,15 (20):1761-1764.
    [111]X.W. Teng, H. Yang. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles [J]. J. Mater. Chem.,2004,4 (14):774-779.
    [112]J. Deng, X. Wen, Q. Wang. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity[J]. Mater. Res. Bull.,2012,47(11):3369-3376.
    [113]L. Xu, J. Wang. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles [J]. Appl. Catal. B, Environ.,2012,123-124:117-126.
    [114]X. Xue, K. Hanna, M. Abdelmoula, N. Deng. Adsorption and oxidation of PCP on the surface of magnetite:kinetic experiments and spectroscopic investigations [J]. Appl. Catal. B:Environ.,2009,89(3):432-440.
    [115]R. Huang, Z. Fang, X. Yan, W. Cheng. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition [J]. Chem. Eng. J.,2012,197,242-249.
    [116]S. Shin, H. Yoon, J. Jang. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts [J]. Catal. Commun.,2008,10 (2):178-182.
    [117) S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, G. Jiang. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds [J]. J. Hazard. Mater.,2009,167(1):560-566.
    [118]S.P. Sun, A.T. Lemley. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite:process optimization, kinetics, and degradation pathways [J]. J. Mol. Catal. A:Chem.,2011,349(1):71-79.
    [119]J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, X. Yan. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles [J]. Chemosphere,2008,73(9): 1524-1528.
    [120]X. Xue, K. Hanna, N. Deng. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (Ⅱ, Ⅲ) oxide [J]. J. Hazard. Mater.,2009,166(1):407-414.
    [121]K. Rusevova, F.D. Kopinke, A. Georgi. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(Ⅱ)/Fe(Ⅲ) ratio on catalytic performance [J]. J. Hazard. Mater.,2012,241-242:433-440.
    [122]M. Usman, P. Faure, C. Ruby, K. Hanna. Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation [J]. Appl. Catal. B:Environ.,2012,117:10-17.
    [123]R.C. Costa, F.C. Moura, J.D. Ardisson, J.D. Fabris, R.M. Lago. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J]. Appl. Catal. B:Environ.,83(1-2):131-139.
    [124]L. Xu, J. Wang. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-chlorophenol [J]. Environ. Sci. Technol.,2012,46(18):10145-10153.
    [125]A. Prakash, A.V. McCormick, M.R. Zachariah. Aero-sol-gel synthesis nanoporous iron-oxide particles:a potential oxidizer for nanoenergetic materials [J]. Chem. Mater., 2004,16(8):1466-1471.
    [126]S. Peng, C. Wang, J. Xie, S.H. Sun. Synthesis and stabilization of monodisperse Fe nanoparticles [J]. J. Am. Chem. Soc.,2006,128 (33):10676-10677.
    [127]D. Zhang, X. Zhang, X. Ni, J. Song, H. Zheng. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route [J]. Cryst. Growth Des.,2007,7(10): 2117-2119.
    [128]S. Zhang, W. Wu, X. Xiao, J. Zhou, F. Ren, C. Jiang. Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles [J]. Nanoscale Res. Lett.,2011,6(1):89-98.
    [129]A.P. Alivisatos. Perspectives on the physical chemistry of semiconductor nanocrystals [J]. J. Phys. Chem.,1996,100(31):13226-13239.
    [130]L.G. Tejuca, J.L.G. Fierro. Properties and applications of perovskite-type oxides [M]. Marcel Dekker, New York, USA,1992,271.
    [131]E. Campagnoli, A. Tavares, L. Fabbrini, I. Rossetti, Y.A. Dubitsky, A. Zaopo, L. Forni. Effect of preparation method on activity and stability of LaMnO3 and LaCo03 catalysts for the flameless combustion of methane [J]. Appl. Catal. B:Environ.,2005,55(2):133-139.
    [132]Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, N. Hamada. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control [J]. Nature, 2002,418(6894):164-167.
    [133]G. Kremenic, J.M. Nieto, J.M. Tascon, L.G Tejuca. Chemisorption and catalysis on LaMO3 oxides [J]. J. Chem. Soc. Faraday Trans.1.,1985,81(4):939-949.
    [134]T. Nitadori, T. Ichiki, M. Misono. Catalytic properties of perovskite-type mixed oxides (ABO3) consisting of rare earth and 3d transition metals [J]. Bull. Chem. Soc. Jpn.1988, 61 (5):621.
    [135]S. Royer, F. Berube, S. Kaliaguine. Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3 [J]. Appl. Catal. A:Gen., 2005,282:273-284
    [136]M. Crespin, W.K. Hall. The surface chemistry of some perovskite oxides [J]. J. Catal., 1981,69(2):359-370.
    [137]P. Ciambelli, S. Cimino, G. Lasorella, L. Lisi, S. De Rossi, M. Faticanti, P. Porta. CO oxidation and methane combustion on LaAl1-xFexO3 perovskite solid solutions [J]. Appl. Catal. B:Environ.,2002,37(3):231-241.
    [138]S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk. Perovskite-type oxides synthesized by reactive grinding:Part I. Preparation and characterization [J]. Appl. Catal. A:Gen.,2001,209(1):345-358.
    [139]F. Kleitz, S.H. Choi, R. Ryoo. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem. Commun.,2003,17:2136-2137.
    [140]GL. Chiarello, I. Rossetti, L. Forni. Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion [J]. J. Catal.,2005,236(2):251-261.
    [141]M. Bonne, D. Sellam, J.P. Dacquin, A.F. Lee, K. Wilson, L. Olivi, D. Duprez. A general route to synthesize supported isolated oxide and mixed-oxide nanoclusters at sizes below 5 nm [J]. Chem. Commun.,2011,47(5):1509-1511.
    [142]N. Niederberger, G Garnweitner, N. Pinna, M. Antonietti. Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation [J]. J. Am. Chem. Soc.,2004,126:9120-9126.
    [143]A. Dhakshinamoorthy, S. Navalon, M. Alvaro, H. Garcia. Metal nanoparticles as heterogeneous Fenton catalysts [J]. ChemSusChem,2012,5 (1):46-64.
    [144]B. Sreedhar, R. Arundhathi, A.A. Reddy. High efficient heterogenous catalyst for acylation of alcohols and amines using natural ferrous chamosite [J]. Appl. Clay Sci., 2009,43 (3):425-434.
    [145]B. Sreedhar, R. Arundhathi, A.A. Reddy. High efficient heterogenous catalyst for acylation of alcohols and amines using natural ferrous chamosite [J]. Appl. Clay Sci., 2009,43 (3):425-434.
    [146]Y.G. Adewuyi. Sonochemistry in environmental remediation.1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water [J]. Environ. Sci. Technol.,2005,39 (10):3409-3420.
    [147]Y.G. Adewuyi. Sonochemistry:environmental science and engineering applications [J]. Ind. Eng. Chem. Res.,2001,40 (22):4681-4715.
    [148]Y.G. Adewuyi. Sonochemistry in environmental remediation.2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water [J]. Environ. Sci. Technol.,2005,39 (22):8557-8570.
    [149]S. Vajnhandl, A.M. Le-Marechal. Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes [J]. Dyes Pigm.,2005,65 (2):89-101.
    [150]X. Zhong, L.J. Xiang, S. Royer, S. Valange, J. Barrault, H. Zhang. Degradation of C.I. Acid Orange 7 by heterogeneous Fen ton oxidation in combination with ultrasonic irradiation [J]. J. Chem. Technol. Biotechnol.,2011,86 (7):970-977.
    [151]R. Molina, F. Martinez, J.A. Melero, D.H. Bremner, A.G. Chakinala. Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H202 process:multivariate study by factorial design of experiments [J]. Appl. Catal. B:Environ.,2006,66:198-207.
    [152]D.H. Bremner, R. Molina, F. Martinez, J.A. Melero, Y. Segura. Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US-Fe2O3/SBA-15-H2O2) [J]. Appl. Catal. B:Environ.,2009,90 (3-4):380-388.
    [153]M. Muruganandham, J.S. Yang, J.J. Wu. Effect of ultrasonic irradiation on the catalytic activity and stability of goethite catalyst in the presence of H2O2 at acidic medium [J]. Ind. Eng. Chem. Res.,2007,46 (3):691-698.
    [154]M. Papadaki, R.J. Emery, M.A. Abu-Hassan, A.D. Bustos, I.S. Metcalfe, D. Mantzavinos. Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents [J]. Sep. Purif. Technol.,2004,34 (1-3): 35-42.
    [155]B. Halling-S(?)rensen, S.N. Nielsen, P.F. Lanzky, F. Ingerslev, H.C.H. Lutzheft, S.E. J(?)rgensen. Occurrence, fate and effects of pharmaceutical substances in the environment-A review [J]. Chemosphere,1998,36 (2):357-394.
    [156]N. Wang, L. Zhu, M. Wang, D. Wang, H. Tang. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic[J]. Ultrason. Sonochem.,2010,17 (1):78-83.
    [157]Organization for Economic Cooperation and Development (OECD), Daphnia sp. acute immobilization test. Test Guideline No.202, OECD Guidelines for Testing of Chemicals [S].2004:
    [158]H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen. Influences of different synthesis conditions on properties of Fe3O4 nanoparticles [J]. Mater. Chem. Phys.,2009,113 (1): 42-46.
    [159]D.D. Hawn, B.M. De Koven. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides [J]. Surf. Interface Anal.,1987, 10(2-3):63-74.
    [160]M. Muhler, R. Schlogl, G. Ertl. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase[J]. J. Catal.,1992,138 (2):413-444.
    [161]T. Yamashita, P. Hayes. Analysis of XPS spectra of Fe2+and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci.,2008,254:2441-2449.
    [162]J.A. Melero, F. Martinez, R. Molina. Effect of ultrasound on the properties of heterogeneous catalysts for Sono-Fenton oxidation processes [J]. J. Adv. Oxid. Technol., 2008,11 (1):75-83.
    [163]T.J. Mason, J.P. Lorimer. Applied sonochemistry [M]. Wiley-VCH Verlag GmbH, Weinheim,2002:
    [164]M.A. Voinov, J.O. Sosa Pagan, E. Morrison,T.I. Smirnova, A.I. Smirnov. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity [J]. J. Am. Chem. Soc.,2011,133 (1):35-41.
    [165]L.C. Hagenson, L.K. Doraiwamy, Comparsion of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system [J]. Chem. Eng. Sci.1998,53 (1):131-148.
    [166]E.A. Neppiras, Acoustic cavitation, Phys. Peports-Review Section of physics letters, 1980,61,159-251.
    [167]H. Zhang, L. Duan, Y. Zhang, F. Wu. The use of ultrasound to enhance the decolonization of the C.I. Acid Orange 7 by zero-valent iron [J]. Dyes Pigm.,2005,65 (1): 39-43.
    [168]L.H. Thompson, L.K. Doraiswamy. Sonochemistry:science and engineering[J]. Ind. Eng. Chem. Res.,2009,38 (4):1215-1249.
    [169]P.R. Gogate, A.B. Pandit. A review of imperative technologies for wastewater treatment II:hybrid methods [J]. Adv. Environ. Res.,2004,8 (3-4):553-597.
    [170]H. Zhang, H. Fu, D.B. Zhang. Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process [J]. J. Hazard. Mater.,2009,172 (2-3): 654-660.
    [171]S.T. Martin, A.T. Lee, M.R. Hoffmann. Chemical mechanism of inorganic oxidants in the TiO2/UV process:increased rates of degradation of chlorinated hydrocarbons [J]. Environ. Sci. Technol.,1995,29:2567-2573.
    [172]L.S. Zhang, K.H. Wong, D.Q. Zhang, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong. Zn:In(OH)ySz solid solution nanoplates:synthesis, characterization, and photocatalytic mechanism [J]. Environ. Sci. Technol.,2009,43:7883-7888.
    1173] G.V. Buxton, C.L. Greenstock, W.P. Helman. A.B. Ross. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution [J]. J. Phys. Chem. Ref. Data.,1988,17:513-886.
    [174]T.L.P. Dantas, V.P. Mendonca, H.J. Jose, A.E. Rodrigues, R.F.P.M. Moreira. Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon [J]. Chem. Eng. J.,2006,118 (1-2):77-82.
    [175]S. Song, Z.W. Liu, Z. He, A.L. Zhang, J.M. Chen. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol [J]. Environ. Sci. Technol.,2010,44:3913-3918.
    [176]A.E. Harvey, J.A. Smart, E.S. Arms. Simultaneous spectrophotometric determination of iron (II) and total iron with 1,10-phenanthrolin [J]. Anal. Chem.,1955,27:26-29.
    [177]C.H. Wu. Effects of operational parameters on the decolorization of C.I. reactive red 198 in UV/TiO2-based systems [J]. Dyes Pigments,2008,71:31-38.
    [178]T.K. Lau, W. Chu, N.J.D. Graham. The aqueous degradation of buthylated hydroxyanisole by UV/S2O82-:study of reaction mechanisms via dimerization and mineralization [J]. Environ, Sci. Technol.,2007,41:613-619.
    [179]C. Liang, Z.S. Wang, C.J. Bruell. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere,2007,66:106-113.
    [180]R.E. Huie, C.L. Clifton. Temperature dependence of the rate constants for reactions of the sulfate radicals, SO4", with anions [J]. J. Phys. Chem.,1990,94:8561-8567.
    [181]J.Y. Zhao, Y. Zhang, X. Quan, S. Chen. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature [J]. Sep. Purif. Technol.,2010,71:302-307.
    [182]P. Gayathri, R.P.J. Dorathi, K. Palanivelu. Sonchemical degradation of textile dyes in aqueous soultion using sulphate radicals activated by immobilized cobalt ions, Ultrason. Sonochem.,2010,17:566-571.
    [183]G.R. Peyton. The free-radical chemistry of persulfate-based total organic carbon analyzers [J]. Mar. Chem.,1993,41:91-103.
    [184]J. Yan, M. Lei, L. Hua, M.N. Anjum, J. Zou, H. Tang. Degradation of sulfamonomethoxine with Fe3O4 magnetic naoparticles as heterogeneous activator of persulfate [J]. J. Hazard. Mater.,2011,186:1398-1404.
    [185]B. Neppolian, A. Doronila, M. Ashokkumar. Sonochemical oxidation of arsenic (Ⅲ) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent [J]. Water Res.,2010, 44:3687-3695.
    [186]G.J. Price, A.A. Clifton. Ultrasonically enhanced persulfate oxidation of polyethylene surfaces [J]. Polymer,1996,37:5825-5829.
    [187]K.C. Huang, A.C. Richard, C.E. Hoag. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)[J]. Chemosphere,2002,49:413-420.
    [188]P.G. Anipsitakis, E. Stathatos, D.D. Dionysiou. Heterogeneous activation of oxone using C03O4 [J]. J. Phys. Chem. B.,2005,27:13052-13055.
    [189]A.C. Herath, R.M.G. Rajapakse, A. Wicramasinghe, V. Karunaratne. Photodegradation of triphenylamino methane (Magenta) by photosensitizer in oxygenated solutions [J]. Environ. Sci. Technol.,2009,43:176-180.
    [190]Y.F. Huang, Y.H. Huang, Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process [J]. J. Hazard. Mater.,2009,167:418-426.
    [191]M. Carballa, F. Omil, J.M. Lema, M. Liompart, C. Garcia-Jares, I. Rodriguez, M. Gomez, T. Ternes. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Res.,2004,38:2918-2926.
    [192]I. Arslan-Alaton, F. Gurses. Photo-Fenton-like and photo-Fenton-like oxidation of procaine penicillin G formulation effluent [J]. J. Photochem. Photobiol. A:Chem.,2004, 165:165-175.
    [193]F. Gozzi, A.M. Jr, V.S. Ferreira, M.E. Osugi, A.P. F. Santos, J.A. Nogueira, R.F. Dantas, S. Esplugas, S.C.D. Oliveira. Investigation of chlorimuron-ethyl degradation by Fenton, photo-Fenton and ozonation processes [J]. Chem. Eng. J.,2012,210:444-450.
    [194]I.A. Balcioglu, M. Otker. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J]. Chemosphere,2003,50:85-95.
    [195]F.J. Benitez, J. Beltran-Heredia, T. Gonzalez. Ozonation of aqueous solutions of Fenuron [J]. Ind. Eng. Chem. Res.,1991,30:2390-2395.
    [196]D.L. Flamm. Analysis of ozone at low concentrations with boric acid buffered potassium iodide [J]. Environ. Sci. Technol.,1977,11:978-983.
    [197]H. Bader, J. Hoinge. Determination of ozone in water by the indigo method [J]. Water Res.,1981,154:449-456.
    [198]T. Kimura, T. Sakamoto, J.M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda. Standardization of ultrasonic power for sonochemical reaction [J]. Ultrason. Sonochem., 1996,3:S157-S161.
    [199]APHA, AWWA, WPCF, Standard methods for the examination of water and wastewater,20th edition. American Public Health Association [S]. American Water Works Association, Water Pollution Control Federation, Washington DC, USA,1998:
    [200]H. Zhang, L.J. Duan, D.B. Zhang. Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation [J]. J. Hazard. Mater.,2006,138:53-59.
    [201]B. Legube, N.K.V. Leitner. Catalytic ozonation:a promising advanced oxidation technology for water treatment [J]. Catal. Today,1999,53:61-72.
    [202]B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Appl. Catal. B:Enivron., 2003,46:639-669.
    [203]J. Nawrocki, B. Kasprzyk-Hordern. The efficiency and mechanisms of catalytic ozonation [J]. Applied. Catal. B:Enivron.,2010,99:27-42.
    [204]F. Qi, B.B. Xu, Z.L., Chen, L.Q. Zhang, P.Y. Zhang, D.Z. Sun. Mechanism investigation of catalyzed ozonation of 2-methylisoborneol in drinking water over aluminum (hydroxyl) oxides:role of surface hydroxyl group [J]. Chem. Eng. J.,2010, 165:490-499.
    [205]L. Zhao, Z.Z. Sun, J. Ma. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metal for the catalytic ozonation of nitrobenzene in aqueous solution [J]. Environ. Sci. Technol.,2009,43:4157-4163.
    [206]Y. Joseph, W. Ranke, W. Weiss. Water on FeO (111) and Fe3O4 (111):adsorption behavior on different surface terminations [J]. J. Phys. Chem. B,2000,104:3224-3226.
    [207]F. Qi, B,B, Xu, L. Zhao, Z.L. Chen, L.Q. Zhang, D.Z. Sun, J. Ma. Comparison of the efficiency and mechanism of catalytic ozonation of 2,4,6-trichloroanisole by iron and manganese modified bauxite [J]. Appl. Catal. B:Environ.,2012,121-122:171-181.
    [208]Y. Wang, H. Zhang, J.H. Zhang, C. Lu, Q.Q. Huang, J. Wu, F. Liu. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor [J]. J. Hazard. Mater.,2011,192:35-43.
    [209]L.F. Harrington, E.M. Cooper, D. Vasudevan. Fluoride sorption and associated aluminum release in variable charge soils [J]. J. Colloid and Interface Sci.,2003,267: 302-313.
    [210]C.H. Wu, H.Y. Ng. Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems:Comparisons of decolorization efficiency and power consumption [J]. J. Hazard. Mater.,2008,152:120-127.
    [211]N. Daneshvar, A. Aleboyeh, A.R. Khataee. The evaluation of electrical energy per order (EEO) for photooxidative decolorization of four textile dye solutions by the kinetic model [J]. Photochem. Photobiol. Sci.,2009,8:620-627.
    [212]H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis [J]. J. Colloid. Interface. Sci.,2007,314 (1):274-280.
    [213]A.E. Regazzoni, M.A. Blesa, A.J.G Maroto. Electrophoretic behavior of the hematite/complexing monovalent anion solution interface [J]. J. Colloid Interface Sci., 1988,122 (2):315-325.
    [214]M.A. Blesa, N.M. Figliolia, A.J.G Maroto. The influence of temperature on the interface magnetite-aqueous electrolyte solution [J]. J. Colloid. Interface Sci.,1984, 101(2):410-418.
    [215][215] P.K. Stoimenov, V. Zaikovski, K.J. Klabunde. Novel halogen and interhalogen adducts of nanoscale magnesium oxide [J]. J. Am. Chem. Soc.,2003,125 (42):12907-12913.
    [216]孙中溪,郭淑云.纳米四氧化三铁表面酸碱性质研究[J].高等学校化学学报,2006,27: 1351-1354.
    [217]J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. L6pez-Peinado, R.M. Martin-Aranda. Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay [J]. Appl. Catal. B: Environ.,2007,71 (1-2):44-56.
    [218]Y.L. Nie, C. Hu, L. Zhou, J.H. Qu. An efficient electron transfer at the Fe0/iron oxide interface for the photoassisted degradation of pollutants with H2O2 [J]. Appl. Catal. B: Environ.,2008,82 (3-4):151-156.
    [219]刘志明.柴油车排放碳颗粒物和NOx的催化净化技术研究[D].北京:中国科学院,2000.
    [220]刘源,秦永宁.钙钛矿型复合氧化物用作深度氧化催化剂[J].天然气化工,1997,22(6):47-51.
    [221]Arai H, Yamaya T, Eguchi K. Catalytic combustion of methane over various PTO [J]. Appl. Catal.,1986,26:265-276.
    [222]陈顺生,杨昌平.高能球磨法制备Nd0.7Sr0.3Mn03氧化物lJl.功能材料,2007,38:1285-1287.
    [223]W. Yang, R.D. Zhang, B. Chen. N. Bion, D. Duprez, L.W. Hou, H. Zhang, S. Royer, Design of Design of nanocrystalline mixed oxides with improved oxygen mobility:a simple non-aqueous route to nano-LaFeO3 and the consequences on the catalytic oxidation performances [J]. Chem. Commun.,2013, DOI:10.1039/C3CC41163J.
    [224]J. Novakova. Isotopic exchange of oxygen O18 between gaseous phase and oxide catalysts [J]. Catal. Rev.,1970,4(1):77-113.
    [225]E.R.S. Winter. The reactivity of oxide surfaces [J]. Adv. Catal. Relat. Subject,1958,10: 196-241.
    [226]Boreskov G K. The catalysis of isotopic exchange in molecular oxygen [J]. Adv. Catal. Relat. Subject,1964,15:285-339.
    [227]E.R.S. Winter. Exchange reactions of oxides. Part IX [J]. J. Chem. Soc. A.,1968, (12): 2889-2992.
    [228]D. Martin, D. Duprez. Mobility of surface species on oxides.1. isotopic exchange O18 with O16 of SiO2, A12O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. activation by noble metals. correlation with oxide basicity [J]. J. Phys. Chem.,1996,100 (22):9429-9438.
    [229]Klier K, Novakova J, Jiru P. Exchange Reactions of Oxygen between Oxygen Molecules and Solid Oxides [J]. J. Catal.,1963,2(6):479-484.
    [230]C. Descorme, D. Duprez. Oxygen surface mobility and isotopic exchange on oxides: role of the nature and the structure of metal particles [J]. Appl. Catal. A.,2000,202(2): 231-241.
    [231]A. Galdikas, D. Duprez, C. Descorme. A novel dynamic kinetic model of oxygen isotopic exchange on a supported metal catalyst [J]. Appl. Surf. Sci.,2004,236 (1-4): 342-355.
    [232][232] S. Royer, D. Duprez, S. Kaliaguine. Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3 [J]. J. Catal.,2005,234(2): 364-375.
    [233]B.C. Tofield, W.R. Scott. Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction [J]. J. Solid State Chem.,1974,10(3):183-194.
    [234]J.M.A. Van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, H.W. Zandbergen. The defect chemistry of LaMnO3±δ:2. structural aspects of LaMnO3+δ [J]. J. Solid State Chem.,1994,110 (1):100-105.
    [235]P. Porta, S. De Rossi, M. Faticanti, G. Minelli, I. Pettiti, L. Lisi, M. Turco. Perovskite-type oxides-1. structural, magnetic, and morphological properties of LaMn1-xCuxO3 and LaCo1-xCux03 solid solutions with large surface area [J]. J. Solid State Chem.,1999,146 (2):291-304.
    [236]M. Kakihana, M. Yashima, M. Yoshimura, N. Ikeda, Y. Sugitani. Synthesis of high surface area LaMnO3+d by a polymerizable complex method [J]. J. Alloys Compd.,2009, 283 (1-2):102-105.
    [237]M. Popa, J. Frantti, M. Kakihana. Characterization of LaMeO3 (Me:Mn, Co, Fe) perovskite powders obtained by polymerizable complex method, Solid State Ion.,2002, 154-155:135-141.
    [238]R. Zhang, A. Villanueva, H. Alamdari, S. Kaliaguine. SCR of NO by propene over nanoscale LaMn1-xCuxO3 perovskites [J]. Appl. Catal. A,2006,307 (1):85-97.
    [239]B. Levasseur, S. Kaliaguine. Methanol oxidation on LaBO3 (B=Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding [J]. Appl. Catal. A,2008,343 (1-2):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700