用户名: 密码: 验证码:
非均相Co_3O_4/GO/PMS体系催化氧化降解染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硫酸根自由基(SO4-·)的高级氧化技术是近些年发展起来的、具有发展潜力的、降解难降解有机污染物的新技术。和羟基自由基(·OH)相比较,SO4-·具有更高的氧化还原电位、对pH值的要求范围广、反应不会产生大量的铁泥需要处理、对有机物的矿化程度高、操作简便、与环境兼容、SO4-·的产生方式多、失活因素少等优点。其中,均相催化氧化技术虽然操作简便、反应迅速,但存在催化剂不易回收再利用造成的成本高、Co2+对自然环境可能造成潜在的二次污染和生物毒性等问题。而非均相催化氧化技术将催化剂钴固定在载体上,从而解决了以上问题。本研究主要对非均相Co3O4/GO/PMS催化氧化体系降解典型偶氮染料酸性橙Ⅱ进行研究,选择氧化石墨烯(GO)作为C0304的载体制得Co3O4/GO纳米复合物作为非均相复合催化剂,催化活化单过氧硫酸氢钾(PMS)产生硫酸根自由基,同时考察超声辅助的影响因素及作用,探讨无机盐离子对非均相Co3O4/GO/PMS催化氧化体系降解酸性橙Ⅱ的影响,并对催化剂Co3O4和载体GO之间存在的协同作用机理进行研究,主要进行了以下几个方面的研究:
     (1)制备了高效非均相催化剂C0304/GO。
     以天然鳞片石墨为原料,利用Hummers法制备了氧化石墨,又以氧化石墨为前躯体,在正已醇体系中采用溶剂热法一步合成Co3O4/GO纳米复合物催化剂。采用SPM、XRD、FT-IR、Raman、 XPS、SEM、EDS、TEM、TAG等手段对制得的GO及Co3O4/GO纳米复合物进行测试表明,制得氧化石墨烯厚度集中在0.9-1.1nm之间,层间距为0.845nm,表面较光滑且边缘处有氧化石墨烯特有的褶皱,片层上还有大量的羧基、羟基、环氧基等含氧官能团;而Co3O4/GO纳米复合物中有Co3O4的存在,但XRD衍射峰较小,同时由于GO片层上形成了大量的Co3O4而使氧化石墨烯的层状结构消失,且Co3O4的平均粒径约为13.75nm,复合物中存在N1s峰,N可能来源于反应前躯体硝酸钴,N的进入将增强Co和GO的结合能,同时N的引入有助于其与钴离子配位从而有利于Co3O4的形成,Co3O4颗粒均匀的分散在GO片层上,同时EDS证实了复合物是由C、O、Co三种元素组成,TGA显示复合物中Co3O4的质量含量大约在58%左右。
     (2)制得的催化剂复合物Co3O4/GO具有很高的催化活性。
     将制得的Co3O4/GO纳米复合物作为非均相催化剂应用到Co3O4/GO/PMS体系降解酸性橙Ⅱ废水,Co3O4/GO复合物表现出了很高的催化活性。溶液的pH值、温度等对反应影响很大且催化剂和氧化剂的投加量均存在一个最佳值。考虑到反应效率及经济实用性等方面的因素,最终确定的最佳反应条件为:原始酸性橙Ⅱ浓度为0.2mM,用磷酸盐缓冲液调节pH值为中性,催化剂投加量为0.1g/L,氧化剂投加量为2mM,反应温度为室温。此条件下,完全降解酸性橙Ⅱ仅需6min,且反应3h时COD的去除率可达79.9%,表现出很高的矿化程度。将催化剂循环使用5次后,催化剂仍然表现出较高的催化活性表明催化剂的稳定性很好。另外,研究还表明,GO、Co3O4及Co3O4/GO均有一定的吸附作用,但吸附作用很不明显且存在一个动态平衡,同时实验显示复合物Co3O4/GO的催化活性明显比GO和Co3O4都要大,表明Co3O4和载体GO之间存在协同作用。
     考察了无机盐离子对反应体系的影响,结果表明,PMS可以与H2PO4-反应而生成H2PO5-,生成的H2PO5-还有可能与Co2+配位生成H2PO5--Co2+络合物,形成新的活性中心,从而加速酸性橙Ⅱ的降解速率;当HCO3-的浓度低于10mM时,增大酸性橙Ⅱ的降解速率,但当HCO3-的浓度大于20mM时,将抑制酸性橙Ⅱ的降解反应;硫酸根自由基能够氧化Cl-生成活性比SO4-·低很多的Cl·,从而Cl-会明显的抑制酸性橙Ⅱ的降解反应;而SO4-·与NO3-反应生成活性较低的NO3·自由基,因此NO3-对酸性橙Ⅱ的降解速率几乎没有影响。
     (3)超声辅助能对非均相Co3O4/GO/PMS催化氧化体系起到促进作用。
     考虑到超声波、微波会对反应体系产生一定的辅助作用,本文对超声辅助下的Co3O4/GO/PMS催化氧化体系降解酸性橙Ⅱ进行了研究。结果表明,超声空化作用能有效的增大降解速率,同时曝气的引入,为溶液提供了更多的空化泡的同时还增大了溶液的湍动,从而增大了空化作用的几率,使得相同条件下能产生更多的自由基,从而对降解效率有很大的促进作用。当酸性橙Ⅱ的原始浓度为1mM时,超声辅助下的最佳条件是:催化剂投加量为0.05g/L、氧化剂投加量为10mM、pH值为7、超声功率为180W、室温。在此条件下,完全降解1mM的酸性橙Ⅱ只需12min。
     (4)催化剂中Co-OH复合物的形成是存在协同作用的关键。
     研究发现,在非均相Co3O4/GO/PMS催化氧化降解酸性橙Ⅱ的反应体系中,Co3O4/GO的催化活性比纯GO和纯Co3O4均明显增大,说明催化剂复合物中的GO和C0304之间存在一定的协同作用。本文对协同作用的机理进行了研究,结果表明,催化剂的催化活性还和催化剂中Co304的载量有关。当催化剂的载量为50%时,催化剂的催化活性最高。同时,Co-OH复合物在协同作用的产生反应中起到了至关重要的作用。而Co-OH复合物是由钴离子和其周围的氧化石墨烯片层上自带的羟基结合或和所吸附水离解出的羟基结合形成的。Co-OH复合物的形成为非均相催化PMS产生硫酸根自由基起到了很好的促进作用。然而,尽管Co304和GO表现出了很好的协同作用,但并不是催化剂中C0304的含量越多越好,过高浓度的C0304会覆盖在氧化石墨烯片层表面而阻碍Co-OH复合物的形成,从而使得催化剂的催化活性降低。
Advanced oxidation technologies based on thegeneration of sulfate radicals (SO4-·) have emerged over the past years as a promising technique to degrade completely most organic pollutants. Compared with·OH (1.7eV), SO4-· has a higher oxidation potential (2.5eV to3.1eV) and it has emerged over the past years as a promising technique to degrade completely most organic pollutants over a wide pH range and no more vast iron cement need to dispose, has high degree of mineralization and simple to handle. Furthermore, SO4-· has a longer half-life, friendly to the environment, more producing methods and little deactivation factors. The homogeneous system has a swift response and simple to handle. However, the oxidation reaction using cobalt and PMS under homogeneous system has profound disadvantages due to cobalt leaching. The leach of cobalt has biological toxicity and is recognized as a priority metal pollutant. Therefore, the activation of PMS by heterogeneous cobalt sources has been given great attention recently. The current paper investigated the removal of the azo dye Orange II from water using Co3O4/GO/PMS catalytic oxidation system. The cobalt oxide catalyst immobilized on graphene oxide (GO) can activate peroxymonosulfate (PMS) for the degradation of Orange II in water. Meanwhile, ultrasound (US) and aeration applied were introduced into the system, and the possible beneficial effects of ultrasound and aeration were assessed. Effects of [PMS],[Co3O4/GO], pH, reaction temperature and various inorganic anions on the degradation of Orange II were investigated. And, the synergistic catalytic mechanism of Co3O4and graphene oxide (GO) nanocomposite in the heterogeneous activation of peroxymonosulfate (PMS) to generate sulfate radicals was studied. The following studies were carried out:
     (1) Effective heterogeneous catalyst (Co3O4/GO) was prepared.
     GO was prepared from purified natural graphite with a mean particle size of48μm according to the method reported by Hummers and Offeman. Using graphite oxide as the presoma, Co3O4/GO was been synthesized by a one-pot solvothermal method in1-hexanol solvent. The Co3O4/GO catalyst is characterized by scanning probe microscope (SPM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Thermogravimetric analysis (TG), and high resolution transmission electron microscopy (HRTEM). Results show that the Co3O4/GO catalysts are large GO sheets decorated homogenously with well-dispersed Co3O4nanoparticles. The thickness of graphene oxide (GO) is about0.9~1.1nm and with the interlayer spacing of0.845nm. The surface of GO was quite smooth and have a lot of oxygen-containing functional groups like carboxyl, hydroxyl, epoxy and so on. While, the existence of Co3O4in Co3O4/GO caused the GO sheets to stack more loosely and the stratified structure disappeared. Scherrer formula show the average particle size of Co3O4on GO is about13.75nm. The XPS spectra of Co3O4/GO exhibit two additional N1s and Co2p peaks, in which N originated from the precursor of cobalt nitrate hexahydrate. N-doping of GO may be afford stronger coupling between Co and GO in Co3O4/GO. N-groups on GO serves as favorable nucleation and anchor sites for Co3O4nanocrystals because of the coordination with Co cations. The EDS of Co3O4/GO clearly show the sample consisted mainly of cobalt, carbon, and oxygen. TGA show the loading of Co3O4in the Co3O4/GO material is about58wt%.
     (2) The Co3O4/GO exhibits good heterogeneous activity in the degradation of Orange II used in advanced oxidation technology based on sulfate radicals.
     The heterogeneous Co3O4/GO/PMS system exhibited high activity in Orange II oxidation. Several operational parameters, such as catalyst amount, oxidant amount, pH, temperature, and oxidation rate, affected the degradation of Orange II. In the optimum addition,100%decomposition could be achieved within6min with0.2mM Orange Ⅱ,0.1g/L catalyst, and2mM PMS. Meanwhile, inductively coupled plasma analysis revealed that the leach of cobalt ions was low. The catalyst also exhibited stable performance after several rounds of regeneration. The adsorption of Orange Ⅱ onto Co3O4, GO and Co3O4/GO were studied and the adsorption/desorption was found to be a reversible process. Moreover, although Co3O4or GO alone has little catalytic activity, their hybrid (Co3O4/GO) exhibits an unexpected high catalytic activity in degradation of Orange Ⅱ in water by Co3O4/GO/PMS system, suggesting synergistic coupling between Co3O4and GO is indispensable to the high catalytic activity of the hybrid.
     H2PO4-can activate PMS and generate H2PO5-, H2PO5-and Co2+can complex to H2PO5--Co2+, which is new active centre., so the effects of H2PO4-had positive effect on the degradation of Orange Ⅱ. Low concentration HCO3-(<10mM) had positive effect and high concentration HCO3-(>20mM) had negative effect. Cl-had negative effect and NO3-had little effect.
     (3) The heterogeneous catalytic system coupled with Ultrasound (US) and aeration demonstrates an enhancement in terms of Orange Ⅱ degradation.
     The US and aeration applied were introduced into the heterogeneous Co3O4/GO/PMS system, and the possible beneficial effects were assessed. Ultrasonic cavitation can increase degradation rate efficient, and aeration can Increase the solution of the turbulent, so US and aeration can enhance the Orange Ⅱ degradation. The optimal operation condition for degradation of1mM Orange Ⅱ solution over60min is considered to be the dosage of0.05g/L Co3O4/GO and10mM PMS, ultrasonic power of180W, pH7and25℃. Under the optimal condition,100%degradation of Orange Ⅱ could be obtained within only12min.
     (4) The formation of Co-OH complexes is crucial for synergistic catalysis.
     In the degradation of Orange Ⅱ by heterogeneous Co3O4/GO/PMS system, although Co3O4or GO alone exhibit little catalytic activity, their hybrid (Co3O4/GO) exhibits an unexpectedly high catalytic activity, there exist synergistic effect between Co3O4and GO. In this study, the synergistic catalytic mechanism of Co3O4and GO nanocomposite in the heterogeneous activation of PMS to generate sulfate radicals was studied. The results show that a proportional relation exists between C03O4and the catalyst. The highest catalytic activity is observed when the Co3O4loading was about50%in the catalyst. Co-OH complexes form on the surface of the GO sheet through the direct interaction of Co species with nearby hydroxyl groups or through the dissociation of H2O with Co2+. The formation is proposed to facilitate the heterogeneous activation of PMS. However, a high Co3O4loading on the GO surface prevents the formation of Co-OH complexes, which is important in the catalytic reaction.
引文
[1]张传君,李泽琴,程温莹,罗丽.Fenion试剂的发展及在废水处理中的应用.世界科技研究与发展,2005,27(6):64-68.
    [2]Eisenhauer H.R. Oxidation of Phenolic Wastes. J. Water Pollut. Control Fed.,1964,36: 1116-1128.
    [3]Hoigne. J., Bader, H. The role of hydroxyl radical reaction in ozonation processes in aqueous solution. Water Res.,1976,10(5):377-386.
    [4]Glaze W.H., Kang J.W., Chapin D.H. The chemistry of Water and Wastewater treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng.,1987, 9(4):335-352.
    [5]Malato S., Blaneo J., Vidal A., Alareon D., Maldonado M.I., Caeeres J., Gemjak W. Applied studies in solar photocatalytic detoxification:an overview. Sol. Energy,2003,75(4):329-336.
    [6]Haag, W.R., Yao C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking contaminants. Environ. Sci. Technol.,1992,26(5):1005-1013.
    [7]谢银德,陈锋,何建军,赵进才.Photo-Fenton反应研究进展.感光科学与光化学,2000,18(4):357-365.
    [8]Legnnl O.. Oliveros E., Braun A.M. Photochemical Processes for watertreatment. Chem. Rev., 1993,93(2):671-698.
    [9]陈晓旸.基于硫酸根自由基的高级氧化技术降解水中典型有机污染物的研究.大连理工大学博士学位论文,2007.
    [10]孙德智.环境工程中的高级氧化技术,北京:化学工业出版社,2002.
    [11]Huang C.P., Dong C., Tang Z. Advanced chemical oxidation:Its present role and potential future in hazardous waste treatment. Waste Manage. (Oxford),1993,13(5-7):361-377.
    [12]郑展望.非均相UV/Fenton处理难降解有机废水研究.浙江大学博士学位论文,2004.
    [13]Rivas F.J., Frades. J., Buxeda.P. Oxidation of p-droxybenzoix acid by Fenton's Reagent. Water Res.,2001,35(2):387-396.
    [14]Walling C., Goosen A. Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide:Effects of organic substrate. J. Am. Chem. Soc.,1973,95(9):2987-2991.
    [15]Neyens E., Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater.,2003 B98(1-3):33-50.
    [16]程丽华,黄君礼.Fenton试剂的特性及其在废水处理中的应用.化学工程师,2001,3:24-25.
    [17]Gozmen B., Oturan M.A., Oturan N., Erbatur O. Indirect electrochemical treatment of bisphenol A inwater via electrochemically generated Fenton's reagent. Environ. Sci. Technol., 2003,37:3716-3723.
    [18]Brillas E., Sires I., Arias C., Cabot P.L., Centellas F., Rodriguez R.M., Garrido J.A. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere,2005,58:399-406.
    [19]Sires I., Garrido J.A., Rodriguez R.M., Brillas E., Oturan N., Oturan M.A., Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal., B,2007,72:382-394.
    [20]Ozcan A., ahin Y. S., Koparal A.S., Oturan M.A., Degradation of picloram by the electro-Fenton process. J. Hazard. Mater.,2008,153:718-727.
    [21]王滨松,黄君礼,张杰.Fenion试剂氧化活性染料废水的研究.哈尔滨工业大学学报,2005,37(9):1280-1282.
    [22]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展.能源环境保护,2004,18(3):5-13.
    [23]Safarzadeh-Amiri A., Bolton J.R., Cater S.R. The use of iron in advanced oxidation processes. J. Adv. Oxid. Technol.,1996,1(1):18-26.
    [24]Khursan S.L., Semesko D.G., Safiullin R.L. Quantum-chemical modeling of the detachment of hydrogen atoms by the sulfate radical anion. Russ. J. Phys. Chem.,2006,80(3):366-371.
    [25]Kochany J., Lipezynska-Kochany E. Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2. Chemosphere,1992,25(12):1769-1782.
    [26]Zepp R.G., Faust B.C., Hoigne J. Hydroxyl radical formation in aqueous reactions (pH3-8) of iron(II) with hydrogen peroxide:the photo-Fenton reaction. Environ. Sci. Technol.,1992,26(2): 313-319.
    [27]Fallmann H., Krutzler T., Bauer R., Malato S., Blaneo J. Applicability of the Photo-Fenton method for treating water containing pesticides. Catal. Today,1999,54(2):309-319.
    [28]Sun Y., Pignatello J.J. Photochemical reactions Involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ. Sci. Technol.,1993,27(2):304-310.
    [29]Casado J., Fornaguera J., Galan M.I. Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor. Environ. Sci. Technol.,2005,39(6): 1843-1847.
    [30]Oturan M.A., Peiroten J., Chartrin P., Aeher A.J. Complete destruction of p-nltrophenol in aqueous medium.by electro-Fenton method. Environ. Sci. Technol.,2000,34(16):3474-3479.
    [31]Ballner M.E., Sulzberger B. Atrazine degradation in irradiated iron/oxalate system:effect of pH and oxalate. Environ. Sci. Technol.,1999,33(14):2415-2424.
    [32]Huston P.L., Pignatello J.J. Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-fenton reaction. Environ. Sci. Technol., 1996,30(12):3457-3463.
    [33]张乃东,黄君礼,郑威.动态UV-Vis/H2O2/草酸铁络合物法光解苯胺.化工学报,2002,53(1):36-39.
    [34]钟妮华,许嘉琳,薛纪渝.日光作用下草酸铁/过氧化氢体系中偶氮染料降解的试验研究.太阳能学报,1999,20(1):1-7.
    [35]Watts R.J., Bottenberg B.C., Hess T.F., Jensen M.D., Teel A.L. Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions. Environ. Sci. Technol..1999,33(19):3432-3437.
    [36]Liang C.J., Bruell C.J., Marley M.C., Sperry K.L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-triehloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam.,2003,12(2):207-228.
    [37]Peyton G.R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem.,1993,41(1-3):91-103.
    [38]Anipitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol., 2003,37(20):4790-4797.
    [39]晏井春.含铁化合物活化过硫酸盐及其在有机污染物修复中的应用.华中科技大学博士学位论文,2012.
    [40]Huang Y.F., Huang Y.H. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2Og/H2O2-Fe(II, III) two-stage oxidation process. J. Hazard. Mater.,2009,162:1211-1216.
    [41]Gdswami D.Y. A rewiew of engineering developments of aqueous phase solar photocataytic detoxification and disinfection proeess. J. Sol. Energy Eng.,1997,119(2):101-107.
    [42]Reints W., Pratt D.A., Korth H.G., Mulder P.O-O bond dissociation enthalpy in di (trifluoromethyl) peroxide(CF3OOCF3) as determined by very low pressure pyrolysis. Density functional theory computations on O-O and O-H bonds in (fluorinated) derivatives. J. Phys. Chem. A,2000,104(46):10713-10720.
    [43]Flanagan J., Griffith W.P., Skapski A.C. The active principle of caro's acid, HSOS":k-ray crystal structure of KHSO5 H2O. J. Chem. Soc. Chemical Commuunications,1984,23: 1574-1579.
    [44]Betterton E.A., Hoffillann M.R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate. Environ. Sci. Technol.,1990,24(12):1819-1824.
    [45]Gogate P.R., Pandit A.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res.,2004,8(3-4):501-551.
    [46]Bandala E.R., Pelaez M.A., Dionysiou D.D., Gelover S., Garcia J., Macias D. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. J. Photochem. Photobiol., A,2007,186(2-5):357-363.
    [47]Tsao M.S., Wilmarth W.K. The aqueous chemistry of inorganic free radicals. I. The mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfate-hydroxyl radical interconversion equilibrium. J. Phys. Chem.,1959,63(3):346-353.
    [48]Beitz T., Bechmann W., Mitzner R. Investigations of reactions of selected azaarenes with redicals in Water.1. Hydroxyl and sulfate radicals. J. Phys. Chem. A.,1998,102(34):6760-6765.
    [49]Ivanov K.L., Glebov E.M., Plyusnin V.F., Ivanov Y.V., Grivin V.P., Bazllin N.M. Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide. J. Photochem. Photobiol., A,2000,133(1-2):99-104.
    [50]Snook M.E., Hamilton G.A. Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by Peroxydisulfate and Fenton's reagent. J. Am. Chem. Soc.,1974,96(3): 860-869.
    [51]Maurino V., Calza P., Minero C., et al. Light-assisted 1,4-dioxane degradation. Chemosphere 1997,35:2675-2688.
    [52]Malato S., Blanco J., Richter C., et al. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl. Catal., B,1998,17: 347-356.
    [53]Chen J., Zhang P. Photodegradation of perfluorooetanoic acid in water under irradiation of 254nm and 185 nm light by use of persulfate. Water Sci. Technol.,2006,54(11-12):317-325.
    [54]Hori H., Yamamoto A, Hayakawa E. Efficient decomposition of environmentally persistent perfluoroearboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol., 2005,39:2383-2388.
    [55]Hori H., Yamamoto A., Koike K., et al. Persulfate induced photochemical decompos-ition of a fluorotelomer unsaturated earboxylic acid in water. Water Res.,2007,41:2962-2968.
    [56]Malato S., Blaneo J., Fernandez-Alba A.R., Aguera A. Solarphotocatalytic mineralization of commercial pestieides:Aerinathrin. Chemosphere,2000,40(4):403-409.
    [57]Anipsitakis G.P., Dionysiou D.D. Destruetion of chlorinated aromatics in water with sulfate radicals-an alternative oxidizing system based on the Fenton's reagent ehemistry. Proceedings of the 8th International Conference on Advanced Oxidation Technologies for water and air remediation (AOTs-8), Toronto, Ontario, Canada,2002, November:17-22.
    [58]Salari D., Daneshvar N., Niaei A. The photo-oxidative destruction of C.I. basic yellow 2 using UV/S2O82- proeess in an annular photoreaetor. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng.,2008,43(6):657-663.
    [59]Zhong J., Ma D., Zhao H., et al. photocatalytic decolorization of methyl orange solution with potassium peroxydisulfate. Cent. Eur. J. Chem.,2008,6(2):245-252.
    [60]Criquet J., Leitner N.K.V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere,2009,77:194-200.
    [61]Chu W., Lau T.K., Fung S.C. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation. J. Agric. Food. Chem.,2006,54(26): 10047-10052.
    [62]Shan L., Yang S.Y., Chen Y.Y. Degradation of Azo Dye Acid Orange 7 by UV-Activated Common Peroxides in Seawater System.,2010 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE),2010,4:1-4.
    [63]Peternel I., Grcic I., Koprivanac N. Degradation of reactive azo dye by UV/peroxodisulfate system:an experimental design approach. Chem. Mater. Sci.,2010,100(1):33-44.
    [64]Wu M.C., Wu C.H. Decolorization of C. L reactive red 198 in UV/oxidant and UV/TiO2/oxidant systems. Reaction Kinetics, Mech. Catal.,2011,102(2):281-290.
    [65]Liang C.J., Bruell C.J., Marley M.C., et al. Persulfate oxidation for in situ remediation of TCE. Ⅱ. Activated by chelated ferrous ion. Chemosphere,2004,55(9):1225-1233.
    [66]Waldemer R., Tratnyek P., Johnson R., et al. Oxidation of chlorinated ethenes by heat activated persulfate:Kinetics and products. Environ. Sci. Technol.,2007,41:1010-1015.
    [67]Huang K.C., Zhao Z.Q., Hoag G.E., et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere,2005,61:551-560.
    [68]Yang S.Y., Wang P., Yang X., et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants:Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater.,2010,179(1-3):552-558.
    [69]Huang K.C., Couttenye R.A., Hoag G.E.Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere,2002,49(4):413-420.
    [70]赵进英,张耀斌,全燮等.加热和亚铁离子活化过硫酸钠氧化降解4-CP的研究.环境科学,2010,5(31):1233-1238.
    [71]Hori H., Nagaoka Y., Murayama M., etal. Efficient decomposition of perfluoroearboxylic acids and altemative fluorochemical surfactants in hot water. Environ. Sci. Technol.,2008,42(19): 7438-7443.
    [72]Mora V.C., Rossoa J.A., Le Roux G.C., et al. Thermally activated peroxydisulfate in the presence of additives:A clean method for the degradation of pollutants. Chemosphere,2009, 75(10):1405-1409.
    [73]Liang C.J., Bruell C.J., Marley M.C., et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by. ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere,2004,55:1213-1223.
    [74]Liang C.J., Huang C.F., Mohanty N., et al. Hydroxypropyl-beta-cyclodextrin mediated iron activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Ind. Eng. Chem. Res., 2007,46:6466-6479.
    [75]Liang C., Lee I., Hsu I., et al. Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere,2008,70:426-435.
    [76]Liang C.J., Wang Z.S., Bruell C.J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere,2007,66:106-113.
    [77]Liang C.J., Wang Z.S., Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees. Sci. Total Environ.,2006,370:271-277.
    [78]Rastogi A., AI-Abed S.R., Dionysiou D.D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(Ⅱ) mediated advanced oxidation of chlorophenols. Water Res., 2009,43(3):684-694.
    [79]Rastogi A., AI-Abed S.R., Dionysiou D.D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal., B,2009, 85(3-4):171-179.
    [80]郑伟,杨曦,张金凤等.Fe(Ⅱ)/K2S2O8对水体中As(Ⅲ)的氧化研究.环境科学与技术,2007,30(11):41-42.
    [81]郑伟,张金风,王联红等.柠檬酸-Fe(Ⅱ)/K2S2O8对敌草隆降解的研究,环境化学,2008,27(1):19-22.
    [82]Allen T.L. The oxidation of Oxalate Ion by peroxydisulfate. J. Am. Chem. Soc.,1951,73(8): 3589-3593.
    [83]Anderson J.M., Kochi J.K. Silver(Ⅰ)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. The role of silver(Ⅱ). J. Am. Chem. Soc.,1970,92(6):1651-1659.
    [84]张乃东,张曼霞,孙冰.硫酸根自由基处理水中甲基橙的初步研究.哈尔滨工业大学学 报,2006,38(4):636-638.
    [85]张乃东,张曼霞,彭永臻.S2O82-派生氧化法催化降解水中的甲基橙.催化学报,2006,27(5):445-448.
    [86]Gemeay A.H., HabibA.F.M., El-Din M.A.B. Kinetics and mechanism of the uncatalyzed and Ag(I)-catalyzed oxidative decolorization of Sunset Yellow and Ponceau 4R with peroxydisulphate. Dyes Pigm.,2007,74(2):458-463.
    [87]Anipsitakis, G.P., Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.,2004,38(13):3705-3712.
    [88]Fernandez J., Maruthamuthu P., kiwi J. Photobleaching and mineralization of orange II by oxone and metal-ions involving Fenion-like chemistry under visible light. J. Photochem. Photobiol.,A,2004,161(2-3):185-192.
    [89]Fernandez J., Maruthamuthu P., Renken A., Kiwi J. Bleaehing and photobleaching of orangeⅡ within seonds by the oxone/Co2+ reagent in Fenton-like proeesses. Appl. Catal., B,2004, 49(3):207-215.
    [90]Fernandez J., Nadtoehenko V., Kiwi J. Photobleaching of Orange II within seconds using the oxone/Co2+reagent through Fenton-like chemistry. Chem. Commun.,2003,9(18):2382-2383.
    [91]Ball D L, Edwards J O. The Kinetics and Mechanism of the Decomposition of Caro's Acid. I. J. Am. Chem. Soc.,1956,78:1125-1129.
    [92]Muller J.G., Zheng P., Rokita S.E., Burrows, C.J. DNA and RNA Modification Promoted by [Co(H2O)6]Cl2 and KHSO5:Guanine selectivity, temperature dependence, and mechanism. J. Am. Chem. Soc.,1996,118(10):2320-2325.
    [93]Niles J.C., Wishnok J.S., Tannenbaum S.R. Mass spectrometric identification of 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid during oxidation of 8-oxoguanosine by peroxynitrite and KHSO5/CoCl2. Chem. Res. Toxicol.,2004,17(11):1501-1509.
    [94]Tang N., Muller J.G., Burrows C.J., Rokita S.E. Nickel and cobalt reagents promote selective oxidation of Z DNA. Biochemistry,1999,38(50):16648-16654.
    [95]Ball D.L., Edwards J.O. The Catalysis of the Decomposition of Caro's Acid, J. Phys. Chem., 1958,62:343-345.
    [96]Bennet J.E., Gilbert B.C., Stell J.K. Mechanisms of peroxide decomposition. EPR studies of the one-electron oxidation of the peroxymonosulphate anion (HOOSO3-) and the reactions of SO5-,J.Chem. Soc.,Perkin Trans.2,1991:1105-1110.
    [97]Gilbert B.C., Stell J.K. Mechanisms of peroxide decomposition:an electron paramagnetic resonance study of the reaction of the peroxomonosulphate anion (HOOSO3-) with CuⅠ. A marked contrast in behaviour with that of TiⅢ and FeⅡ, J. Chem. Soc., Perkin Trans.2,1990,86: 3261-3266.
    [98]Gilbert B.C., Stell J.K. Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO3-) with TiⅢ, FeⅡ, and α-oxygen-substituted radicals, J. Chem. Soc., Perkin Trans.2,1990:1281-1288.
    [99]Sorokin A., Meunier B. Oxidative Degradation of Polychlorinated Phenols Catalyzed by Metallosulfophthalocyanines, Chem. Eur. J.,2009 2:1308-1317.
    [100]Anipsitakis G.P., Stathatos E., Dionysiou D.D., Heterogeneous Activation of Oxone Using CO3O4, J. Phys. Chem. B,2005,109:13052-13055.
    [101]Hu L.X., Yang X.P., Dang S.T., An easily recyclable Co/SBA-15 catalyst:Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water, Appl. Catal., B,2011,102: 19-26.
    [102]Do S.H., Jo J.H., Jo Y.H.H., Lee H.K., Kong S.H. Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil. Chemosphere, 2009,77:1127-1131.
    [103]Kanakaraj, P. Maruthamuthu P. Kinetics and mechanism of photochemical reactions of peroxomonosulfate in the presence and absence of 2-propanol, Int. J. Chem. Kinet.,1983,15: 1301-1310.
    [104]Dogliotti L., Hayon E. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions, J. Phys. Chem.,1967,71:2511-2516.
    [105]Dubey S., Hemkar S., Khandelwal C.L., Sharma P.D. Kinetics and mechanism of oxidation of hypophosphorous acid by peroxomonosulphate in acid aqueous medium, Inorg. Chem. Commun.,2002,5:903-908.
    [106]Balej J. Thermodynamics of reactions during the electrosynthesis of perox-odisulphates, Electrochim. Acta,1984,29:1239-1242.
    [107]Walling C. Fenton's reagent revisited, Fenton's reagent revisited, Acc. Chem. Res.,1975,8: 125-131.
    [108]Lipczynska-Kochany E., Sprah G., Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction, Chemosphere, 1995,30:9-20.
    [109]Huang Y.H., Tsai S.T., Huang, Y.F. Chen C.Y. Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system, J. Hazard. Mater.,2007,140:382-388.
    [110]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination, Appl. Catal., B,2004,54:155-163.
    [111]Huang Y.H., Huang Y.F., Huang C., Chen C.Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst, J. Hazard. Mater.,2009,170:1110-1118.
    [112]Bandara J., Morrison C., Kiwi J., Pulgarin C., Peringer P. Degradation/decoloration of concentrated solutions of Orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents, J. Photochem. Photobiol., A,1996,99:57-66.
    [113]Roebke W., Renz M., Henglein A. Pulsradiolyse der anionen S2O82- und HSO5- in Wassriger Losung, Int. J. Radiat. Phys. Chem.,1969,1:39-44.
    [114]Maruthamuthu P., Neta P. Radiolytic chain decomposition of peroxomonophosphoric and peroxomonosulfuric acids, J. Phys. Chem.,1977,81:937-940.
    [115]Bandara J., Kiwi J. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange Ⅱ, New J. Chem.,1999,23: 717-724.
    [116]Hayon E., Treinin, A. Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals, J. Am. Chem. Soc.,1972,94:47-57.
    [117]McCord J.M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions, J. Biol. Chem.,1969,244:6056-6063.
    [118]Reed G.A., Curtis J.F., Mottley C., Eling T.E., Mason R.P. Epoxidation of (±)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene during (bi)sulfite autoxidation:Activation of a procarcinogen by a cocarcinogen, P. Natl. Acad. Sci. USA,1986,83:7499-7502.
    [119]Nadtochenko V., Kiwi J. Photoinduced adduct formation between Orange Ⅱ and [Fe3+(aq)] or Fe(ox)33--H2O2 photocatalytic degradation and laser spectroscopy, J. Chem. Soc., Faraday Trans.,1997,93:2373-2378.
    [120]Ruppert B., Bauer R., Heisler G. The photo-Fenton reaction-an effective pho-tochemical waste-water treatment process, J. Photochem. Photobiol., A,1993,73:75-78.
    [121]Ingold K.U. Peroxy radicals, Acc. Chem. Res.,1969,2:1-9.
    [122]Maillard B., Ingold K.U., Scaiano J.C. Rate constants for the reactions of free radicals with oxygen in solution, J. Am. Chem. Soc.,1983,105:5095-5099.
    [123]Anipsitakis G.P., Dionysiou D.D., Gonzalez M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol.,2006,40(3):1000-1007.
    [124]Chan K.H., Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Res.,2009,43(9):2513-2521.
    [125]Bandala E.R., Velasco Y, Torres L.G. Decontamination of soil washing Wastewater using solar driven advanced oxidation proeesses. J. Hazard. Mater.,2008,160(2-3):402-407.
    [126]Bandala E.R., Pelaez M.A., Salgado M.J., et al. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation proeesses. J. Hazard. Mater.,2008, 151(2-3):578-584.
    [127]陈晓肠,陈景文,杨萍等.均相CO用Ms系统降解毗虫琳的影响因素及降解途径研究.环境科学,2007,28(12):2826-2820.
    [128]Chen X., Qiao X., Wang D, et al. Kinetics of oxidative decolorization and mineralization of Acid orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulrate system. Chemosphere, 2007,67(4):802-808.
    [129]Matta R., Tlili S., Chiron S., et al. Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ. Chem. Lett.,2010,6(56):41-46.
    [130]Wang Z., Yuan R., Guo Y, Xu L., et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent. J Hazard Mater,2011,190(3):1083-1087.
    [131]Sun J H, Li X Y, Feng J L, Tian X K. Oxone/Co2+ oxidation as an advanced oxidation process:Comparison with traditional Fenton oxidation for treatment of landfill leachate. Water Res.,2009,43:4363-4369.
    [132]Matta R, Tlili S, Chiron S, Barbati S. Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ. Chem. Lett.,2011,9:347-353.
    [133]Chen X., Chen J., Qiao X., et al. Performance of nano-Co3O4/Peroxymonosulfate system: Kinetics and mechanism study using Aeid Orange 7 as a model compound. Appl. Catal., B,2008, 80(1-2):116-121.
    [134]Chu W., Choy W.K., Kwan C.Y. Selection of supported cobalt substrates in thepresence of oxone for the oxidation of monuron. J. Agric. Food. Chem.,2007,55(14):5708-5713.
    [135]Yang Q.J., Choi H., Dionysiou D.D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate, Appl. Catal., B, 2007,74:170-178.
    [136]Yang Q., Choi H., Chen Y, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradationof 2,4-diehlorophenol in water:The effect of support, cobalt precursor, and UV radiation, Appl. Catal., B,2008,77(3-4):300-307.
    [137]Yu Z., Bensimon M., Laub D., et al. Accelerated photodegradation (minute range) of the commercial azo-dye OrangeⅡ mediated by Co3O4/Raschig rings in the presence of oxone. J. Mol. Catal. A:Chem.,2007,272(1-2):11-19.
    [138]Shukla P., Wang S.B., Singh K., Ang H.M., Tade M.O., Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal., B,2010,99:163-169.
    [139]Shukla P.R., Wang S,B., Sun H.Q., Ang H.M., Tade M.. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal., B, 2010,100:529-534.
    [140]Zhang W, Tay H.L., Lim S.S., Wang Y.S., Zhong Z.Y., Xu R., Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal., B, 2010,95:93-99.
    [141]Raja P., Bensimon M., Klehm U., Albers P., Laub D., Kiwi-Minsker L., Renken A., Kiwi J., Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation, J. Photochem. Photobiol., A,2007,187: 332-338.
    [142]Huang Y.F., Huang Y.H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process. J. Hazard. Mater.,2009,167:418-426.
    [143]Yang Q.J., Choi H., Al-Abed S.R., Dionysiou D.D. Iron-cobalt mixed oxide nanocatalysts_Heterogeneous peroxymonosulfate activation cobalt leaching and ferromagnetic properties for environmental. Appl. Catal. B,2009,88:462-469.
    [144]韩强.痕量钴催化剂过—硫酸氢盐降解水中偶氮染料酸性橙7:HC03-参与机理研究.中国海洋大学硕士学位论文,2012.
    [145]纪玉国,赵震,于长春,段爱军,姜桂元.Fischer-Tropsch合成钴基催化剂研究进展.化学进展,2007,26(7):927-933.
    [146]Shukla P.R., Sun H.Q., Wang S.B., Ang H.M., Tade M.O. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Sep. Purif. Technol.,2011,77: 230-236.
    [147]Zanjanchi M.A., Ebrahimian A., Arvand M. Sulphonated cobalt phthalocyanine/MCM-41 An active photocatalyst for degradation of 2,4-dichlorophenol. J. Hazard. Mater.,2010,175: 992-1000.
    [148]郑小明,周仁贤.环境保护中的催化治理技术.北京:化学工业出版社,2003.
    [149]Horikoshi S., Hidaka H., Serpone N. Environmental Remediation by an Integrated Microwave/UV-Illumination Method.1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions. Environ. Sci. Technol.,2002,36:1357-1366.
    [150]熊宜栋.功率超声在废水处理中的应用.应用声学.2002,21(4):33-35.
    [151]刘作华.微波促进含铬矿物催化氧化甲基橙的研究.重庆大学博士学位论文,2005.
    [152]应崇福.超声学.北京:科技出版社,1990.
    [153]袁易全.近代超声原理与应用.南京:南京大学出版社,1996.
    [154]丁文川.低强度超声波辐射活性污泥的生物效应及其应用试验研究.重庆大学博士学位论文,2006.
    [155]应崇福主编.超声学[M].北京:科技出版社,1990.
    [156]Ince N.H., Tezcanli G. Impacts of pH and molecular structure on ultrasonic degradation of azo dyes. Ultrason. Sonochem.,2004,42 (1-9):591-596.
    [157]孙海波.超声电化学氧化降解偶氮染料废水的研究.南京航空航天大学硕士学位论文.2008.
    [158]张占梅.基于超声辐射的高级氧化技术处理偶氮染料酸性绿B的试验研究.重庆大学博士学位论文,2009.
    [159]王建信,李义久,曾新平.水中有机污染物超声强化氧化技术研究进展.环境污染治理技术与设备,2003,4(4):66-69.
    [160]Marken F. Voltrammetry in the presence of ultrasound can ultrasound modifies hetero genous electron transfer kinetics. J. Electroanal. Chem.,1995,395:335-339.
    [161]岑科达.超声降解染料废水的实验研究.合肥工业大学硕士学位论文,2007.
    [162]张会琴.混凝-高级氧化耦合处理印染废水和微污染原水的效果及机理研究.重庆大学博士学位论文,2010.
    [163]Vonina D.B., Marechal A.M. Reactive dye decolorization using combined ultrasound/H2O2. Dyes Pigm.,2003,59:173-179.
    [164]唐玉斌,吕锡武,陈芳艳.超声波/H202协同降解水中染料酸性嫩黄的研究.化学世界,2005,12:745-748.
    [165]Ghodbane H., Hamdaoui O. Degradation of Acid Blue 25 in aqueous media using 1700 kHzultrasonic irradiation:ultrasound/Fe(II) and ultrasound/H2O2 combinations. Ultrason. Sonochem.,2009,16:593-598.
    [166]Lin J.G., Chang C.N., Wu J.R. Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 proeess. Water Sci. Technol.,1996,33(6):75-81.
    [167]Lin J.G., Chang C.N., WU J.R., Ma Y.S. Enhancement of decomposition of 2-chlorophenol with ultrasound/H2O2 proeess. Water Sci. Technol.,1996,34(9):41-48.
    [168]Chemat F., Teunissen P.G.M., Chemat S., Bartels P.V. Sono-oxidation Treatment of humic substances in drink water. Ultrason. Sonochem.,2001,8:247-250.
    [169]张翼,张晖,吴峰,王正琪.超声-Fenton法处理偶氮染料橙黄Ⅱ的研究.环境污染治理技术与设备,2003,4(11):48-51.
    [170]Visscher A.D., Langenhove H.V. Sonochemistry of organic compounds in homogeneous aqueous oxidizing systems. Ultrason. Sonochem.,1998,5:87-92.
    [171]彭晓云,冯流,刘路.超声/Fenton试剂氧化耦合处理染料废水.北京化工大学学报,2007,34(2):122-125.
    [172]Zhang H., Lv Y.J., Liu F., Zhang D.B. Degradation of C.I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor. Chem. Eng. J.,2008,138:231-238.
    [173]Ince N.H., Tezcanli G.. Reactive Dyestuff Degradation by Combined Sonolysis and Ozonation. Dyes Pigments.2001,49:145-153.
    [174]Zhang H., Duan L.J., Zhang D.B. Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J. Hazard. Mater.,2006, B138:53-59.
    [175]Lorimer J.P., Mason T.J., Plattes M., Phull S.S. Dye effluent decolourisation using ultrasonically assisted electro-oxidation. Ultrason. Sonochem.,2000,7:237-242.
    [176]白波,陈志红,王莉平.超声波/铁-炭微电解耦合处理直接大红4BE染料废水.应用化工,2007,36(2):130-133.
    [177]An T.C., Gu H.F., Xiong Y. Decolourization and COD removal from reactive dye containing wastewater using sonophoto catalytic technology. J. Chem. Technol. Biotechnol.,2003,78(11): 1142-1148.
    [178]王晓宁,卞华松,张国莹.声与紫外光协同氧化法处理染料废水的工艺研究.上海环境科学,2002,21(6):334-337.
    [179]Stock N.L., Peller J., Vinodgopal K. Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol.,2000,34(12):1747-1750.
    [180]Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. London, Ser. A,1859, 149:249-259.
    [181]唐秀之.氧化石墨烯表面功能化修饰.北京化工大学博士学位论文,2012.
    [182]Lerf H., Klinowski J., Forster M., et al. ANew Structure Model for Graphite Oxide. Chem. Phys. Lett.,1998,28(7):53-56.
    [183]Ruess G., Vogt F. Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte fur Chemie und verwandte Teile anderer Wissenschaften.1948,78(34):222-242.
    [184]Lerf A., He H., Forster M., et al. Strueture of Graphite Oxide Revisited. J. Phys. Chem., 1998,102:4477-4482.
    [185]Nakajima T., Mabuehi A. A New Strueture Model of Graphite Oxide. Carbon,1988,26(3): 357-361.
    [186]Mermous M., Chabre Y. Formation of Graphite Oxide. Synth. Met.,1989,34:157-162.
    [187]He H.Y., Riedl T., Lerf A. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem.,1996,100(51):19954-19958.
    [188]Martion A., Rodriguez V., JIMENEZ P.S. Some New aspects of Graphite Oxidational 0℃ in Liquid Mediuma Mechanism Proposal for Oxidation to Graphite Oxide. Carbon,1986,24(2): 163-167
    [189]Matsuo Y., Watanabe K., Fukutsuka T., et al. Charaeterization of N-hexadecy-lakylamine-intercalated Graphite oxide as Sorbents. Carbon,2003,41(8):1545-1550.
    [190]Hummers W., Offeman R. Preparation of Graphite Oxide. J. Am. Chem. Soc.,1958,80: 1339.
    [191]Chen D., Feng H.B., Li J.H. Graphene Oxide:Preparation, Functionalization, and Electrochemical Applications. Chem. Rev.,2012,112 (11):6027-6053.
    [192]王欢.还原氧化石墨烯及氧化石墨烯/ZnO复合物的制备及其光、电性能研究.吉林大学博士学位论文,2012.
    [193]Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano,2009,3(9):2653-2659.
    [194]Li X.L., Zhang G.Y., Bai X.D., Sun X.M., Wang X.R., Wang E., Dai H.J. Highly conducting graphene sheets and langmuir-blodgett films. Nat. Nanotechnol.,2008,3(9):538-542.
    [195]Zhang Y.B., Tan Y.W., Stormer H.L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438 (7065):201-204.
    [196]Stankovich S., Piner R.D., Chen X.Q., Wu N.Q., Nguyen S.B.T., Ruoff R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem,2006,16:155-158.
    [197]Hirata M., Gotou T., Ohba M., Thin-film particles of graphite oxide:Preliminary studies for internal miero fabrication of single particle and carbonaceous electronic circuits. Carbon,2005,43: 503-510.
    [198]Cassagneau T., GuerinF., Fendler J.H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir,2000, 16:7318-7324.
    [199]Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Berichte der Deutschen Chemischen Gesellschaft,1898,31(2):1481-1487.
    [200]Nakajima T., Matsuo Y. Formation process and structure of graphite oxide. Carbon,1994, 32(3):469-475.
    [201]Peckett J.W., Trens P., Gougeon R.D., etal. Electrochemically oxidised graphite: Characterisation and some ion exchange properties. Carbon,2000,38(3):345-353.
    [202]Hudson M.J., Hunter-Fujita F.R., Peckett J.W., et al. Electrochemically prepared colloidal, oxidised graphite. J. Mater. Chem,1997,7:301-305.
    [203]Daniela C.M., Dmitry V.K., Improved Synthesis of Graphene Oxide. ACS Nano,2010,4(8): 4806-4810.
    [204]Paredes J.I., Villar-Rodil S., Martinez-Alonso A., Tascon J.M.D. Graphene oxide dispersions in organic solvents, Langmuir,2008,24:10560-10564.
    [205]McAllister M.J., Li J.L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Margarita H.A., Milius D.L., Car R., Prud'homme R.K., Aksay I.A. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater.,2007,19(18):4396-4404.
    [206]Adarsh K., Theres B.T. Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem,2010,20(39):8467-8469.
    [207]韩啸.氧化石墨烯及其复合材料的制备和性能研究.哈尔滨工业大学硕士学位论文,2011.
    [208]Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009,29:217-224.
    [209]Yang S.T., Chen S., Chang Y.L., Cao A.N., Liu Y.F., Wang H.F. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci.,2011,359:24-29.
    [210]Si Y., Samulski E.T. Synthesis of water soluble graphene. Nano Lett.,2008,8:1679-1682.
    [211]Wang F., Zhang K., Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A:Chem.,2011,345:101-107.
    [212]Li R., Liu C.H., Ma J., Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr. Polym.,2011,84:631-637.
    [213]Matsuo Y., Tahara K., Sugie Y., Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide. Carbon,1997,35:113-120.
    [214]Ao Y.H., Wang P.F., Wang C., Hou J., Qian J. Preparation of graphene oxide-Ag3PO4 composite photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci., doi.org/10.1016/j.apsusc.2013.01.173.
    [215]Anandhavelu S., Thambidurai S. Single step synthesis of chitin/chitosan-based graphene oxide-ZnO hybrid composites for better electrical conductivity and optical properties. Electrochim. Acta,2013,90:194-202.
    [216]Pastrana-Martineza L.M., Morales-Torresa S., Likodimosb V., Figueiredoa J.L., Fariaa J.L., Falarasb P., Silva A.M.T. Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal., B,2012,123-124:241-256.
    [217]Song Y.H., He Z.F., Hou H.Q., Wang X.L., Wang L. Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim. Acta, 2012,71:58-65.
    [218]Zheng J., Ma X.F., He X.C., Gao M.J., Li G. Praparation, characterizations, and its potential applications of PANi/graphene oxide nanocomposite. Procedia Environ. Sci.,1012,27: 1478-1487.
    [219]Ma H.W., Shen J.F., Shi M., Lu X., Li Z.Q., Long Y., Li N., Ye M.X. Significant enhanced performance for Rhodamine B, phenol and Cr(Ⅵ) removal by Bi2WO6 nancomposites via reduced graphene oxide modification. Appl. Catal., B,2012,121-122:198-205.
    [220]Barrasa A., Dasb M.R., Devarapallic R.R., Shelkec M.V., Cordierd S., Szuneritsa S., Boukherroub R. One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity. Appl. Catal., B,2013,130-131:270-276.
    [1]Ichiyanagi Y., Kimishima Y., Yamada S. Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater.,2004,272-276:E1245-E1246.
    [2]Wang G.X., Chen Y, Konstantinov K., Yao J., Ahn J.H., Liu H.K., Dou S.X. Nanosize coabalt oxides as anode materials for lithium-ion batteries. J. Alloys Compd.,2002,340:L5-L10.
    [3]Li W.Y., Xu L.N., Chen J. Co3O4 nanomaterials in lithiumion batteries and gas sensors. Adv. Funct. Mater.,2005,15:851-857.
    [4]Wang C.B., Tang C.W., Gau S.J., Chen S.H. Effect of the surface area of cobaltic oxide on carbon monoxide oxidation. Catal. Lett.,2005,101:59-63.
    [5]Yuan Z., Huang F., Feng C., Sun J., Zhou Y. Synthesis and electrochemical performance of nanosized Co3O4. Mater. Chem. Phys.,2003,79:1-4.
    [6]He T., Chen D.R., Jiao X.L. Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chem. Mater.,2004,16:737-743.
    [7]Tomlinson W.J., Easterlow A. Kinetics and microstructure of oxidation of CoO to Co3O4 at 700-800℃. J. Phys. Chem. Solids,1985,46:151-153.
    [8]邹文斌,几种无机纳米粒子/(氧化)石墨烯复合材料的制备及性能研究,南京理工大学博士学位论文,2011.
    [9]Anipsitakis G.P., Stathatos E., Dionysiou D.D. Heterogeneous activation of Oxone using Co304, J. Phys. Chem. B,2005,109(27):13052-13055.
    [10]Lerf A., He H., Forster M., Klinowski J., Structure of graphite oxide revisited. J. Phys. Chem. B,1998,102:4477-4482.
    [11]Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009,29:217-224.
    [12]Sheng K.X., Xu Y.X., Li C., Shi G.Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater.,2011,26:9-15.
    [13]Nakada K., Fujita M., Dresselhaus G. Edge state in graphene ribbons:nanometer size effect and edge shape dependence. Phys. Rev. B:Condens. Matter,1996,54:17954-17961.
    [14]He H., Klinowski J., Forster M. A new structure model for graphite oxide. Chem. Phys. Lett., 1998,287:53-56.
    [15]Yang S.T., Chen S., Chang Y.L., Cao A.N., Liu Y.F., Wang H.F. Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci.,2011,359:24-29.
    [16]Stankovich S., Piner R., Chen X., Wu N., Nguyen S.T., Ruoff R.S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence o poly(sodium 4-styrensulfonate). J. Mater. Chem,2006,16:155-158.
    [17]Si Y., Samulski E.T. Synthesis of water soluble graphene. Nano Lett.,2008,8:1679-1682. [18] Paredes J.I., Villar-Rodil S., Martinez-Alonso A., Tascon J.M.D. Graphene oxide dispersions in organic solvents. Langmuir,2008,24:10560-10564.
    [19]Yang J.T., Wu M., Chen F., Fei Z.D., Zhong M.Q. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J. Supercrit. Fluids,2011,56:201-207.
    [20]Wang F., Zhang K., Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A:Chem.,2011,345:101-107.
    [21]Li R., Liu C.H., Ma J., Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr. Polym.,2011,84:631-637.
    [22]Liu P.G., Gong K.C., Xiao P., Xiao M. Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide composite. J. Mater. Chem,2000,10:933-935.
    [23]Matsuo Y., Tahara K., Sugie Y., Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide. Carbon,1997,35:113-120.
    [24]Kassaee M.Z., Motamedi E., Majdi M., Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite, Chem. Eng. J.,2011,172: 540-549.
    [25]Frey N.A., Peng S., Cheng K., Sun S.H. Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev.,2009,38: 2532-2542.
    [26]Scheuermann G.M., Rumi L., Steurer P., Bannwarth W., Mulhaupt R.J. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc.,2009,131:8262-8270.
    [27]Cao A., Liu Z., Chu S., Wu M., Ye Z., Cai Z., Chang Y., Wang S., Gong Q., Liu Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater.,2009,21:103-106.
    [28]Goncalves G., Marques P., Granadeiro C.M., Nogueira H.I.S., Singh M.K. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. Journal of Gracio Chemical Materials,2009,21: 4796-4802.
    [29]Lu A.H., Salabas E.L., Schuth F., Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.,2007,46:1222-1244.
    [30]Xu C., Wang X., Zhu J.W. Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008, 112:19841-19845.
    [31]Pasricha R., Gupta S., Srivastava A.K., A facile and novel synthesis of Ag-graphene-based nanocomposites. Small,2009,5:2253-2259.
    [32]Kamat P.V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Letters,2010,1 (2010) 520-527.
    [33]Kamat P.V., Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Letters, 2011,2:242-251.
    [34]Vinodgopal K., Neppolian B., Lightcap I.V., Grieser F., Ashokkumar M., Kamat P.V. Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Letters,2010,1:1987-1993.
    [35]Seger B., Kamat P.V., Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C,2009,113:7990-7995.
    [36]Rao C.N.R., Sood A.K., Voggu R., Subrahmanyam K.S. Some novel attributes of graphene. J. Phys. Chem. Letters,2010,1:572-580.
    [37]Lightcap I.V., Kosel T.H., Kamat P.V., Anchoring semiconductor and metal nanoparticles on a 2-dimensional catalyst Mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett.,2010,10:577-583.
    [38]Williams G., Seger B., Kamat P.V., TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2:1487-1491.
    [39]Williams G., Kamat P.V. Graphene-semiconductor nanocomposites. Excited state interactions between ZnO nanoparticles and graphene oxide. Langmuir,2009,25:13869-13873.
    [40]Zhang H., Lv X., Li Y., Wang Y., Li J. P-25 Graphene composite as a high performance photocatalyst. ACS Nano,2010,4:380-386.
    [41]Zhang K., Dwivedi V, Chi C.Y., Wu J.S., Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater.,2010,182:162-168.
    [42]Nguyen-Phan T.D., Pham V.H., Shin E.W., Pham H.D., Kim S., Chung J.S., Kim E.J., Hur S.H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J.,2011,170:226-232.
    [43]Neppolian B., Bruno A., Bianchi C.L., Ashokkumar M. Graphene oxide based Pt-TiO2 photocatalyst:Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason. Sonochem.,2012,19:9-15.
    [44]Wang, S,Y. Jiang S.P., Wang X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta,2011,56: 3338-3344.
    [45]Wang H.W., Hu Z.A., Chang Y.Q., Chen Y.L., Zhang Z.Y., Yang Y.Y., Wu H.Y. Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater. Chem. Phys.,2011,130:672-679.
    [46]Li X., Wang H., Robinson J.T., Sanchez H., Diankov G., Dai H., Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc.,2009,131:15939-15944.
    [47]Mkhoyan K.A., Contryman A.W., Silcox J., Stewart D.A., Eda G., Mattevi C., Miller S., Chhowalla M. Atomic and electronic structure of graphene-oxide, Nano Lett.,2009,9: 1058-1063.
    [48]Yan J., Wei T., Qiao W.M., Shao B., Zhao Q.K., Zhang L.J., Fana Z.J. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta,2010,55:6973-6978.
    [49]Cai D.Y., Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem,2007,17:3678-3680.
    [50]Xu Y., Bai H., Lu G.W., Li C., Shi G.Q. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc.,2008,130: 5856-5857.
    [51]Stankovich S., Piner R.D., Nguyen S.T., Ruoff R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon,2006,44:3342-3347.
    [52]Ferrari A.C., Meyer J.C., Seardaei V., Casiraghi C., Lazzeri M., Mauri F., Piseanec S., Jiang D,. Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett.,2006,97:187401-187404.
    [53]Tuinstra F., Koening J.L. Raman Spectrum of Graphite, J. Chem. Phys.,1970,53:1126-1130.
    [54]Wang C., Zhan L., Qiao W.M., Ling L.C. Preparation of graphene nanosheets through detonation, New Carbon Mater.,2011,26:21-25.
    [55]Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett.,2010,10:751-758.
    [56]Zhang W.X., Cui J.C., Tao C.A., Wu Y.G., Li Z.P., Ma L., Wen Y.Q., Li G.T. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach, Angew. Chem. Int. Ed.,2009,48:5864-5868.
    [57]Lu J., Yang J.X., Wang J., Lim A., Wang S., Loh K.P. One-Pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids, ACS Nano,2009,3:2367-2375.
    [58]Gallant D., Pezolet M., Simard S. Optical and Physical Properties of Cobalt Oxide Films Electrogenerated in Bicarbonate Aqueous Media. J. Phys. Chem. B,2006,110:6871-6880.
    [59]Hadjiev V.G., Iliev M.N., Vergilov I.V. The Raman spectra of Co3O4. J. Phys. C:Solid State Phys.,1988,21:199-201.
    [60]Wang W.Z., Zhang G.L. Synthesis and optical properties of high-purity CoO nanowires prepared by an environmentally friendly molten salt route, J. Cryst. Growth,2009,311: 4275-4280.
    [61]Liang Y.Y., Li Y.G., Wang H.L., Zhou J.G., Wang J., Regier T., Dai H.J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.,2011,8:1-7.
    [62]Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu, Y. Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [63]Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie,1978.
    [64]Li C.C., Yin X.M., Wang T.H., Zeng H.C. Morphogenesis of Highly Uniform CoCO3 Submicron Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications. Chem. Mater.,2009,21:4984-4992.
    [1]Yang Q.X., Jia Z.J., Yang M. Microbial decolorization of dye containing wastewater. Microbiology,2006,4:144-148
    [2]Wang Y.Z., Chen M.X., Hu C. A study of dye degradation in the combination process of photocatalytic oxidation with biochemical oxidation. Acta Scientiae Circumstantiae,2000,6: 772-775.
    [3]任南琪,周显娇,郭婉茜,杨珊珊.染料废水处理技术研究进展[J].化工学报,2012.
    [4]Kusic H., KoPrivanac N., Srsan L. Azo dye degradation using Fenton type proeesses assisted byUV irradiation:A kinetic study. J. Photochem. Photobiol., A,2006,181(2-3):195-202.
    [5]许枚英,郭俊,岑英华,孙国萍.染料的生物降解研究.微生物学通报,2006,33(1):138-143.
    [6]Stylidi M., Konddarides D.I., Verykios, X.E. Visible light-induced photocatalytic degradation of Acid Orange7 in aqueous TIO2 suspensions. Appl. Catal., B,2004,47(3):189-201.
    [7]Chamarro E., Marco A., Esplugas S. Use of fenton reagent to improve organic chemical biodegradability. Water Res.,2001,35:1047-1051.
    [8]Anipsitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol., 2003,37:4790-4797.
    [9]Cheng M., Ma W., Li J., Huang Y., Zhao J.C. Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ. Sci. Technol.,2004,38:1569-1575.
    [10]Chen X.Y., Chen J.W., Qiao X.L., Wang D.G., Cai X.Y. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal., B,2008,80:116-121.
    [11]Gozmen B., Oturan, M.A. Oturan N., Erbatur O., Indirect electrochemical treatment of bisphenol A inwater via electrochemically generated Fenton's reagent, Environ. Sci. Technol., 2003,37:3716-3723.
    [12]Brillas E., Sires I., Arias C., Cabot P.L., Centellas, F. Rodriguez R.M., Garrido J.A. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode, Chemosphere,2005,58:399-406.
    [13]Sires I., Garrido J.A., Rodriguez R.M., Brillas E., Oturan N., Oturan M.A. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene, Appl. Catal., B,2007,72:382-394.
    [14]Ozcan A., ahin Y. S., Koparal A.S., Oturan M.A. Degradation of picloram by the electro-Fenton process, J. Hazard. Mater.,2008,153:718-727.
    [15]Noorjahan M., Kumari V.D., Subrahmanyam M., Panda L. Immobilized Fe(III)-HY:an efficient and stable photo-Fenton catalyst, Appl. Catal., B,2005,57:291-298.
    [16]Neamtu M., Zaharia C., Catrinescu C., Yedile A., Macoveanu M., Kettrup A. Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL, Appl. Catal., B,2004,48:287-294.
    [17]Kuznetsova E.V., Savinov E.N., Vostrikova L.A., Parmon V.N. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2, Appl. Catal., B,2004,51:165-170.
    [18]Rodriguez A., Ovejero G., Sotelo J.L., Mestanza M., GarciJ. Heterogeneous Fen-ton catalyst supports screening for mono azo dye degradation in contaminated wastewaters, Ind. Eng. Chem. Res.,2010,49:498-505.
    [19]Kan E., Huling S.G. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon, Environ. Sci. Technol.,2009,43:1493-1499.
    [20]Ramirez J.H., Maldonado-Hodar F.J., Perez-Cadenas A.F. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal., B,2007,75:312-323.
    [21]Calleja G., Melero J.A., Martinez F., Molina R. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials forwet peroxide oxidation of phenol, Water Res., 2005,39:1741-1750.
    [22]Martinez F., Calleja G., Melero J.A., Molina R. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol, Appl. Catal., B,2007, 70:452-460.
    [23]Feng J., Hu X., Yue P.L., Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of orange II, Environ. Sci. Technol., 2004,38:269-275.
    [24]Chen J., Zhu L. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite, Catal. Today,2007,126:463-470.
    [25]Muthuvel I., Swaminathan M. Highly solar active Fe(III) immobilised alumina for the degradation of acid violet 7, Sol. Energy Mater. Sol. Cells,2008,92:857-863.
    [26]Parra S., Henao L., Mielczarski E., Mielczarski J., Albers P., Suvorova E., Guindet J., Kiwi J. Synthesis, testing, and characterization of a novel nafion membrane with superior performance in photoassisted immobilized Fenton catalysis, Langmuir,2004,20:5621-5629.
    [27]Wang Q., Scherer E.M., Lemley A.T. Metribuzin degradation by membrane anodic Fenton treatment and its interaction with ferric ion, Environ. Sci. Technol.,2004,38:1221-1227.
    [28]Baciocchi R., Boni M.R., Aprile L.D, Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton's and Fenton-like oxidation in soils, J. Hazard. Mater.,2003, 96:305-329.
    [29]Rosales E., Iglesias O., Pazos M., Sanroman M.A. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads, J. Hazard. Mater.,2012,213-214:369-377.
    [30]Faouzi M., Canizares P., Gadri A., Lobato J., Nasr B., Paz R., Rodrigo M.A., Saez C. Advanced oxidation processes for the treatment of wastes polluted with azoic dyes, Electrochim. Acta,2006,52:325-331.
    [31]Lucas M.S., Peres J.A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigm.,2006,71:236-244.
    [32]Rosales E., Pazos M., Longo M.A., Sanroman M.A. Electro-Fenton decoloration of dyes in a continuous reactor:a promising technology in colored wastewater treatment, Chem. Eng. J.,2009, 155:62-67.
    [33]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal., B,2004,54:155-163.
    [34]Anipsitakis G.P., Dionysiou D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol..38:3705-3712.
    [35]Ball D.L., Edwards J.O. The Catalysis of the Decomposition of Caro's Acid, J. Phys. Chem., 1958,62:343-345.
    [36]Muller J.G., Zheng P., Rokita S.E., Burrows C.J. DNA and RNA Modification Promoted by [Co(H2O)6]Cl2 and KHSO5:Guanine Selectivity, Temperature Dependence, and Mechanism, J. Am. Chem. Soc.,1996,118:2320-2325.
    [37]Anipsitakis G.P., Dionysiou D.D., Gonzalez M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolie compounds. Implications of chloride ions, Environ. Sci. Technol.,2006,40:1000-1007.
    [38]Yu Z.Y., Kiwi L., Renken A., Kiwi J. Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes, J. Mol. Catal. A:Chem.,2006,252: 113-119.
    [39]Fernandez J., Maruthamuthu P., Renken A., Kiwi J. Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes, Appl. Catal., B,2004,49: 207-215.
    [40]Kim J., Edwards J.O. A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion. Inorg. Chim. Acta,1995,235: 9-13.
    [41]Raja P., Bensimon M., Klehm U., Albers P., Laub D., Kiwi-Minsker L., Renken A., Kiwi J., Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation, J. Photochem. Photobiol., A,2007,187: 332-338.
    [42]Yang Q.J., Choi H., Chen Y.J., Dionysiou D.D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation, Appl. Catal., B,2008,77: 300-307.
    [43]Yang Q.J., Choi H., Dionysiou D.D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate, Appl. Catal., B, 2007,74:170-178.
    [44]Huang C.P., Huang Y.F., Cheng H.P., Huang Y.H. Kinetic study of an immobilized iron oxide for catalytic degradation of azo dye reactive black B with catalytic decomposition of hydrogen peroxide, Catal. Commun.,2009,10:561-566.
    [45]Anipsitakis G.P., Stathatos E., Dionysiou D.D. Heterogeneous activation of Oxone using Co3O4. J. Phys. Chem. B,2005,109:13052-13055.
    [46]陈晓肠.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究.大连理工大学博士学位论文.2007.
    [47]Zhang W., Tay H.L., Lim S.S., Wang Y.S., Zhong Z.Y., Xu R. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal., B, 2010,95:93-99.
    [48]Shukla P., Wang, S.B. Singh K., Ang H.M., TadeM.O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal., B,2010,99:163-169.
    [49]Fernandez J., Nadtochenko V., Kiwi J. Photobleaching of Orange Ⅱ within seconds using the oxone/Co2+ reagent through Fenton-like chemistry, Chem. Commun.,2003,9:2382-2383.
    [50]Chen X.Y., Qiao X.L., Wang, D.G. Lin J., Chen J.W. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system, Chemosphere,2007,67:802-808.
    [51]Ray M.B., Bhattacharya, A. Kawi S. Photocatalytic degradation of orange Ⅱ by TiO2 catalysts supported on adsorbents, Catal. Today,2004,98:431-439.
    [52]Kiwi J., Dhananjeyan M.R., Albers J., Enea O. Photo-assisted immobilized Fenton degradation up to pH8 of azo dye orange Ilmediated by Fe3+/nafion/glass fibers, Helv. Chim. Acta, 2001,84:3433-3445.
    [53]Inoue M., Okada F., Sakurai A., Sakakibara M. A new development of dyestuffs degradation system using ultrasound, Ultrason. Sonochem.,2006,13:313-320.
    [54]Daneshvar N., Ashassi-Sorkhabi H., Tizpar A. Decolorization of orange Ⅱ by electrocoagulation method, Sep. Purif. Technol.,2003,31:153-162.
    [55]Ramirez J.H., Costa C.A., Madeira L.M. Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent, Catal. Today,2005,107/108:68-76.
    [56]Ramirez J.H., Costa, C.A. Madeira L.M., Mata G., Vicente M.A., Rojas-Cervantes M.L., Lo'pez-Peinado A.J., Marti'n-Aranda R.M. Fenton-like oxidation of Orange Ⅱ solutions using heterogeneous catalysts based on saponite clay, Appl. Catal., B,2007,71:44-56.
    [57]Ramirez J.H., Duarte F.M., Martins F.G., Costa C.A., Madeira L.M. Modelling of the synthetic dye Orange Ⅱ degradation using Fenton's reagent:From batch to continuous reactor operation, Chem. Eng. J.,2009,148:394-404.
    [58]Silva A.M.T., Ramirez J.H., Soylemez U., Madeira L.M. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7, Appl. Catal., B,2012,121-122:10-19.
    [59]Ramirez J.H., Silva A.M.T., Vicente M.A., Costa C.A., Madeira L.M. Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation:Kinetic study with the Fermi's equation, Appl. Catal., B,2011,101:197-205.
    [60]Bandara J., Morrison C., Kiwi J., Pulgarin C., Peringer P. Degradation/decoloration of concentrated solutions of orange Ⅱ. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents, J. Photochem. Photobiol., A,1996,99:57-66.
    [61]Daneshvar N., Aber S., Vatanpour V., Rasoulifard M.H. Electro-Fenton traitement of dye solution containing Orange Ⅱ. Influence of operational parameters, J. Electroanal. Chem.,2008, 615:165-174.
    [62]Kousha M., Daneshvar E., Sohrabi M.S., Jokar M., Bhatnagar A. Adsorption of acid orange Ⅱ dye by raw and chemically modified brown macroalga Stoechospermum marginatum, Chem. Eng. J.,2012,192:67-76.
    [63]Mandal S., Patil V.S., Mayadevi S. Alginate and hydrotalcite-like anionic clay composite systems:Synthesis, characterization and application studies, Microporous Mesoporous Mater., 2012,158:241-246.
    [64]Wu J., Zhang H., Qiu J.J. Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process, J. Hazard. Mater.,2012,215-216:138-145.
    [65]Wei S.Q., Liu L., Li H.B., Shi J., Liu Y., Shao Z.C. Photodecolourization of orange Ⅱ with iron corrosion products and oxalic acid in aqueous solution, Appl. Catal., A,2012,417-418: 253-258.
    [66]Riaz N., Chong F.K., Dutta B.K., Man Z.B., Khan M.S., Nurlaela E. Photodegradation of Orange II under visible light using Cu-Ni/TiO2:Effect of calcination temperature, Chem. Eng. J., 2012,185-186:108-119.
    [67]Chen P.K., Lee G.J., Anandan S., Wu J.J. Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of Orange Ⅱ, Mater. Sci. Eng., B,2012, 177:190-196.
    [68]Liang X.L., Zhong Y.H., He H.P., Yuan P., Zhu J.X., Zhu S.Y., Jiang Z. The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J.,2012,191:177-184.
    [69]陈宗昊,植物-GTY联合对含盐偶氮染料废水脱水的研究,大连理工大学硕士论文,2010.6.
    [70]Pignatell J.J. Dark and photoassisted Fe3+-catalyzed degration of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol.,1992,26:944-951.
    [71]Lipczynska K.E., Sprah G., Harms S. Influence of some groundwater and surface waters on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere,1995,30(1):9-20.
    [72]Yuan R.X., Ramjaun S.N., Wang Z.H., Liu J.S. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process:Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater.,2011,196:173-179.
    [73]Hu C., Yu J.C., Hao Z., Wong P.K. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl. Catal., B,2003,46 (1):35-47.
    [74]Jardim W.F., Rohwedder J.J.R. Chemical oxygen demand (COD) using microwave digestion, Water Res.,1989,23:1069-1071.
    [75]Subramanian B., Yang Q.L., Yang Q.J. Amid P. Khodadoust, Dionysios D. Dionysiou. Photodegradation of pentachlorophenol in room temperature ionic liquids, J. Photochem. Photobiol.,A,2007,192:114-121.
    [76]Li M. Application of sodium percarbonate and production technology, Fine Chemical Industral Raw Materias Intermediates,2005, Ⅱ:22-26.
    [77]Kochany J., Lipczynska-Kochany E. Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2, Chemosphere,1992,25:1769-1782.
    [78]Neppolian B., Choi H.C., Sakthivel S., Arabindoo B., Murugesan V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue4, Chemosphere,2002 46:1173-1181.
    [79]Chen X.Y., Wang W.P., Zhu F.X. The study of UV/K2S2O8 degradation of AO7:Kinetics and reaction pathways, J. Environ. Sci.,2010,31:1533-1537.
    [80]Feng J., Hu X., Yue P.L. Discoloration and mineralization of orange11 using different heterogeneous catalysts containing Fe:a comparative study. Environ. Sci. Technol.,2004,38(21): 5773-5778.
    [81]Shukla R.P., Wang S.B., Sun H.Q., Ang H.M., TadeM. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal., B, 2010,100:529-534.
    [82]Lim H., Lee J., Jin S., Kim J., Yoon J., Hyeon T. Highly aetive heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem. Commun., 2006,4:463-465.
    [83]Yu Z.Y., Bensimon M., Laubd D., Kiwi L., Jardim W., Mielczarski E., Mielczarski J., Kiwi J. Accelerated photodegradation (minute range) of the commercial azo-dye Orange Ⅱ mediated by Co3O4/Raschig rings in the presence of oxone, J. Mol. Catal. A:Chem.,2007,272:11-19.
    [84]Yang S.Y., Wang P., Yang X., Wei G., Zhang W.Y., Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater:Microwave-activated persulfate oxidation, J. Environ. Sci.,2009,21:1175-1180.
    [85]Sanchez M., Hedaseh A., Fell R.T., Meunier B. Role of the phosphate buffer in the H2O2 oxidation of aromatic pollutants catalyzed by iron tetrasulfophthalocyanine. J. Catal.,2001,202(1): 177-186.
    [86]Richardson D.E., Yao H., Frank K.M., Bermett D.A., Equilibria, kineties, and mechanism in the bicarbonate activation of hydrogen peroxide:Oxidation of sulfidesby peroxymonocarbonate. J. Am. Chem. Soc.,2000,122(8):1729-1739.
    [87]Yao H., Richardson D.E. Bicarbonate surfoxidants:Micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide. J. Am. Chem. Soc.,2003,125(20):6211-6221.
    [88]Yao H., Rjehardson D.E. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. J. Am. Chem. Soc.,2000,122(13):3220-3221.
    [89]Huie R.E., Clifton C.L. Temperature dependence of the rate constants for reactions of the sulfate radical, SO4-·, with anions, J. Phys. Chem.,1990,94(23):8561-8567.
    [90]Yu X.Y., Bao Z.C., Barker J.R. Free radical reactions involving Cl·, Cl2-· and SO4-· in the 248nm photolysis of aqueous solutions containing S2O82- and Cl-. J. Phys. Chem. A,2004,108(2): 295-308.
    [91]Gayathri P., Juliya R. P., Palanivelu K. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions, Ultrason. Sonochem.,2010, 17:566-571.
    [92]Fernandez J., Maruthamuthul P., Kiwi J. Photobleaching and mineralization of Orange Ⅱ by oxone and metal-ions involving Fenton-like chemistry under visible light. J. Photochem. Photobiol., A,2004,161:185-192.
    [1]Chidambara C.B., Quen H.L. Advanced oxidation processes for wastewater treatment: optimization of UV/H2O2 process through a statistical technique, Chem. Eng. Sci.,2005,60: 5305-5311.
    [2]Anipsitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, Environ. Sci. Technol., 2003,37:4790-4797.
    [3]Anipsitakis G.P., Dionysiou D.D. Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol.,2004,38:3705-3712.
    [4]Anipsitakis G.P., Dionysiou D.D., Gonzalez M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions, Environ. Sci. Technol.,2006,40:1000-1007.
    [5]Fernandez J., Maruthamuthu P., Renken A., Kiwi J. Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+reagent in Fenton-like processes, Appl. Catal., B,2004,49: 207-215.
    [6]Fernandez J., Maruthamuthu P., Kiwi J. Photobleaching and mineralization of Orange Ⅱ by oxone and metal-ions involving Fenton-like chemistry under visible light, J. Photochem. Photobiol., A,2004,161:185-192.
    [7]Yu Z.Y., Bensimon M., Laub D., Kiwi-Minsker L., Jardim W., Mielzarski E., Mielczarski J., Kiwi J. Accelerated photodegradation (minute range) of the commercial azo-dye Orange Ⅱ mediated by Co3O4/Raschig rings in the presence of oxone, J. Mol. Catal. A:Chem.,2007,272: 11-19.
    [8]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination, Appl. Catal., B,2004,54:155-163.
    [9]Kim J., Edwards J.O. A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion, Inorg. Chim. Acta,1995,235: 9-13.
    [10]Zhang Z., Edwards J.O. Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium, Inorg. Chem.,1992,31:3514-3517.
    [11]Anipsitakis G.P., Stathatos E., Dionysiou D.D. Heterogeneous activation of oxone using Co3O4, J. Phys. Chem. B,2005,109:13052-13055.
    [12]Yang Q.J., Choi H., Dionysiou D.D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate, Appl. Catal., B, 2007,74:170-178.
    [13]Yang Q.J., Choi H., Chen Y.J., Dionysiou D.D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation, Appl. Catal., B,2007,77: 300-307.
    [14]Zhang W., Tay H.L., Lim S.S., Wang Y.S., Zhong Z.Y., Xu R. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions, Appl. Catal., B, 2010,95:93-99.
    [15]Li R., Liu C.H., Ma J. Studies on the properties of graphene oxide-reinforced starch biocomposites, Carbohydr. Polym.,2011,84:631-637.
    [16]Liu P. G., Gong K. C., Xiao P., Xiao M. Preparation and characterization of poly (vinyl acetate)-intercalated graphite oxide composite, J. Mater. Chem,2000,10:933-935.
    [17]Matsuo Y, Tahara K., Sugie Y. Structure and thermal properties of poly (ethylene oxide)-intercalated graphite oxide, Carbon,1997,35:113-120.
    [18]Wang X.L., Dou W.Q. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites, Thermochim. Acta,2012,529:25-28.
    [19]Mason T.J. Sonochemistry:current uses and future prospects in the chemical and processing industries, Philos. Trans. R. Soc. London, Ser. A,1999,357:355-369.
    [20]Yang S.Y., Wang P., Yang X., Wei G., Zhang W.Y., Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater:Microwave-activated persulfate oxidation, J. Environ. Sci.,2009,21:1175-1180.
    [21]Gogate P.R. Cavitation:an auxiliary technique in wastewater treatment schemes, Adv. Environ. Res.,2002,6:335-358.
    [22]Yano J., Matsuura J., Ohura H., Yamasaki S. Complete mineralization of propyzamide in aqueous solution containing TiO2 particles and H2O2 by the simultaneous irradiation of light and ultrasonic waves, Ultrason. Sonochem.,2005,12:197-203.
    [23]Yasman Y, Bulatov V., Gridin V.V., Agur S., Galil N., Armon R., Schechter I., A new sono-electrochemical method for enhanced detoxification of hydrophilic chloroorganic pollutants in water, Ultrason. Sonochem.,2004,11:365-372.
    [24]Yasman Y, Bulatov V., Rabin I., Binetti M., Schechter I. Enhanced electro-catalytic degradation of chloroorganic compounds in the presence of ultrasound, Ultrason. Sonochem., 2006,13:271-277.
    [25]Mason T.J. Practical Sonochemistry, Ellis Horwood, New York, London,1991.
    [26]Rae J., Ashokkumar M., Eulaerts O., Sonntag C.V., Reisse J., Grieser F. Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions, Ultrason. Sonochem., 2005,12:325-329.
    [27]Okitsu K., Iwasaki K., Yobiko Y, Bandow H., Nishimura R., Maeda Y. Sonochemical degradation of azo dyes in aqueous solution:a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes, Ultrason. Sonochem.,2005,12: 255-262.
    [28]Kim J.K., Martinez E, Metcalfe I.S. The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of p-chlorophenol, Catal. Today,2007,124:224-231.
    [29]Nikolopoulos A.N., Igglessi-Markopoulou O., Papayannakos N. Ultrasound assisted catalytic wet peroxide oxidation of phenol:kinetics and intraparticle diffusion effects, Ultrason. Sonochem., 2006,13:92-97.
    [30]Guo Z.B., Zheng Z., Zheng, S.R. Hu W.Y., Feng R. Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol, Ultrason. Sonochem.,2005,12: 461-465.
    [31]Pang Y.L., Bhatia S., Abdullah A.Z. Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution, Sep. Purif. Technol.,2011,77: 331-338.
    [32]Amey A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater.,2010,173:517-522.
    [33]Ai Z.H., Li J.P., Zhang L.Z., Lee S.C. Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process, Ultrason. Sonochem.,2010,17: 370-375.
    [34]Scheeren C.W., Paniz J.N.G., Martins A.F. Comparison of advanced processes on the oxidation of Acid Orange 7 dye, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng.,2002,37:1253-1261.
    [35]Stylidi M., Kondarides D.I., Verykios X.E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Appl. Catal., B,2004,47:189-201.
    [36]Jardim W.F., Rohwedder J.J.R. Chemical oxygen demand (COD) using microwave digestion, Water Res.,1989,23:1069-1071.
    [37]Petrier C., David B., Laguian S. Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution:preliminary results, Chemosphere,1996,32: 1709-1718.
    [38]Nanzai B., Okitsu K., Takenaka N., Bandow H., Maeda Y. Sonochemical degradation of various monocyclic aromatic compounds:Relation between hydrophobicities of organic compounds and the decomposition rates, Ultrason. Sonochem.,2008,15:478-483.
    [39]Hoffmann M.R., Hua I., Hochemer R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water, Ultrason. Sonochem.,1996,3:S157-S163.
    [40]Chen X.Y., Chen J.W., Qiao X.L., Wang D.G., Cai X.Y. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound, Appl. Catal., B,2008,80:116-121.
    [1]Geim A.K., Novoselov K.S. The rise of graphene, Nat. Mater.,2007,6:183-191.
    [2]Campos-Delgado J., Romo-Herrera J.M., Jia X.T., Cullen D.A., Muramatsu H., Kim Y.A., Hayashi T., Ren Z.F., Smith D.J., Okuno Y., Ohba T., Kanoh H., Kaneko K., Endo M., Terrones H., Dresselhaus M.S., Terrones M. Bulk production of a new form of sp2 carbon:crystalline graphene nanoribbons, Nano Lett.,2008,8:2773-2778.
    [3]Geim A. K. Graphene:status and prospects, Science,2009,324:1530-1534.
    [4]Fan Z.J., Kai W., Yan J., Wei T., Zhi L.J., Feng J., Ren Y.M., Song L.P., Wei F., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide, ACS Nano, 2011,5:191-198
    [5]Lerf A., He H., Forster M., Klinowski J. Structure of graphite oxide revisited, J. Phys. Chem. B, 1998,102:4477-4482.
    [6]Zhang K., Dwivedi V., Chi C.Y., Wu J.S. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, J. Hazard. Mater.,2010,182:162-168.
    [7]Park S., Ruoff R.S. Chemical methods for the production of graphenes, Nat. Nanotechnol., 2009,29:217-224.
    [8]Sheng K.X., Xu Y.X., Li C., Shi G.Q., High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide, New Carbon Mater.,2011,26:9-15.
    [9]Nakada K., Fujita M., Dresselhaus G. Edge state in graphene ribbons:nanometer size effect and edge shape dependence, Phys. Rev. B:Condens. Matter,1996,54:17954-17961.
    [10]He H., Klinowski J., Forster M. A new structure model for graphite oxide, Chem. Phys. Lett., 1998,287:53-56.
    [11]Yang S.T., Chen S., Chang Y.L. Cao A.N., Liu Y.F., Wang H.F. Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci.,2011,359:24-29.
    [12]Stankovich S., Piner, R. Chen X., Wu N., Nguyen S.T., Ruoff R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence o poly(sodium 4-styrensulfonate), J. Mater. Chem,2006,16:155-158.
    [13]Si, Y. Samulski E.T., Synthesis of water soluble graphene, Nano Lett.,2008,8:1679-1682.
    [14]Paredes J.I., Villar-Rodil S., Martinez-Alonso A., Tascon J.M.D. Graphene oxide dispersions in organic solvents, Langmuir,2008,24:10560-10564.
    [15]Yang J.T., Wu M., Chen E, Fei Z.D., Zhong M.Q. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites, J. Supercrit. Fluids,2011,56:201-207.
    [16]Wang F., Zhang K. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B, J. Mol. Catal. A:Chem.,2011,345:101-107.
    [17]Nguyen-Phan T.D., Pham V.H., Shin E.W., Pham H.D., Kim S., Chung J.S., Kim E.J., Hur S.H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng. J.,2011,170:226-232.
    [18]Neppolian B., Bruno A., Bianchi C.L. Ashokkumar M. Graphene oxide based Pt-TiO2 photocatalyst:Ultrasound assisted synthesis, characterization and catalytic efficiency, Ultrason. Sonochem.,2012,19:9-15.
    [19]Akhavan, O. Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C,2009,113: 20214-20220.
    [20]Park Y.S., Kang S.H., Choi W.Y. Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion, Phys. Chem. Chem. Phys.,2011,13:9425-9431.
    [21]Chen C., Cai W.M., Long M.C., Zhou B.X., Wu Y.H., Wu D.Y., Feng YJ. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano, 2010,4:6425-6432.
    [22]Min Y.L., Zhang K., Zhao W., Zheng F.C., Chen Y.C., Zhang Y.G. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J.,2012,193-194:203-210
    [23]Kassaee M.Z., Motamedi, E. Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite, Chem. Eng. J.,2011,172: 540-549.
    [24]Wang S.Y., Jiang, S.P. Wang X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications, Electrochim. Acta,2011,56: 3338-3344.
    [25]Fan L.L., Luo, C.N. Li X.J., Lu F.G., Qiu H.M., Sun M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater.,2012,215-216:272-279.
    [26]Wang H.W., Hu Z.A., Chang Y.Q., Chen Y.L., Zhang Z.Y., Yang Y.Y., Wu H.Y. Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix, Mater. Chem. Phys.,2011,130:672-679.
    [27]Shi P.H., Su R.J., Wan F.Z., Zhu M.C., Li D.X., Xu S.H.Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals, Appl. Catal., B,2012,123-124:265-272.
    [28]Shi P.H., Su R.J., Zhu S.B., Zhu M.C., Li, D.X. Xu S.H. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange II from water, J. Hazard. Mater.,2012, 229-230:331-339.
    [29]Marlinda A.R., Huang N.M., Muhamad M.R., An'amt M.N., Chang B.Y.S., Yusoff N., Harrison I., Lim H.N., Chia, C.H. Kumar S.V. Highly effi cient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett.,2012,80:9-12.
    [30]Wang J.F., Tsuzuki T., Tang B., Hou X.L., Sun L., Wang X.G. Reduced Graphene Oxide/ZnO Composite:Reusable Adsorbent for Pollutant Management. ACS Appl. Mater. Interfaces,2012,4: 3084-3090.
    [31]Sreeprasad T.S., Maliyekkal S.M., Lisha K.P., Pradeep T. Reduced graphene oxide-metal/metal oxide composites:Facile synthesis and application in water purification. J. Hazard. Mater.,2011,186:921-931.
    [32]Jiang H.L., Akita T., Ishida T., Haruta M., Xu Q. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework. J. Am. Chem. Soc.,2011,133: 1304-1306.
    [33]Qin W., Li X. A Theoretical Study on the Catalytic Synergetic Effects of Pt/Graphene Nanocomposites. J. Phys. Chem. C.,2010,114 (44):19009-19015.
    [34]Gu X.J., Lu Z.H., Jiang H.L., Akita T, Xu Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized AuPd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. J. Am. Chem. Soc.,2011,133:11822-11825.
    [35]Shi J.L. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem. Rev.,2013,113 (3):2139-2181.
    [36]Lin T., Zhang X., Li R., Bai T., Yang S.Y. Synergistic catalysis of isolated Fe3+ and Fe2O3 on FeOx/HZSM-5 catalysts for Friedel-Crafts benzylation of benzene. Chinese Chemical Letters, 2011,22:639-642.
    [37]Zhang Y.H., Tang Z.R., Fu X.Z., Xu Y.J. TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant:Is TiO2-Graphene Truly Different from Other TiO2-Carbon Composite Materials? ACS Nano,2010,4:7303-7314.
    [38]Chen Y.L., Hu Z.A., Chang Y.Q., Wang H.W., Zhang Z.Y., Yang Y.Y., Wu H.Y. Zinc Oxide/Reduced Graphene Oxide Composites and Electrochemic al Capacitance Enhanced by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Zinc Oxide Matrix. J. Phys. Chem. C,2011,115:2563-2571.
    [39]Zheng X.C., Zhang X.L., Fang Z.Y., Wang X.Y., Wang S.R., Wu S.H. Characterization and catalysis studies of CuO/CeO2 model catalysts. Catal. Commun.,2006,7:701-704.
    [40]Xu J.J., Wang K., Zu S.Z., Han B.H., Wei. Z.X. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano,2010,4:5019-5026.
    [41]Wong K., Zeng Q.H., Yu A.B. Interfacial synergistic effect of the Cu monomer or CuO dimer modified CeO2(Ⅲ) catalyst for CO oxidation. Chem. Eng. J.,2011,174:408-412.
    [42]Zhu X.J., Zhu Y.W., Murali S., Stoller M.D., Ruoff R.S. Nanostructu red Reduced Graphene Oxide/Fe2O3 Composite As a High-Perfor mance Anode Material for Lithium Ion Batteries. ACS Nano,2011,5:3333-3338.
    [43]Chen X.Y., Chen J.W., Qiao X.L., Wang D.G., Cai X.Y. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound, Appl. Catal., B,2008,80:116-121.
    [44]Yu Z.Y., Kiwi L. A. Renken, J. Kiwi, Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes, J. Mol. Catal. A:Chem.,2006,252: 113-119.
    [45]Zhang W., Tay H.L., Lim S.S., Wang Y.H., Zhong Z.Y., Xu R. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions, Appl. Catal., B, 2010,95:93-99.
    [46]Rosales E., Iglesias, O. Pazos M., Sanroman M.A. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads, J. Hazard. Mater.,2012,213-214:369-377.
    [47]Gayathri P., Dorathi R.P.J., Palanivelu K. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions, Ultrason. Sonochem.,2010,17:566-571.
    [48]Fernandez J., Maruthamuthul P., Kiwi J. Photobleaching and mineralization of Orange Ⅱ by oxone and metal-ions involving Fenton-like chemistry under visible light, J. Photochem. Photobiol., A,2004,161:185-192.
    [49]Hummers W.S., Offeman R.E. Preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80: 1339-1339.
    [50]Li B., Qiao J.L., Yang D.J., Zheng J.S., Ma J.X., Zhang J.J., Wang H.J. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC. Electrochim. Acta,2009,54:5614-5620.
    [51]Podlovchenko B., Shterev G., Semkova R., Kolyadko E. Effect of the nature of platinum group metals on the formation and properties of adatom silver coatings, J. Electroanal. Chem., 1987,224:225-235.
    [52]Bezerra C.W.B., Zhang L., Lee K., Liu H., Marques A.L.B., Marques E.P., Wang H., Zhang J., A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction, Electrochim. Acta, 2008,53:4937-4951.
    [53]Ding L., Qiao, J.L. Dai X.F., Zhang J., Zhang J.J., Tian B.L. Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment, Int. J. Hydrogen Energy,2012,37:14103-14113.
    [54]Yu T., Zhu Y, Xu X., Shen Z., Chen P., Lim C., Thong J.T., Sow C.H. Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls, Adv. Mater.,2005,17:1595-1599.
    [55]Varghese B., Hoong T.C., Zhu Y., Reddy M.V., Chowdari V.V.R., Wee A.T.S., Vincent T.B.C., Lim C.T., Sow C.H. Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties. Adv. Funct. Mater.,2007,17 (12):1932-1939.
    [56]Baby T.T., Sundara R.. A facile synthesis and field emission property investigation of Co3O4 nanoparticles decorated graphene. Mater. Chem. Phys.,2012,135:623-627.
    [57]Battumur T., Ambade S.B., Ambade R.B., Pokharel P., Lee D.S., Han S.H., Lee W.J., Lee S.H. Addition of multiwalled carbon nanotube and graphene nanosheet in cobalt oxide film for enhancement of capacitance in electrochemical capacitors. Curr. Appl Phys.,2013,13:196-204.
    [58]Wang B., Wang, Y. Park J., Ahn H., Wang G.X. In situ synthesis of Co3O4/graphene nanocomposite material for lithiumion batteries and supercapacitors with high capacity and supercapacitance. J. Alloys Compd.,2011,509:7778-7783.
    [59]Wu Z.S., Ren W.C., Wen L., Gao L.B., Zhao J.P., Chen Z.P., Zhou, G.M. Li F., Cheng H.M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance, ACS Nano,2011,4:3187-3194.
    [60]Wang G.X., Yang J., Park J., Gou X.L., Wang B., Liu H., Yao J. Facile Synthesis and Characterization of Graphene Nanosheets, J. Phys. Chem. C,2008,112:8192-8195.
    [61]Tao L.Q., Zai J.T., Wang K.X., Zhang H.J., Xu M., Shen J., Su Y.Z., Qian X.F. Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Sources,2012,202:230-235.
    [62]Si Y.C., Samulski E.T. Exfoliated Graphene Separated by Platinum Nanoparticles, Chem. Mater.,2008,20:6792-6797.
    [63]Yan J., Wei T., Qiao W.M., Shao B., Zhao Q.K., Zhang L.J., Fan Z.J. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta,2010,55:6973-6978.
    [64]Fu Y.S., Wang X. Magnetically Separable ZnFe2O4-Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind. Eng. Chem. Res.,2011,50: 7210-7217.
    [65]Fu, Y.S. Chen H.Q., Sun X.Q., Wang X. Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. Appl. Catal., B,2012,111-112: 280-287.
    [66]Yang Q.J., Choi H., Dionysiou D.D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal., B, 2007,74:170-178.
    [67]Mattevi C., Eda G., Agnoli, S. Miller S., Mkhoyan K.A., Celik O., Mastrogio-vanni D., Granozzi G., Garfunkel, E. Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater.,2009,19:2577-2583.
    [68]Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie,1992.
    [69]Sun C.H., Berg J.C. A review of the different techniques for solid surface acid-base characterization, Adv. Colloid Interface Sci.,2003,105:151-175.
    [70]Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie,1978.
    [71]Xiong S.L., Yuan C.Z., Zhang M.F., Xi B.J., Qian Y.T. Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors, Chem. Eur. J., 2009,15:5320-5326.
    [72]Girardon J., Lermontov A.S., Gengembre L., Chernavskii P., Griboval-Constant A., Khodakov A.Y. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts, J. Catal.,2005,230: 339-352.
    [73]Long M, Cai W., Cai J., Zhou B., Chai X., Wu Y. Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation, J. Phys. Chem. B,2006,110: 20211-20216.
    [74]Venezia A.M., Rossi, A. Duca D., Martorana A., Deganello G. Particle size and metal-support interaction effects in pumice supported palladium catalysts. Appl. Catal., A,1995,125:113-128.
    [75]Mochizuki T., Hara T., Koizumi N., Yamada M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl. Catal., A,2007,317:97-104.
    [76]Chen J.F., Zhang Y.R., Tan L., Zhang Y. A Simple Method for Preparing the Highly Dispersed Supported Co3O4 on Silica Support. Ind. Eng. Chem. Res.,2011,50:4212-4215.
    [77]Riva R., Miessner H., Vitali R., Piero G.D. Metal-support interaction in Co/SiO2 and Co/TiO2. Appl. Catal., A,2000,196:111-123.
    [78]Kang, M. Song M.W., Lee C.H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Appl. Catal., A,2003,251:143-156.
    [79]Schenck C.V., Dillard, J.G. Murray J.M. Surface analysis and the adsorption of Co(Ⅱ) on goethite, J. Colloid Interface Sci.,1983,95:398-409.
    [80]Natile M.M., Glisenti A. New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts: Synthesis and Characterization, Chem. Mater.,2003,15:2502-2510.
    [81]Xu R., Zeng H. Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4 Nanocubes and Their Close-and Non-Close-Packed Organizations, Langmuir,2004,20: 9780-9790.
    [82]He T., Chen D.R., Jiao X.L., Wang Y.L., Duan Y.Z. Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals, Chem. Mater.,2005,17:4023-4030.
    [83]Jing L.Q., Fu H.G., Wang B.Q., Wang D.J., Xin B.F., Li S.D., Sun J.Z. Effects of Sndopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal., B,2006,62:282-291.
    [84]Gulino A., Dapporto P., Rossi P., FragalaI. A Novel Self-generating Liquid MOCVD Precursor for Co3O4 Thin Films, Chem. Mater.,2003,15:3748-3752.
    [85]Xin B.F., Jing L.Q., Ren Z.Y., Wang B.Q., Fu H.G. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2, J. Phys. Chem. B,2005, 109:2805-2809.
    [86]Choudhury T., Saied S., Sullivan J.L., Abbot A.M. Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment, J. Phys. D:Appl. Phys.,1989,22: 1185-1195.
    [87]Anipsitakis G.P., Dionysiou D.D. Radical generation by the interaction of transition metals with common oxidants, Envir. Sci. Technol.,2004,38:3705-3712.
    [88]Anipsitakis G.P., Stathatos E., Dionysiou D.D. Heterogeneous Activation of Oxone Using Co3O4, J. Phys. Chem. B.2005,109:13052-13055.
    [89]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination, Appl. Catal., B,2004,54:155-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700