用户名: 密码: 验证码:
环已烷催化氧化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化反应在有机化学品的合成工业中占有极其重要的地位。同时,氧化过程也是导致环境污染最严重的因素之一。传统氧化剂锰和铬的氧化物和盐类的主要缺点是选择性差、需要较苛刻的反应条件、对人和环境有强烈的危害。因此,使用各类绿色氧化剂,如氧气、过氧化氢等,代替传统氧化剂,是实现环境友好的关键技术。本文以过氧化氢为氧化剂,以环己烷选择性氧化合成环己酮和环己醇为模型反应,系统研究了六种不同催化剂对环己烷选择性氧化反应性能的影响。
     以金属盐为催化剂的实验结果表明,在30%过氧化氢氧化环己烷合成环己酮反应中,硫酸亚铁是一种较好的催化剂。氧化反应的适宜条件为:丙酮10mL,环己烷0.20mL,硫酸亚铁0.02g,30%过氧化氢0.50mL,反应温度80℃,反应时间10h。在此条件下,氧化反应的转化率达35.35%,环己酮和环己醇的选择性为94.06%。
     以环己烷氧化合成环己酮和环己醇为模型反应,研究了钨酸和CDM-5的复配体系的催化性能,发现钨酸为主催化剂,CDM-5为助催化剂时的反应效果最好。氧化反应的适宜条件为:丙酮10mL,环己烷0.2mL,钨酸0.02g和CDM-50.01g,30%过氧化氢1.0mL,反应温度70℃,反应时间9h。此时氧化反应的转化率达49.40%,环己酮和环己醇的选择性为96.08%。
     用离子交换法制备了Cu/HZSM-5分子筛催化剂,并对催化剂进行了XRD、 FT-IR、BET、ICP、TG/DTA等表征。表征结果表明,CuO的晶化发生在300和400℃之间;分散在HZSM-5分子筛中的Cu物种与分子筛存在多种配位键合作用。Cu/HZSM-5催化剂的最佳制备条件为:Cu担载量10%,离子交换温度80℃,离子交换时间8h,焙烧温度600℃。在环己烷0.5mL,乙腈10mL, Cu/HZSM-5催化剂0.03g, H2O24mL,反应温度65℃下反应6h,环己烷转化率为43.1%,环己酮和环己醇的总选择性为95.7%。
     用浸渍法制备了Co-Mo/V2O5复合催化剂,并对催化剂进行了XRD、FT-IR.BET等表征。表征结果表明,掺杂组分Co和Mo与纯V205作用生成了具有催化活性但晶相不完整的复合金属氧化物CoMoO4(2θ=28.51°)和CoMoO3(2θ=18.06°)的特征峰。Co-Mo/V2O5催化剂的最佳制备条件为:Mo的掺入量为20%,Co的掺入量为5%,浸渍时间为1h,焙烧温度为600℃。在环己烷0.5mL,乙腈10mL,Co-Mo/V2O5催化剂0.03g, H2O23mL,反应温度为55℃下反应3h,环己烷的转化率为39.1%,环己酮和环己醇的总选择性为100%。
     用浸渍法制备了CuPMo/V2O5复合催化剂,并对催化剂进行了XRD、FT-IR、 BET等表征。表征结果表明,组合改性并没有破坏V205的结构,PMo和CuO都高度分散于V205上。CuPMo/V2O5催化剂的最佳制备条件为:浸渍时间12h,焙烧温度320℃。在环己烷0.5mL,乙腈10mL, CuPMo/V2O5催化剂0.03g, H2O23mL,反应温度65℃下反应3h,环己烷转化率为53.6%,环己酮和环己醇的总选择性为100%。
     用浸渍法制备了金属改性VPO催化剂,并对催化剂进行了XRD、FT-IR、钒价态分析、电镜分析等表征。表征结果表明,金属铋对催化剂的改性效果最好,铋的加入可以使催化剂中具有适宜比例的V4+和V5+,能增加氧物种含量。VPO催化剂最佳制备条件为:Bi/V=0.1, P/V=0.9,还原温度为120℃C,焙烧温度400℃,还原时间12h。催化剂前躯体由(VO)2H4P2O7组成,活化后催化剂主要的活性相为VOPO4。以环己烷为原料,过氧化氢为氧化剂,所制备得到的Bi-VPO为催化剂,研究了溶剂种类及用量、催化剂用量、氧化剂双氧水用量、反应温度以及反应时间等工艺条件对环己烷氧化反应的影响,确定了适宜的工艺条件。在反应温度65℃,原料环己烷用量0.60mL,催化剂用量0.0150g,溶剂丙酮10.00mL,氧化剂双氧水3.00mL下,反应8h,环己烷转化率为81.4%,环己酮收率为58.2%,环己醇收率为23.2%。
Oxidation reaction plays an important role in the organic synthesis industry. It is one of the main factors that cause the environmental pollution as well. This is an important area, as low selectivity of reaction, demands of rigorous experimental conditions and harm to mankind and the environment have made the replacement of traditional oxidants, such as Cr and Mn oxides and compounds, a paramount problem. Therefore, various green oxidants, such as oxygen, hydrogen peroxide etc, are applied to reach the friendly environment goal. In this paper, six catalysts were successfully prepared, and which were applied to catalyze selective oxidation of cyclohexane to cyclohexanone and cyclohexanol using oxygen. These catalysts were characterized by a series of methods, the effects of catalyst preparation conditions and oxidation reaction parameters on their catalytic performances were investigated in cyclohexane oxidation to cyclohexanone and cyclohexanol using oxygen as the oxidant. In this work, we have used the selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over hydrogen peroxide, to systematically investigate the catalytic performance of six kinds of catalysts.
     In this using30%hydrogen peroxide to oxidate cyclohexane to cyclohexanone experiment, ferrous sulfate is a preferable catalyst. Using10ml of acetone,0.20mL of cyclohexane,0.02g of ferrous sulfate,0.5mL of30%hydrogen peroxide at a reation temperature of80℃for10h, the conversion of cyclohexane was35.35%and the total selectivity to cyclohexanone and cyclohexanol was94.06%.
     In the reaction of oxidizing cyclohexane by30%hydrogen peroxide, the combination of using tungstic acid as catalyst and CDM-5as assistant catalyst was the best. The conversion of this oxidation is49.40%and the selectivity to cyclohexanone and cyclohexanol was96.08%when we use lOmL of acetone,0.2mL of cyclohexane,0.02g of tungstic acid,0.01g of CDM-5,1.0mL of30%hydrogen peroxide at a reation temperature of70℃for9h.
     The catalyst supported on HZSM-5molecular sieves (Cu/HZSM-5) was prepared by ion exchange and characterized by XRD, BET, ICP, FT-IR and TG/DTA. It is proposed that CuO crystallization occurs between300and400℃, and there exist various ligand bonds interactions between the copper species and the molecular sieve matrix. Cu/HZSM-5exhibits the best performance when the Cu(copper nitrate) loading is10%, the ion exchange temperature reaches80℃, reaction time reaches8h and the calcination temperature reaches600℃. Using0.5mL of cyclohexane,10mL of acetonitrile,4ml of hydrogen peroxide and0.03g of catalyst at a reaction temperature of65℃for6h, the cyclohexane conversion was43.1%and the total selectivity to cyclohexanol and cyclohexanone was95.7%.
     The new type of Co-Mo/V2O5catalyst was prepared by impregnation method and characterized by XRD, BET and FT-IR. It is observed that the incomplete crystalline phase CoMoO4(2θ=28.51°) and CoMoO3(2θ=18.06°) have catalytic activity, demonstrating that there is interaction between pure V2O5and doped components. The Co-Mo/V2O5catalyst exhibits the best performance when the Mo loading is20%and Co loading is5%, the immersion time reaches1h and the calcination reaches600℃. Using0.5mL of cyclohexane,3mL of hydrogen peroxide and30mg of catalyst at a reaction temperature of55℃for3h, the cyclohexane conversion was39.1%and the total selectivity to cyclohexanol and cyclohexanone was100%.
     The CuPMo/V2O5catalyst was prepared by impregnation method and characterized by XRD, BET and FT-IR. It is observed that PMo and CuO were well dispersed on the surface of V2O5, thus indicating that the doping components had no obvious effect on the original structure of V2O5. The CuPMo/V2O5catalyst exhibits the best performance when it is impregnated at room temperature for12h and calcinated at320℃. Using0.5mL of cyclohexane,3mL of hydrogen peroxide and30mg of catalyst at a reaction temperature of65℃for3h, the cyclohexane conversion was53.6%and the total selectivity to cyclohexanol and cyclohexanone was100%.
     In this work, the VPO catalyst and the Bi-promoted VPO catalyst were prepared, and these catalysts were investigated by means of XRD, FT-IR, the determination of average valence state of vanadium and electronic speculum. It is indicated the addition of Bi has a positive effect on the catalyst, which will adjust the ratio of V4+/V5properly, thus increasing the content of oxides. The VPO catalyst exhibits the best performance under the condition of Bi/V=0.1, P/V=0.9at reduction temperature of120℃and calcination temperature of400℃for12h. The main property of the catalyst precursor is (VO)2H4P2O7, and it was converted to VOPO4, playing as the active phase.
     By preparing the Bi-VPO catakyst in advance, the aim of this work is to investigate the effect of solvent and its dosage, the catalyst and hydrogen peroxide dosage, reaction temperature and reaction time on reaction. In the end, with the optimized condition of using0.6mL of cyclohexane,0.015g of Bi-VPO, lOmL of acetone,3.0mL of30%hydrogen peroxide, at a temperature of65℃for8h, the cyclohexane conversion was81.4%, the cyclohexanone yield was58.2%and the cyclohexanol yield was23.2%.
引文
[1]G.W.Parshall, S.D.Ittel. Homogeneous Catalysis[M].2 ed. New York:Wiley,1992.
    [2]ANISIA K S, KUMAR A. Oxidation of Cyclohexane with Molecular Oxygen Using Heterogeneous Silicagel Catalyst Boned with 1,2-bis (Salicylidene Amino)-Phenylene Zirconium Complex[J]. Appl Catal A:Gen,2004,273(1-2):193-200.
    [3]TONG J H, LI Z, XIA C G. Highly Efficient Catalysts of Chitosan-Schiff Base Co(Ⅱ) and Pd(Ⅱ) Complexes for Aerobic Oxidation of Cyclohexane in the Absence of Reductants and Solvents [J]. J Mol Catal A:Chem,2005,231(1-2):197-203.
    [4]YUAN H X, XIA Q H, ZHAN H J, et al. Catalytic Oxidation of Cyclohexane to Cyclohexanone and Cyclohexanol by Oxygen in a Solvent-free System Overmetal-containing ZSM-5 Catalysts[J]. Appl Catal A:Gen,2006,304:178-184.
    [5]Zhou L P, Xu J, et al. Catalytic Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone over Co3O4 Nanocrystals with Molecular Oxygen[J]. Appl Catal A,2005,292:223.
    [6]姜莉,祝一锋,项益智,李小年.甲醇水相重整制氢原位还原苯乙酮制备α-苯乙醇[J].催化学报,2007,28(3):281-286.
    [7]刘建良,李辉,李和兴.Pd-Ce-B/水滑石催化液相苯酚选择性加氢制环己酮[J].催化学报,2007,28(4):312-316.
    [8]朱俊华,丁洁莲,曾崇余.载体对钯催化剂催化苯酚加氢制环己酮性能的影响[J].催化学报,2007,28(5):441-445.
    [9]王鸿静,项益智,徐铁勇,等.Ba修饰的Pd/Al2O3对苯酚液相原位加氢制环己酮反应的催化性能[J].催化学报,2009,30(9):933-938.
    [10]Hui Li, Jianliang Liu, Hexing Li. Liquid-phase Selective Hydrogenation of Phenol to Cyclohexanone over the Ce-doped Pd-B Amorphous Alloy Catalyst[J]. Mater. Lett,2008,62(2): 297.
    [11]Lucky M. Sikhwivhilu, et al. Nanotubular Titanate Supported Palladium Catalysts:The Influence of Structure and Morphology on Phenol Hydrogenation Activity[J]. Applied Catalysis A:General, 2007,324:52.
    [12]Makowski P, Cakan R D, Antonietti M, et al. Selective Partial Hydrogenation of Hydroxy Aromatic Derivatives with Palladium Nanoparticles Supported on Hydrophilic Carbon[J]. Chem Commum,2008, (8):999.
    [13]Fang Lu, Jing Liu, Jie Xu. Synthesis of Chain-like Ru Nanoparticle Arrays and Its Catalytic Activity for Hydrogenation of Phenol in Aqueous Media[J]. Materials Chemistry and Physics, 2008,108:369-374.
    [14]Xiang Y Z, Ma L, Lu C S, et al. Aqueous System for the Improved Hydrogenation of Phenol and Its Derivatives [J]. Green Chem,2008,10:939.
    [15]Wang H J, Zhao F Y, Fujita S I, Arai M. Hydrogenation of Phenol in scCO2 over Carbon Nanofiber Supported Rh catalyst [J]. Catal Commun,2008,9(3):362-368.
    [16]Bannari A, Proulx P, Menard H, Cirtiu C M. Mathematical Modeling of the Kinetics of Phenol Electro catalytic Hydrogenation over supported Pd-alumina Catalyst[J]. Appl Catal A,2008, 345(1):28-42.
    [17]Brusa M A,Grela M A.Photon Flux and Wavelength Effects on the Selectivity and Product Yields of the Photocatalytic Air Oxidation of Neat Cyclohexane on TiO2 Particles[J]. J.Phys.Chem.B.,2005,109(5):1914-1918.
    [18]Du P,Moulijn J A,Mul G.Selective Photo(catalytic)-Oxidation of Cyclohexane:Effect of Wavelength and TiO2 Structure on Product Yields[J].J.Catal.,2006,238(2):342-352.
    [19]PENG DU, MOULIJN Jacob A, MUL Guido. Selective photo(catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yields[J]. Journal of catalysis,2006,238: 342-352.
    [20]张宗伟,樊君.Tb掺杂对纳米Ti02光催化活性的影响[J].石油化工,2007,36(9):956-960.
    [21]王亚青,周继承,杨晓烽.纳米金复合催化剂制备及其低温选择催化环己烷氧化性能[J].过程工程学报,2009,9(6):1186-1191.
    [22]Andrea Maldotti, Alessandra Molinari, Rossano Amadelli, et al. Photocatalytic activity of MCM-organized TiO2 materials in the oxygenation of cyclohexane with molecular oxygen[J]. Photochem. Photobiol. Sci.,2008,7,819-825.
    [23]Fornal E, Giannotti C. Photocatalyzed oxidation of cyclohexane with heterogenized decatungstate[J]. Journal of Photochemistry and photobiology A:Chemistry,2007,188:279-286.
    [24]Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene [J]. J. Am. Chem. Soc.,1979,101(4): 1032-1033.
    [25]Guo C C, Huang G, Zhang X B, et al. Catalysis of echitosan-supported iron tetraphenylporphyrin for aerobic oxidation of absence of reductants and solvents[J]. Applied Catalysis,2003,247: 261-267.
    [26]Huang G, Guo C C, Tang S S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetra-phenylporphyrin complexes[J]. Journal of Molecular Catalysis A:Chemieal,2007,261:125-130.
    [27]马利勇,周继承,赵虹.Au/TS-1的合成及其对环己烷氧化反应的影响[J].化学反应工程与工艺,2007,23(3):229-232.
    [28]李德华,周继承,赵虹,等.负载型纳米金催化剂在环己烷氧化中的催化性能[J].石油学报,2008,24(5):575-580.
    [29]WANG Ai-Qin, REN Qi-Zhi, LIU Shuang-Yan, et al. Chem.J.Chinese Universities [J],2009,30(4): 752-756.
    [30]Cojocaru V., Winn P.J., Wade R.C..Biochim.Biophys.Acta [J],2007,1770:390-401.
    [31]Ji H.B, Yuan Q.L., Zhou X.T., et al. Bioorgan.Med.Chem.Lett.[J],2007,17:6364-6368.
    [32]WANG Xu-Tao, CHU Ming-Fu, GUO Can-Cheng. Chem.J.Chinese Universities[J],2005,26(1): 64-67.
    [33]谢娟,魏雨,李艳廷,赵新强,王延吉.金属卟啉配合物在催化空气氧化环己烷反应中的应用[J].化工进展,2009,28(3):406-411.
    [34]周维友,胡炳成,徐士超,孙呈郭,刘祖亮.金属次卟啉二甲酯对空气氧化环己烷的催化作用[J].高等学校化学学报,2010,31(4):723-726.
    [35]Dengsheng Ma, Bingcheng Hu, Chunxu Lu. Selective aerobic oxidation of cyclohexane catalyzed by metallodeuteroporphyrin-IX-dimethylester[J]. Catalysis Communications,2009,10:781-783.
    [36]梁学博,胡伯羽,袁永军,等.金属卟啉催化空气氧化环己烷反应的工艺优化[J].化工学报,2007,58(3):794-799.
    [37]Ebadi A, Safari N, Peyrovi M H. Aerobic Oxidation of Cyclohexane withy-alumina Supported Metallophthalocyanines in the Gas Phase[J]. Applied Catalysis A:General,2007,321(2): 135-139.
    [38]项玉芝,司西强,张衍胜等.双核酞菁铁催化t-BHP氧化环己烷性能研究[J].精细化工,2008,25(12):1240-1243.
    [39]杨丹红,赵文军,高林.A1203固载Schiff碱锰配合物催化氧化环己烷反应[J].石油化工,2008,37(6):554-557.
    [40]Brandon Retchera, Jose Sanchez Costa, et al. Unexpected High Oxidation of Cyclohexane by Fe Salts and Hydrogen Peroxide in Acetonitrile[J]. Journal of Molecular Catalysis A:Chemical,2008, 286(1-2):1-5.
    [41]田永华,魏廷贤,陈兴权.Cu(phen)2L/MCM-4(1L=丁二酸)催化环己烷合成环己酮的研究[J].天然气化工,2010,35:22-26.
    [42]高丽娟,焦帅斌,葛春花,田永华.SAPO-5分子筛固载铜双核金属配合物的结构及催化性能[J].石油化工高等学校学报,2009,22(3):55-59.
    [43]单高峰,袁霞,吴剑.分子筛固载型Cosalen的制备、表征及其应用研究[J].现代化工,2009,29(1):164-167.
    [44]Giselle C. Silva, Gabrieli L. Parrilha, Nakedia M.F. Carvalho, et al. A Bio-inspired Fe(Ⅲ) Complex and Its Use in the Cyclohexane Oxidation[J]. Catalysis Today,2008,133-135:684-688.
    [45]兰婉,衷晟,伏再辉,等.六齿配位的8-羟基喹啉铁催化过氧化氢氧化环己烷的研究[J].工业催化,2008,16(7):52-56.
    [46]高丽娟,李瑞丰,田永华等.固载于SBA-15分子筛中的同双核金属配合物催化剂[J].石油化工,2006,35(11):1038-1043.
    [47]李德华,周继承,赵虹,等.负载型纳米金催化剂在环己烷氧化中的催化性能[J].石油学报,2008,24(5):575-580.
    [48]Xu L X, He C H, Zhu M Q, et al. A Highly Active Au/Al2O3 Catalyst for Cyclohexane Oxidation Using Molecular Oxygen[J]. Catalysis Letters,2007,114(3-4):202-205.
    [49]Xu L X, He C H, Zhu M Q, et al. Silica-supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation[J]. Catalysis Letters,2007,118(3-4):248-253.
    [50]Xu L X, He C H, Zhu M Q, et al. Surface Stabilization of Gold by Sol-gel Post-modification of Alumina Support with Silica for Cyclohexane Oxidation[J]. Catalysis Communications,2008, 9(5):816-820.
    [51]许立信,何潮洪,朱明乔,等.锆改性氧化铝负载的纳米金催化剂上环己烷氧化研究[J].高校化学工程学报,2009,23(2):309-313.
    [52]HUANG ChangLiang, ZHANG Hong Ye, SUN ZhenYu, LIU ZhiMin. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. SCIENCE CHINA:Chemistry,2010,53(7):1502-1508.
    [53]仇念海,史运国,宋华.改性VPO催化剂及其环己烷液相氧化反应性能[J].化工进展,2010,29(8):1474-1478.
    [54]何笃贵,纪红兵,罗思睿,袁秋兰.铋改性的钒磷氧化物液相催化氧化环己烷的反应机理[J].催化学报,2006,27(4):365-368.
    [55]Langhendries G, Baron G V, Vankelecom I F J, et al. Selective hydrocarbon oxidation using a liquid-phase catalytic membrane reactor. Catal.Today,2000,56(1-3):131-135.
    [56]Dapurkar S E, Sakthivel A, Selvam P. Mesoporous VMCM-41:highly efficient and remarkable catalyst for selective oxidation of cyclohexane to cyclohexanol. J.Mol.Catal.A:Chem.,2004, 223(1-2):241-250.
    [57]Selvam P, Dapurkar S E. Catalytic activity of highly ordered mesoporous VMCM-48. Appl.Catal.,A,2004,276(1-2):257-265.
    [58]Anisia K S, Kumar A. Oxidation of cyclohexane with molecular oxygen using heterogeneous silica gel catalyst bonded with[1,2-bis(salicylidene amino)-phenylene]zirconium complex. Appl.Catal.,A,2004,273(1-2):193-200.
    [59]Jianying WANG, Hua ZHAO, et al. Oxidation of Cyclohexane Catalyzed by TS-1 in Ionic Liquid with Tert-butyl-hydroperoxide[J]. Chinese Journal of Chemical Engineering,2008,16(3): 373-375.
    [60]佟天宇,王志敏,张兆飞,尹延超,赵学琴,辛春玲,连丕勇.Fe-MCM-41合成及催化氧化环己烷制备环己酮[J].化学工业与工程,2011,28(1):57-60.
    [61]史宝萍,孙学政,赵晓霞.负载钴催化剂催化分子氧氧化环己烷[J].石油学报(石油加工),2010,26(1):122-125.
    [62]Wangcheng ZHAN, Guanzhong LU, Yanglong GUO, et al. Synthesis of Cerium-doped MCM-48 Molecular Sieves and Its Catalytic Performance for Selective Oxidation of Cyclohexane [J]. JOURNAL OF RARE EARTHS,2008,26(4):515-522.
    [63]Wilson,S.T., Lok,B.M., Messina,C.A., Cannan,T.R., Flanigen,E.M.J. Am.Chem.Soc.,1982,104: 1146.
    [64]Jiang,F.Y., Zhai,J.P., Ye,J.T., Han,J.R., Tang,Z.K.J. Crystal Growth,2005,283(1-2):108.
    [65]Iwasaki, A., Sano,T., Kodaira,T., Kiyozumi,Y. Micropor.Mesopor.Mater.,2003,64(1-3):145.
    [66]Robson, H. Verified syntheses of zeolitic materials. Netherlands, Amsterdam:Elsevier,2001: 90-97.
    [67]赵瑞花,董梅,秦张峰,丁建飞,郭星翠,王建国.不同钴含量CoAPO-5分子筛的合成、表征及其催化环己烷氧化性能[J].物理化学学报,2008,24(12):2304-2308.
    [68]晏志强,陈胜州,刘自力,林维明.FeAPO-5分子筛的表征及其催化环己烷氧化性能[J].化学反应工程与工艺,2009,25(2):153-158.
    [69]杨晓梅,周利鹏.CoNiAPO-5分子筛的合成、表征及其催化性能[J].郑州大学学报(理学版),2009,41(2):99-102.
    [70]刘少友,梁海军,吴林冬.钻锆掺杂磷酸铝纳米材料的合成及其对环己烷非均相的氧化性能[J].湖南师范大学自然科学学报,2010,33(3):50-56.
    [71]杨维榕,李国华,张芳等.己内酰胺生产及应用[M].北京:烃加工出版社,1988.50-75
    [72]李静,靳海波,佟泽民.环己烷氧化新工艺的研究进展[J].化学工业与工程,2006,23(4):345-350
    [73]GREENE, MARVIN I, SUMMER C,et al. Cyclohexane oxidation[P]. US:6 008 415,1999-12-28.
    [74]CHEN J R. An inherently safer process of cyclohexane oxidation using pure oxygen:An example of how better process safety leads to better productivity process[J]. Safety Process,2004, 23(1):72-81.
    [75]ROGYAX, KINGSLEY J P. Oxide safetywith pure oxygen [J]. Chemtech,1996,26(2):39-46.
    [76]唐新华,罗际安,黎树根.环己烷富氧氧化环己酮的研究[J].合成纤维工业,2007,30(6):8-10.
    [77]刘宝生,王洪艳,纪红兵,陈敏东.固载计量氧化剂用于氧化反应[J].化学通报,2008,(7):495-501.
    [78]E P Koshy, J Zacharias,V N R Pillai. React. Funct. Polym.,2006,66 (8):845-850.
    [79]MM Heravi,D Ajami,KAghapoor et al. Chem. Commun.,1999,7 (9):833-834.
    [80]Prvulescu V I, Dumitriu D G Hydrocarbons Oxidation with Hydrogen Peroxide over Germanic Faujasites Catalysts. J Mol Ca talA:Chem,1999,140 (1):91-105
    [81]SCHUCHARDT U, DILSON C, RICARDO,et al.Cyclohexane oxidation continues to be a challenge[J].Appl Cat A:Gen,2001,211(1):1-17.
    [82]YANG Dan-hong, ZHAOWen-juna, GAO Lin.无溶剂体系中非均相催化剂催化环己烷氧化反应研究[J].分子催化,2008,22(6):513-517.
    [83]李汝雄.绿色溶剂一离子液体的合成与应用.北京:化学工业出版社,2004.10-12,16
    [84]刁香,李德刚.离子液体的合成研究[J].精细石油化工进展,2006,7(5):29-32.
    [85]唐文明,李朝军.三氯化钌催化下环已烷和环几醇在离子液体中的氧化反应研究[J].化学学报,2004,62(7):742-744.
    [86]Zhen Li, Chun2 Gu Xia, Chuan2 Zhi Xu. Oxidati on of alkanes catalyzed bymanganese (Ⅲ) porphyrin in an ionic liquid at room temperature[J]. Tetrahedron Letters,2003,44:9229-9232.
    [87]王建英.离子液体中分子筛催化环己烷氧化反应研究[D].中国博士论文全文数据库,2008,(11)
    [88]SRINIVAS P, MUKHOPADHYAY M. Oxidation of cyclohexane in supercritical carbon dioxide medium[J]. Ind Eng Chem Res,1994,33(12):3118-3124.
    [89]ARMBRUSTER U, MARTIN A, SMEJKAL Q,et al.Heterogeneously catalysed partial oxidation of cyclohexane in supercritical carbon dioxide[J]. Appl Cat A:Gen,2004,265(2):237-246.
    [90]HOU Zhen-shan, HAN Bu-xing, GAO Liang,et al.Selective oxidation of cyclohexane in compressed CO2and in liquid solvents over MnAPO-5 molecular sieve[J]. Green Chemistry,2002, 4(5):426-430.
    [91]MaldottiA, BartocciC, VaraniG, et al. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted by Meso-Tetraarylporphyrin Iron(III)-Hydroxo Complexes[J]. Inorg Chem,1996,35(5):1126-1131.
    [92]郭灿城,张晓兵,候连伯,等.金属卟啉催化环已烷羟基化反应中环己酮的形成机理研究[J].化学学报,1998,56(5):489-494.
    [93]杨丹红,赵文军,高林.环己烷氧化反应中的溶剂效应[J].石油化工,2008,37(2):137-138.
    [94]H. X. Yuan, Q. H. Xia, H. J. Zhan, et al. Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by oxygen in a solvent-free system over metal-containing ZSM-5 catalysts[J]. Appl. Catal. A:Gen,2006,304:178-184.
    [95]阳鹏飞,周继承,任文明.微波固相法制备Cu/ZSM-5催化剂及其催化性能[J].南华大学学报(自然科学版),2010,24(1):64-69.
    [96]Pires E L, Magalhaes J C, Schuchardt U. Effects of oxidant and solvent on the liquid-phase cyclohexane oxidation catalyzed by Ce-exchanged zeolite Y[J]. Appl. Catal. A:Gen,2000,203(2): 231-237.
    [97]Banares M A, Wach IE. Moleular structures of supported metal oxide catalysts under different environments[J]. J.Ram.Spee,2002,33:359-380.
    [98]Pieter J.Smeets, Marijke H.Groothaert, Robert A.Sehoonheydt. Cu based zeolites:A UV vis study of the active site in the selcetive methane oxidation at low temperatures[J]. Catal.Today,2005, 110:303-309.
    [99]刘伟.甲烷低温氧化催化剂制备及其性能研究[D].北京:北京化工大学,2009.
    [100]Maitra L M, CamPbell I, Taler R J. Influence of basicity on the catalytic activity for oxidative coupling of methane [J]. Appl. Catal. A:Gen,1992,85(1):27-46.
    [101]Pillai U R, Sahle-Demessie E. Vanadium phosphorus oxide as an efficient catalyst for hydrocarbon oxidations using hydrogen peroxide[J]. New J Chem,2003,27(3):525-528.
    [102]Pepera M A, Callahan J L, Desmond M J, et al. Fundamental study of the oxidation of butane over vanadyl pyrophosphate[J]. J Am Chem Soc,1985,107:4883-1892.
    [103]Suchorski Y, Rihko-Struckmann L, Klose F, et al. Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions [J]. Appl Surf Sci,2005,249(1-4):231.
    [104]Gai P L, Kourtakis K. Solid-State Defect Mechanism in Vanadyl Pyrophos-phate Cataly- sts: Implications for Selective Oxidation[J]. Science,1995,267(5198):661.
    [105]Graham J H, Raymond H. Effect of promoters on the selective oxidation of n-butane with vanadium-phosphorus oxide[J]. Journal Catalysis,1996,162(1):153-168.
    [106]Takita Y, Tanaka K, Ichimaru S, et al. Incorporation of promoter elements into the crystal lattice of (VO)2P2O7 and its promotion effects on the oxidation of n-butane to maleic anhydri-de[J]. Applied Catalysis A,1993,103(2):281.
    [107]Beatriz T, Pierini N, Eduardo A, et al. Cr, Mo and W used as VPO promoters in the partial oxidation of n-butane to maleic anhydride[J]. Catal Today,2005,107-108:323-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700