用户名: 密码: 验证码:
空气氧化β-异佛尔酮过程中的催化剂开发及机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于氧化反应不仅是有机化合物官能团化的重要一环,同时也是污染十分严重的反应,给环境带来了极大的危害,所以氧化反应的绿色化一直是化学化工领域研究的热点。分子氧是最廉价,清洁的氧化剂,且理论氧化产物除目标产物就是水,在温和条件下实现分子氧氧化是将碳氢化合物转化为含氧有机物最理想的方法。然而,由于分子氧的惰性,一般情况下分子氧不能直接对底物进行氧化,而必须借助于合适的催化剂进行活化。因此,在分子氧氧化反应中,高效、高选择性,能够活化分子氧的催化剂的开发是研究的关键。本论文的研究以维生素E中间体β-异佛尔酮的氧化为模板,以空气为氧化剂,从环境和经济的角度设计和开发了适合这一反应的各种均相和非均相催化剂;同时通过反应过程的监控以及反应中间体的分析,对反应机理进行了猜测和证明。
     论文首先以天然氨基酸为原料,合成了一系列Salen型和三齿型氨基酸席夫碱-金属络合物,并首次应用于p-异佛尔酮催化氧化反应中。从反应效果来看,新合成的氨基酸类席夫碱比传统席夫碱类催化剂具有更好的催化活性及选择性。同时相比于Salen型席夫碱催化剂,三齿型氨基酸席夫碱催化剂结构更简单,便宜易得,且性质稳定,是适合工业应用的仿生催化剂。另一方面,通过不同氨基酸席夫碱催化性质的比较也发现,氨基酸侧链结构的变化对催化剂性质具有明显的影响。如增加侧链链长有利于提高反应选择性,而侧链上增加-COOH或者-OH等基团有利于催化剂活性的提高。这种构效关系的研究为设计和合成具有特定性质的席夫碱类催化剂提供了参考。
     其次,论文针对均相催化剂难以回收和重复利用的缺点,从非均相催化氧化的角度出发,设计与合成了活性多孔Si02支载金属盐催化剂和嵌段共聚物高分子支载金属盐催化剂。这两种不同方法得到的支载型催化剂都可以通过简单过滤对催化剂进行回收和重复利用。同时,进一步的研究也发现:活性多孔Si02通过吡啶改性以后,可以将FeCl3金属活性中心牢固的支载在多孔Si02孔道内,从而使得FeCl3发生“活性位分离”。这有效地抑制了FeCl3过渡活化引起的反应物二聚等现象。因而,相比于FeCl3,支载后的催化剂具有更高的选择性。另一方面,由于嵌段共聚物高分子具有双重性质,其一端可以和活性金属中心发生配位,从而达到支载的效果;而另一端仍旧保持良好的溶解性。从反应效果来看,由于这类支载型催化剂颗粒小,且在反应体系中具有良好的扩散性,同时金属离子和嵌段共聚物具有合适的配位结构,因此其表现出和均相催化剂类似的高活性和选择性。不仅如此,由于嵌段共聚物本身在温度升高的情况下容易自聚,利用这一性质可以通过调节温度来改变胶束聚集颗粒的大小,从而达到良好的催化剂一反应体系分离的效果。
     另一方面,针对金属催化氧化环境污染严重的缺点,论文利用PINO和TEMPO等氮氧自由基催化剂,对p-异佛尔酮进行非金属催化氧化的研究。由于在反应中完全避免了金属的参与,因而是环保的氧化路线。进一步的研究也发现,在没有任何金属或者非金属共催化剂存在的情况下,仅用催化剂量的氮氧自由基催化剂即可有效地催化氧化β-异佛尔酮,产物选择性超过90%。为了解释这一结果,论文通过对反应过程的分析,结合ESR捕获自由基以及理论计算等手段,提出了p-异佛尔酮非金属催化氧化的自由基反应机理。这个机理的提出,不仅解释了反应中只用少量氮氧自由基即可催化氧化的原因,同时也为推测和验证相关体系的氧化反应机理提供了新的思路。
     当然,论文中新设计合成的催化剂并不局限于p-异佛尔酮的氧化。为了证实这些催化剂的适用性,它们也被应用于其它不饱和碳氢化合物的氧化,主要包括α-蒎烯,环己烯及其衍生物等。从反应效果来看,新合成的均相及非均相催化剂都具有良好的催化活性和选择性。
     总的说来,论文的研究背景是传统氧化反应的绿色化改造,以β-异佛尔酮氧化反应绿色化为模板,合成和开发了几类具有不同性质与功能的均相及非均相催化剂。通过对不同催化剂的合成与表征,催化氧化过程的分析,以及对反应机理的猜测和证明,建立了一套研究催化氧化反应的方法,为进一步研究相关氧化反应提供了理论基础。
Green oxidation of organic compounds has attracted much attention in the field of chemistry and chemical engineering. Molecular oxygen is the cheapest and cleanest oxidant, and when it is used in oxidation, its by-product is only H2O. Thus the best way for the conversion of hydrocarbons to oxygen-containing products is through molecular oxygen oxidation under mild conditions. However, since molecular oxygen is inert, it could not react with substrates directly. In fact, molecular oxygen must be activated firstly by appropriate catalysts. Therfore, the development of high active and selective catalysts is the key point for molecular oxygen oxidation. In the present work, the oxidation of (3-isophorone with molecular oxygen as the oxidant was studied. Several kinds of homogeneous and heterogeneous catalysts have been developed for the environmental and economical point of view. Meanwhile, the reaction mechanism was investigated by optimizing the reaction conditions, and the characterization of the intermediates.
     We firstly focused on the synthesis of a series of amino acid Schiff base catalysts (including salen-type Schiff bases and tridentate Schiff bases). All of them were applied in the oxidation of P-isophorone, and the reaction conditions have been optimized. The results indicated that all the obtained amino acid Schiff bases provided higher activity and selectivity than general Schiff bases used before. The tridentate Schiff bases were more simple, more stable, cheaper, and more facilitate to be synthesized, compared with the salen-type ones. On the other hand, detailed studies showed that the M-Ami-sal Schiff bases with different functional groups displayed an important role in the oxidation ofβ-isophorone. It was found that the tridentate Schiff bases containing hydroxyl group and/or carboxyl group on side chains was favorable for improving its activity, while increasing the alkyl length improved its selectivity. This result was valuable in designing of different Schiff base catalysts with special functions.
     Since the above homogeneous catalysts were difficult to be recycled and reused, we then developed the heterogeneous catalysts, including poros silica suppoted FeCl3 and di-block copolymers supported CuCl2. Both of them could be recycled through simple filtration from the reaction mixture. Further studies confirmed that pyridine modified silica could immobilize FeCl3 firmly. The active site (FeCl3) was isolated, and the silica support played the cooperation effect with the active site. Thus the supported catalysts provided higher selectivity than that using the support and the active site separately. On the other hand, the di-block copolymers were used as the ligand to coordinate with copper ions. Though PDMAEMA block decreased its dispersion ability due to the combination with copper ions, the PEG block in the periphery remained well dispersion ability. Thus the finely dispersed CuⅡ-PDMAEMA-b-PEG clusters and their nano-scaled particle size notably provided high activity for the oxidation ofβ-isophorone. Besides, the coordination of copper ions with PDMAEMA blocks resulted in a stable CuⅡ-N2O2 structure. Thus it presented as high selective homogeneous catalysts used before. Moreover, an important feature of the CuⅡ-PDMAEMA-b-PEG catalyst was that its particle size could be changed under different temperatures. Hence, it could be easily leached from the mixture and recovered through simple treatments, allowing for their reuse.
     All the above catalysts contained metal ions as the active site. Because the use of metal ions would produce much pollution to the environment, we developed the metal-free catalysis with nitroxyl radicals (such as PINO, TEMPO, etc.) as catalysts in the oxidation of P-isophorone for the first time. It was the most environmental benign method since no metal ions was participated in the oxidation reaction. Further studies found that only catalytic amounts of the nitroxyl radical catalysts were needed in the oxidation. They provided high efficiency (KIP yiled> 90%) in the absence of any metal-containing or non-metal containing co-catalysts. The oxidation mechanism was hypothesized and discussed with ESR, GC-MS and theoretical calculation methods. This oxidation mechanism well expained that why only catalytic amounts of the nitroxyl radicals without any metal-containing or non-metal containing co-catalysts, could efficiently catalyze the oxidation ofβ-isophorone.
     All the synthesized catalysts were not only used in the oxidation ofβ-isophorone. To check their applibility, all of them were used in the oxidation of some other cyclic olefins, includingα-pinene, cyclohexene, and their derivatives. The results confirmed that the novel synthesized catalysts provided higher activity and selectivity than general catalysts used before.
     The background of the present study was the green process of the traditional oxidations. Several kinds of homogeneous and heterogeneous catalysts were developed for the aerobic oxidation ofβ-isophorone. We have offered a new method for the synthesis, characterization and oxidation. These results provided more choises for the researches in other oxidations.
引文
[1]王佛松,王夔,陈新滋,彭旭明主编,展望21世纪的化学,化学工业出版社,2000
    [2]阿纳斯塔斯,沃纳(著),李朝军,王东(译),绿色化学——理论与应用,科学出版社,2002
    [3]闵恩泽,傅军,绿色化学的进展,岩矿测试,1999,18(2):81-86
    [4]Riley, D.P., In Benigen by Design:Alternative Synthetic Pathways for Pollution Prevention, Anastas P.T. and Faris C.A. Eds, ACS Symposium Series 57th Washington D.C. American Chemical Society 1994,122
    [5]Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., Snyder, S.H. Cloned and Expressed Nitric-oxide Synthase Structurally Resembles Cytochrome-P-450 Reductase, Nature,1991,351(6329):714-718
    [6]陆熙炎,绿色化学与有机合成及有机合成中的原子经济性,化学进展,1998,10(2):123-130
    [7]沈师孔,闵恩泽,烃类晶格氧选择氧化,化学进展,1998,10(2):137-145
    [8]Lewis, W.K., Gilliland, E.R., Reed, W.A. Reaction of CH4 with CuO in Fluidized Bed. Ind. Eng. Chem.,1949,41:1227-1241
    [9]王红伟,李秋小,李运玲,邓军,酶催化合成N-ε-油酰基赖氨酸及其结构表征,精细化工,2008,25(7):651-654
    [10]佘远斌,范莉莉,张燕慧,宋旭锋,金属卟啉仿生催化绿色合成对硝基苯甲醛的新方法,化工学报,2004,55(12):2032-2037
    [11]徐洪峰,卢璐,朱少敏,石墨纳米纤维用作质子交换膜燃料电池催化剂载体,催化学报,2008,29(6):542-546
    [12]胥月兵,陆江银,钟梅,王吉德,ZSM-5分子筛在低碳烷烃脱氢中的催化应用,化学进展,2008,20(5):650-656
    [13]童金辉,李臻,夏春谷,环境友好催化氧化研究进展,化学进展,2005, 17:96-110
    [14]党靖雅,陈凤香,韩会景,贺小华,张以群,谢美然,离子液体负载钌络合物的合成及其催化环烯烃开环易位聚合,高分子学报,2008,4:343-349
    [15]孙君坦,陈纯福,高分子分散钯催化剂催化对硝基苯酚加氢反应的研究,离子交换与吸附,1991,7(5):383-386
    [16]Helen, R.H., Neil, R.T., Biocatalysis in Supercritical Fluids, in Fluorous Solvents, and under Solvent-Free Conditions, Chem. Rev.,2007,107:2786-2820
    [17]李俊汾,秦张峰,王国富,董梅,王建国,超临界多相催化反应的应用研究进展,石油化工,2007,36(11):1083-1092
    [18]Gladysz, J.A., Curran, D.P., Horvath, I.T., Handbook of Fluorous Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany,2004
    [19]Jonathan GH, Robin, D.R., Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction, Chem. Commun.,1998,1765-1766
    [20]王伟彬,银建中,含CO2/离子液体系统相行为及其在反应与分离中的应用进展,化学进展,2008,20(4):441-449
    [21]杨丹红,赵文军,高林,无溶剂体系中非均相催化剂催化环己烷氧化反应研究,分子催化,2008,22(6):513-518
    [22]胡兴邦,绿色空气氧化催化剂的设计、合成及应用,[博士论文],杭州,2007。
    [23]李晓岩,绿色化学三大重点研究领域,中国化工报,2002
    [24]Noyori, R., Aokib, M., Satoc, K., Green oxidation with aqueous hydrogen peroxide, Chem. Commun.,2003,1977-1986
    [25]Satoc, K., Aokib, M., Noyori, R., A green route to adipic acid:direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science,1998,281:1646-1467
    [26]Stahl, S.S., Palladium-catalyzed oxidation of organic chemicals with O2, Science, 2005,309:1824-1826
    [27]Thomas, J.M., Raja, R., Sankar, G, Bell, R.G, Molecular-sieve catalysts for the selective oxidation oflinear alkanes by molecular oxygen, Nature,1999,398:227-230
    [28]Punniyamurthy, T., Velusamy, S., Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev.,2005, 105:2329-2363
    [29]Corma, A., Garcia, H., Lewis acids as catalysts in oxidation reactions:from homogeneous to heterogeneous systems, Chem. Rev.,2002,102:3837-3892
    [30]Mallat, T., Baiker, A., Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev.,2004,104:3037-3058
    [31]Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev.,1992,92:1411-1456
    [32]Stahl, S., Palladium oxidase catalysis:Selective oxidation of organic chemicals by direct dioxygen-coupled turnover, Angew. Chem. Int. Ed.,2004,43:3400-3420
    [33]Frei, H., Selective hydrocarbon oxidation in zeolites, Science,2006,313: 309-310
    [34]Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W., Hutchings, GJ., Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science,2006, 311:362-365
    [35]Brink, GJ., Arends, I.W., Sheldon, R.A., Green catalytic oxidation of alcohols in water, Science,2000,287:1636-1639
    [36]Sloboda-Rozner, D., Alsters, P.L., Neumann, R.A., Water-soluble and "self-assembled" polyoxometalate as a recyclable catalyst for oxidation of alcohols in water with hydrogen peroxide, J. Am. Chem. Soc.,2003,125:5280-5281
    [37]Hamley, P.A., Ilkenhans, T., Webster, J.M., Garcia-Verdugo, E., Venardou, E., Clarke, M.J., Auerbach, R., Thomas, W.B., Whiston, K.; Poliakoff, M., Selective partial oxidation in supercritical water:the continuous generation of terephthalic acid from para-xylene in high yield, Green Chem.,2002,4:235-238
    [38]Garcia-Verdugo, E., Fraga-Dubreuil, J., Hamley, PA., Thomas, W. B., Whiston, K., Poliakoff, M., Simultaneous continuous partial oxidation of mixed xylenes in supercritical water, Green Chem.,2005,7:294-300
    [39]Chen, Y, Fulton, J. L., Partenheimer, W., The structure of the homogeneous oxidation catalyst, Mn(Ⅱ)(Br-1)x, in supercritical water:An X-ray absorption fine-structure study, J. Am. Chem. Soc.,2005,127:14085-14093
    [40]Welton, T., Room-temperature ionic liquids, solvents for synthesis and catalysis, Chem. Rev.,1999,99:2071-2083
    [41]Dupont, J., de Souza, R. F., Suarez, P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev.,2002,102:3667-3692
    [42]Binnemans, K., Ionic liquid crystals, Chem. Rev.2005,105:4148-4204
    [43]Muzart, J., Ionic liquids as solvents for catalyzed oxidations of organic compounds, Adv. Synth. Catal.,2006,348:275-295
    [44]Howarth, J. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6, Tetrahedron Lett.,2000,41:6627-6629
    [45]Guan, W., Wang, C., Yun, X., Hu, X., Wang, Y, Li, H., A mild and efficient oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone in ionic liquids, Catal. Commun.,2008,9(10):1979-1981
    [46]王海平,奚祖威,催化分子氧环境化烯烃的研究进展,化学进展,2000,14(1): 74-80
    [47]章亚东,高晓蕾,烯烃液相环氧化反应研究进展,化工进展,2002,21(8):564-568
    [48]王荣民,王云普,O2选择氧化烷烃新进展,化学通报,1999,8:8-12。
    [49]刘俊华,王芳,徐贤伦,分子氧氧化醇的研究进展,化学进展,2007,19(11):1718-1726
    [50]Ready, J.M., Jacobsen, E.N., Asymmetric Catalytic Synthesis of r-Aryloxy Alcohols:Kineti Resolution of Terminal Epoxides via Highly Enantioselective Ring-Opening with Phenols, J. Am. Chem. Soc.1999,121:6086-6087
    [51]Groves, J.T., Quinn, R., Aerobic epoxidation of olefins with ruthenium porphyrin catalysts, J. Am. Chem. Soc.,1985,107 (20):5790-5792
    [52]梁舰,李建章,周波,秦圣英,N-羟基邻苯二甲酰亚胺(NHPI)用于有机氧 化反应的研究进展,化学研究与应用,2004,5:597-600
    [53]Sheldon, R.A., Arends, I.W.C.E., Organocatalytic Oxidations Mediated by Nitroxyl Radicals, Adv. Synth. Catal.2004,346:1051-1071
    [54]葛春涛,均相催化剂研究进展,化工技术经济,2005,23(3):28-36
    [55]王齐,封麟先,烯烃聚合均相催化剂研究进展,高分子通报,1995,1:34-39
    [56]佘远斌,范莉莉,张燕慧,宋旭锋,金属卟啉仿生催化绿色合成对硝基苯甲醛的新方法,化工学报,2004,55(12):2032-2037
    [57]周智明,李连友,徐巧,余从煊,仿生催化剂—Salen金属络合物催化不对称环氧化烯烃的基础,有机化学,2005,25(4):347-354
    [58]李臻,景震强,夏春谷,金属卟啉配合物的催化氧化应用研究进展,有机化学,2007,27(1):34-44
    [59]Groves, J.T., Nemo, T.E., Myers, R.S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene, J. Am. Chem. Soc.,1979,101 (4):1032-1033
    [60]Collman, J.P., Zhang, X., Lee, V.J., Uffelman, E., Brauman, J.I., Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins, Science,1993,261: 1404-1411
    [61]Tabushi, I., Kugimiya, S., Sasaki, T., Artificial allosteric systems.3. Cooperative carbon monoxide binding to diiron(Ⅱ)-gable porphyrin-diimidazolylmethane complexes, J. Am. Chem. Soc.,1985,107 (18):5159-5163
    [62]Fang, M., Wilson, S.R., Suslick, K.S., A four-coordinate Fe(Ⅲ) porphyrin cation, J. Am. Chem. Soc.,2008,130(4):1134-1135
    [63]Lauzon, S., Mansuy, D., Mahy, J.P., Coordination chemistry of iron(Ⅲ)-porphyrin antibody complexes:Influence on the peroxidase activity of the axial coordination of an imidazole on the iron atom, Eur. J. Biochem.,2002,269(2): 270-280.
    [64]Lauzon, S., Desfosses, B., Mansuy, D., Studies of the reactivity of artificial peroxidase-like hemoproteins based on antibodies elicited against a specifically designed ortho-carboxy substituted tetraarylporphyrin, Febs Lett.,1999,443(2): 229-234
    [65]Fuchs, J., Weber, S., Kaufmann, R., Genotoxic potential of porphyrin type photosensitizers with particular emphasis on 5-aminolevulinic acid:Implications for clinical photodynamic therapy, Free Rad. Bio. Med.,2000,28(4):537-548
    [66]Tian, Z.Q., Richards, J.L., Tray lor T.G., Formation of Both Primary and Secondary N-Alkylhemins during Hemin-Catalyzed Epoxidation of Terminal Alkenes, J. Am. Chem. Soc.,1995,117 (1):21-29
    [67]Liu, B.Y., Ganzel, P., Traylor, T.G., Synthesis and structural characterization of a novel binuclear copper complex:Bis[mu-O,O'-6-(2,2'-bipyridyl)hexalato] dicopper(II) bis(perchlorate), Inorg. Chim. Acta,1997,254(2):407-410
    [68]Dolphin, D., Traylor, T.G., Xie, L.Y., Polyhaloporphyrins:Unusual ligands for metals and metal-catalyzed oxidations, Acc. Chem. Res.,1997,30 (6):251-259
    [69]Pizzotti, M., Ugo, R., Annoni, E., Quid, S., A critical evaluation of EFISH and THG non-linear optical responses of asymmetrically substituted meso-tetraphenyl porphyrins and their metal complexes, Inorg. Chim. Acta,2002,340:70-80
    [70]郭灿城,刘强,刘洋,选择性氧化二甲苯成甲基苯甲醛、甲基苯甲醇和甲基苯甲酸的方法,中国专利,2001,公开号:CN1333200
    [71]郭灿城,刘强,张晓兵,催化空气氧化烷烃和环烷烃的方法,中国专利,2000,公开号:CN1269343
    [72]Williams, C.K., Breyfogle, L.E., Choi, S.K., First Direct Evidence for Stereospecific Olefin Epoxidation and Alkane Hydroxylation by an Oxoiron(IV) Porphyrin Complex, J. Am. Chem. Soc.,2003,125 (48):14674-14675
    [73]Park, S.E., Song, R., Nam, W., Iodobenzene diacetate as an efficient terminal oxidant in iron(Ⅲ) porphyrin complex-catalyzed oxygenation reactions, Inorg. Chem. Acta,2003,343:373-376
    [74]Li, Z., Xia, C.G., Oxidation of hydrocarbons with iodobenzene diacetate catalyzed by manganese(III) porphyrins in a room temperature ionic liquid, J. Mol. Catal. A-Gen.,2004,214(1):95-101
    [75]Li, Z. Xia, C.G, Xu, C., Oxidation of alkanes catalyzed by manganese(III) porphyrin in an ionic liquid at room temperature, Tetrahedron Lett.,2003,44, 9229-9232
    [76]Chougnet, A., Stoessel, C., Woggon, W.D., Design and synthesis of a new fluorescent probe for cytochrome P450 3A4, Bioorg. Med. Chem. Lett.,2003,13(21), 3643-3645
    [77]Robert, D., Surrunerville, A., Synthetic oxygen carriers related to biological systerms, Chem. Rev.,1979,79(2):139-152
    [78]Kapturkiewicz, A., Behr, B., Voltammetric studies of Co(salen) and Ni(salen) in nonaqueous solvents at Pt electrode, Inorg. Chim. Acta,1983,69:247-251
    [79]Nakanmoto, K., Nomaka, Y. Lshiguro, T., Resonance raman and infrared spectra of molecular oxygen adducts of N,N-Ethylene bis-(2,2-diacetylethyl-lideneaminato) cobalt(Ⅱ). Chem. Soc.,1982,104(3):386-398
    [80]Shen, D., Martell, A.E., Sun, U., New synthesis cobalt Schiff base complexes as oxygen carrier, Inorg. Chem.,1989,28:2647-2662
    [81]李建章,秦圣英,李仲辉,冠醚化单和双Schiff碱的合成及其钴(Ⅱ)配合物的氧化加合性能,化学学报,1999,57:289-304
    [82]赵存祥,马建标,何炳林,N,N-双(2-羟基-3-甲氧基-5-甲基苯甲叉基)乙二胺合钴(Ⅱ)类似物的合成及其对氧分子的加合性能,化学学报,1994,52:199-203
    [83]Berkessel, A., Asymmetric epoxidation of olefins with hydrogen peroxide: Catalysis by an aspartate-containing tripeptide Angew. Chem. Inter. Ed.,2008,47(20): 3677-3679
    [84]Katsuki, T., Catalytic asmmetric oxidations using optically-Active(salen) mang-anese(Ⅲ) complexes as catalysts, Coord. Chem. Rev.,1995,140:189-214
    [85]Ando, R., Mori, S., Hayashi, M., Yagyu, M., Maeda, M., Structural charac-terization of pentadentate salen-type Schiff-base complexes of oxovanadium(Ⅳ) and their use in sulfide oxidation, Inorg. Chim. Acta,2004,357:1177-1184
    [86]Costes, J.P., Dominguez-Vera J.M., Laurent, J.P., Geometrical and optical isomers of the nickel(Ⅱ) complexes of chiral, tetradentate unmixed and mixed schiff bases:CD and NMR spectroscopic studies, Polyhedron,1995,14(15-16):2179-2187
    [87]Kervinen, K., Korpi, H., Mesu, J.G, Soulimani, F, Repo, T., Rieger, B., Leskela, M., Weckhuysen, B.M., Mechanistic insights into the oxidation of veratryl alcohol with Co(salen) and oxygen in aqueous media:An in-situ spectroscopic study, Eur. J. Inorg. Chem.,2005,13:3591-3599
    [88]Zhou, H., Peng, Z.H., Pan, Z.Q., Synthesis, crystal structure, electrochemical, EPR and magnetic properties of dinuclear complexes with an Okawa-style unsymmetrical diphenolato Schiff base macrocyclic ligand, Polyhedron,2007,26(13): 3233-3241
    [89]Nakajina, K., Kojima, M., Toriumi, K., The catalytic activity of these and related complexes on asymmetric oxidation of methyl phenyl sulfide, Bull. Chem. Soc. Jpn., 1989,62(3):760-767
    [90]Casella, L., Gullotti, M., Synthesis, stereochemistry, and oxygenation of cobalt(Ⅱ) pyfidoxal model complexes:A new family of chiral dioxygen carriers, Inorg. Chem.,1986,25(9):1293-1303
    [91]袁淑军,蔡春,吕春续,双亲性希夫碱铜(Ⅰ)配合物的合成及苯甲醇的催化氧化,应用化学,2003,3:278-280
    [92]许海峰,唐瑞仁,龚年华,刘长辉,周亚平,N-羟基邻苯二甲酰亚胺及其类似物催化的分子氧氧化反应,2007,19(11):1736-1745
    [93]Ishii, Y, Sakaguchi, S., Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal.,2001,343(5):393-427
    [94]Ishii, Y, Iwahama, T., Sakaguchi, S., Nakayama, K., Nishiyama, Y. Alkane Oxidation with Molecular Oxygen Using a New Efficient Catalytic System: N-Hydroxyphthalimide (NHPI) Combined with Co(acac)n (n=2 or 3), J. Org. Chem., 1996,61 (14):4520-4526
    [95]Sakaguchi, S., Kato, S., Iwahama, T., Ishii, Y An efficient aerobic oxidation of isobutane to t-butyl alcohol by N-hydroxyphthalimide combined with Co(Ⅱ) species, Bull. Chem. Soc. Jpn.,1998,71:1237-1240
    [96]Yoshino, Y, Hayashi, Y, Iwahama, T., Sakaguchi, S., Ishii, Y Catalytic oxidation of alkylbenzenes with molecular oxygen under normal pressure and temperature by N-hydroxyphthalimide combined with Co(OAc)2, J. Org. Chem.,1997,62:6810-6813
    [97]Aoki, Y, Sakaguchi, S., Ishii, Y. One-pot synthesis of phenol and cyclohexanone from cyclohexylbenzene catalyzed by N-hydroxyphthalimide (NHPI), Tetrahedron, 2005,61:5219-5222
    [98]Yang, GY, Zhang, Q.H., Miao, H., Tong, X.L., Xu, J. Selective organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide, Organ. Lett.,2005,7(2):263-266
    [99]Minisci, F., Gambarotti, C., Pierini, M., Porta, O., Punta, C., Recupero, F., Lucarini, M., Mugnaini, V. Molecule-induced homolysis of N-hydroxyphthalimide (NHPI) by peracids and dioxirane. A new, simple, selective aerobic radical epoxidation of alkenes, Tetrahedmn Lett.,2006,47:1421-142
    [100]杨贯羽,郭彦春,武光辉,郑立稳,宋毛平,氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂,化学进展,2007,19(11):1727-1735
    [101]Anelli, PL., Biffi, C., Montanari, F., Quici, S., Fast And Selective Oxidation Of Primary Alcohols To Aldehydes Or To Carboxylic-Acids And Of Secondary Alcohols To Ketones, J. Org. Chem..1987,52:2559-2562
    [102]Dijksman, A., Arends, I.W.C.E., Sheldon, R.A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones, Chem. Commun.,1999,16:1591-1592
    [103]Dijksman, A., Marino-Gonzalez, A., Payeras, A.M.I., Arends, I.W.C.E., Sheldon, R.A. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system, J. Am. Chem. Soc.,2001, 123:6826-6833
    [104]Kim, S.S., Jung, H.C. An efficient aerobic oxidation of alcohols to aldehydes and ketones with TEMPO/ceric ammonium nitrate as catalysts, Synthesis,2003, 2135-2137
    [105]Mal, N.K., Fujiwara, M., Tanaka, Y., Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41, Chem. Mater., 2003,15(17):3385-3394
    [106]Steven, M.D., Hotchkiss, J.H., Covalent Immobilization of an Antimicrobial Peptide on Poly(ethylene) Film, J. Appl. Poly. Sci.,2008,110(5):2665-2670
    [107]Zhang, J.L., Liu, Y.L., Che, C.M., Ruthenium(Ⅱ) porphyrin catalyzed cyclopropanation of alkenes with tosylhydrazones, Tetrahedron Lett.,2003,44(48): 8733-8737
    [108]李臻,夏春谷,扩孔硅胶担载锰卟啉配合物的催化性研究,化学学报,2002,60(7):1162-1166
    [109]王旭涛,褚明福,郭灿城,眯唑修饰硅胶配位固载锰(Ⅲ)卟啉对环己烷空气氧化的催化作用,高等学校化学学报,2005,26:64-67
    [110]Tolley, S.E., Wang, H.K., Smith, R.S., Herron, M., Single-chain polymorphism analysis in long QT syndrome using planar waveguide fluorescent biosensors, Tetrahedron Lett.,2003,315(2):223-237
    [111]任通,闫亮,张汉鹏,索继栓,MCM-41固载Co席夫碱配合物的制备及其催化烯烃环氧化的研究,分子催化,2003,17(4):310-312
    [112]冯辉霞,王毅,王荣民,王云普,分子筛固载席夫碱金属配合物的催化氧化性能研究,化学试剂,2004,26(1):1-2
    [113]Jin, N., Ibrahim, M., Spiro, T. G., Groves, J.T., Trans-dioxo manganese(Ⅴ) Porphyrins, J. Am. Chem. Soc.,2007,129 (41):12416-12417
    [114]Datta, A., Quintavalla, S.M., Groves, J.T., Kinetic selectivity in the N-alkylation of 2-pyridyl porphyrins:A facile approach to the alpha alpha beta beta scaffold, J. Org. Chem.,2007,72 (5):1818-1821
    [115]Macor, K.A., Spiro, T.G., Oxidative electrochemistry of electropolymerized metallo protoporphyrin films, J. Electroanal. Chem.,1984,163(1-2):223-236
    [116]Gerard, S., Asymmetric heterogeneous catalysis by metalloporphyrins, Coord. Chem. Rev.,2006,250(17-18):2212-2221
    [117]Urano, Y., Higuchi, T., Hirobe, M., Pronounced axial thiolate ligand effect on the reactivity of high-valent ore-iron porphyrin intermediate, J. Am. Chem. Soc., 1997,119(49):12008-12009
    [118]Wang, R.M., Hao, E.X., Shen, G.R., Polymeric Salphen-Phthalocyanine Dinuclear Metal Complexes for Activation of Molecular Oxygen, J. Appl. Poly. Sci., 2009,111(4):1999-2005
    [119]Zsigmond A, Horvath A, Notheisz F, Effect of substituents on the Mn(Ⅲ)Salen catalyzed oxidation of styrene, J. Mol. Catal. A-Chem.,2001,171(1-2):95-102
    [120]Gregory, B.W., Vaknin, D., Gray, J.D., Two-dimensional pigment monolayer assemblies for light-harvesting applications:Structural characterization at the air/water interface with x-ray specular reflectivity and on solid substrates by optical absorption spectroscopy, J. Phys. Chem. B,1997,101(11):2006-2019
    [121]Davis, J. H.; Forrester, K. J. Thiazolium-ion based organic ionic liquids (OIL). Novel oils which promote the benzoin condensation. Tetrahedron Lett.,1999,40: 1621-1622
    [122]Davis, J. H. Task-specific ionic liquids. Chem. Lett.,2004,33,1072-1077
    [123]Miao, W. S., Chan, T. H., Ionic-liquid-supported synthesis:A novel liquid-phase strategy for organic synthesis, Acc. Chem. Res.,2006,39,897-908
    [124]Wu, X. E., Ma, L., Ding, M. X., Gao, L. X., TEMPO-derived task specific ionic liquids for oxidation of alcohols. Synlett.,2005,607-610
    [125]Qian, W., Jin, E., Bao, W., Zhang, Y, Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water. Tetrahedron,2006,62:556-662
    [126]Xiao, J. C., Twamley, B., Shreeve, J. M., An ionic liquid-coordinated palladium complex:A highly efficient and recyclable catalyst for the heck reaction. Org. Lett., 2004,6,3845-3847
    [127]Audic, N., Clavier, H., mauduit, M., Guillemin, J. C., An ionic liquid-supported ruthenium carbene complex:A robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. J. Am. Chem. Soc.,2003,125,9248-9249
    [128]Yao, Q., Zhang, Y, Olefin metathesis in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate using a recyclable ru catalyst:remarkable effect of a designer ionic tag, Angew. Chem., Int. Ed.,2003,42:3395-3398
    [129]Yao, Q., Sheets, M., An ionic liquid-tagged second generation hoveyda-grubbs ruthenium carbene complex as highly reactive and recyclable catalyst for ring-closing metathesis of di-, tri-and tetrasubstituted dienes, J. Organomet. Chem.2005,690: 3577-3584
    [130]Clavier, H., Audic, N., Guillemin, J. C., Mauduit, M., Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexes, J. Organomet. Chem.,2005,690:3585-3599
    [131]Yao, Q., Zhang, Y, Poly (fluoroalkyl acrylate)-bound ruthenium carbene complex:A fluorous and recyclable catalyst for ring-closing olefin metathesis, J. Am. Chem. Soc.,2004,126:74-75
    [132]Geneva, J. J., Onex, K. H., Dardagny, H. S., Bernex, GO., Process for the preparation of 2,2,6-trimethyl-cyclohex-5-en-1,4-dione, US Patent:4026948,1977
    [133]Klatt, M. J., Durkheim, B., Dirmstein, T. M., Romerberg, B.B., Process for preparing oxoisophorone, US Patent:6300521,2001
    [134]Klatt, M. J., Durkheim, B., Dirmstein, T. M., Romerberg, B.B., Process for preparing oxoisophorone using additives, US Patent:6297404,2001
    [135]Mayer, H., Synthesis of optically active carotenoids and related compounds, Pure Appl. Chem.1979,51,535-564
    [136]Ito, N., Kinoshita, K., Suzuki, K., Eto, T., Process for preparing 3,5,5-trimethylcyclohexa-2-en-1,4-dione, US Patent:4898985,1990
    [137]Marx, J. N., A new synthesis of theaspirone, an odiferous principle of tea, Tetrahedron 1975,31:1251-1253
    [138]Demole, E., Enggist, P., Novel synthesis of 3,5,5-trimethyl-4-(2-butenylidene)-cyclohex-2-en-l-one, a major constituent of burley tobacco flavour, Helv. Chim. Acta,1974,57:2087-2091
    [139]Nagata, R., Matsuura, T., Saito, I., Palladium(II)-catalyzed epoxidation of olefins with a-silyloxyalkyl peroxybenzoates, Tetrahedron Lett.,1984,25:2691-2694
    [140]Adam, W., Hadjiarapoglou, L., Nestler, B., Dimethyldioxirane epoxidation of a,β-unsaturated ketones, acids and esters, Tetrahedron Lett.,1990,31:331-334
    [141]Erich, W., Roche, E., Process for the manufacturing of oxo compounds, US Patent:4005145,1977
    [142]Murphy, E. F., Baiker, A., Advances in homogeneous and heterogeneous catalytic aerobic oxidation of isophorone to ketoisophorone, J. Mol. Catal. A,2002, 179:233-241
    [143]Sasidharan, M.,Wu, P., Tatsumi, T., Epoxidation of a, β-unsaturated carbonyl compounds over various titanosilicates, J. Catal.,2002,205:332-338
    [144]Hutter, H., Mallat, T., Baiker, A., Titania-silica mixed oxides. Ⅲ. Epoxidation of a-isophorone with hydroperoxides, J. Catal.,1995,157:665-675
    [145]Dutoit, D. C., Schneider, M., Baiker, A., Titania-silica mixed oxides:I. Influence of sol-gel and drying conditions on structural properties, J. Catal.,1995, 153:165-176
    [146]Murphy, E. F., Mallat, T., Baiker, A., Schneider, M. Catalytic gas phase oxidation of isophorone to ketoisophorone, Appl. Catal. A,2000,197:295-301
    [147]Hanyu, A., Sakurai, Y, Fujibayashi, S., Sakaguchi, S., Ishii, Y Selective aerobic oxidation of isophorone catalyzed by molybdovanadophosphate supported on carbon (NPMoV/C), Tetrahedron Lett.,1997,38:5659-5662
    [148]Martin, H. D., Albert, B., Kessel, K., Cycloalkylidene dye-stuffs, Europe Patent: 425976,1990
    [149]Hahn, R., Gora, U., Huthmacher, K., Hubne, F., Krill, S., Method of producing tetoisophorone. [P]. DE 19619570,1999
    [150]Dawson, B.T., Pugach, J., Method of making ketoisophorone via oxidation of isophorone with tert-butyl hydroperoxide. [P]. WO 96/15094,1996
    [151]Becker, J.J., Ohlof,f G, Strickler H., Progress for preperation of a diketone derivative. [P]. DE 2457157,1975
    [152]Bellut, H., Method of producing ketoisophorone. [P]. DE 3842547,1990
    [153]Palomeque, J., Lopez, J., Figueras, F., Epoxydation of activated olefins by solid bases, J. Catal.,2002,211:150-156
    [154]Beck, C., Mallat, T., Baiker, A., Oxidation-isomerization of an olefin to allylic alcohol using titania-silica and a base Co-catalyst, J. Catal.,2000,195:79-87
    [155]Hutter, R., Mallat, T., Peterhans, A., Baiker, A., Epoxidation of β-isophorone over a titania-silica aerogel:effect of catalyst pretreatments with bases, J. Catal., 1997,172:427-435
    [156]Hutter, R., Mallat, T., Peterhans, A., Baiker, A., Control of acidity and selectivity of titania-silica aerogel for the epoxidation of β-isophorone, J. Mol. Catal. A,1999,138:241-247
    [157]Hutter, R., Mallat, T., Baiker, A., Titania-silica mixed oxides:II. Catalytic behaviour in olefin epoxidation, J. Catal.,1995,153:177-189
    [158]Ito N., Kinoshita K, Suzuki K., Takeaki, Process for preparing ketoisophorone. [P].EP 311408,1989
    [159]Ito N., Etoh T., Hagiwara H, Kato M., Oxidation of β,y-unsaturated ketones with molecular oxygen catalysed by metal-phthalocyanines and porphyrins:A pratical synthesis of oxophorone. Synthesis,1997,153
    [160]Beyrhouty, M., Sorokin, A.B., Daniele, S., Hubertpfalzgraf, L.G, Combination of two catalytic sites in a novel nanocrystalline TiO2-iron tetrasulfophthalocyanine material provides better catalytic properties, New J. Chem.,2005,29:1245-1248
    [161]Barton, D.H.R., Hary-Mtherwell, R.S., Motherwell, W.B., Aerobic oxidation of isophorone to ketoisophorone, Tetrahedron Lett.,1983,24 (19):1979-1982
    [162]Hahn, R., Gora, U., Huthmacher, K., Hubner, F., Krill, S., Method of producing tetoisophorone, [P]. DE 19619570,1999
    [163]Murphy, E.F., Baiker, A., Advances in homogeneous and heterogeneous catalytic aerobic oxidation of isophorone to ketoisophorone, J. Mol. Catal. A: Chemical,2002,179:233-241
    [164]Halligudi, S.B., Kala-Raj, N.K., Deshpande, S.S., Gopinathan, S., Kinetics of oxidation of β-isophorone to keto-isophorone catalyzed by manganese Schiff base complex using molecular oxygen, J. Mol. Catal. A:Chemical,2000,157:9-14
    [165]Joseph, T., Halligudi, S. B., Satyanarayan, C., Sawant, D. P., Gopinathan, S., Oxidation by molecular oxygen using zeolite encapsulated Co(II)saloph complexes, J. Mol. Catal. A,2001,168:87-97
    [166]Costantini, M., Dromard, A., Jouffret M., Prosecc for the preperation of ketoisophorone. [P]. DE 2657386,1978
    [167]Recichle, W. T., Pulse microreactor examination of the vapor-phase aldol condensation of acetone, J. Catal.1980,63,295-306
    [168]Noesberger, P. D., Vieth, A. J., Process for the preparation of beta-Isophorone, Europe Patent:488045,1992
    [169]Himeji, I. T., Takasago, H. M., Kobe, I. T., Process for the production of keto-isophorone derivatives and equipment therefor, US Patent:6410979,2002
    [170]Speyer, S.K., Geinhausen, K.H., Process for the production of 2,3,5-trimethylhy-droquinone diesters, US Patent:6417409,2002
    [171]Speyer, S.K., Beibergemund, S.K., Geinhausen, K.H., Process to produce a-tocopherol-acetate, US Patent:6239294,2001
    [172]Holmquist, W.R., Schroeder, W.A., A New N-Terminal Blocking Group Involving a Schiff Base in Hemoglobin AIc, Biochemistry,1966,5(8):2489-2503
    [173]Nathans, J., Determinants of visual pigment absorbance:identification of the retinylidene Schiff s base counterion in bovine rhodopsin, Biochemistry,1990,29(41): 9746-9752
    [174]O'Donnell, M.J., The Enantioselective Synthesis of a-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters, Acc. Chem. Res.,2004, 37(8):506-517
    [175]Hayashi, H., Mizuguchi, H, Kagamiyama, H., The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pK(a) in the unliganded enzyme and is crucial for the successive increase in the pK(a) during catalysis, Biochemistry,1998,37(43):15076-15085
    [176]Chen, Z.H., Morimoto, H., Matsunaga, S., A bench-stable homodinuclear Ni-2-Schiff base complex for catalytic asymmetric synthesis of alpha-tetrasubstituted anti-alpha, beta-diamino acid surrogates, J. Am. Chem. Soc.,2008,130(7):2170
    -2171
    [177]Weinstein, G.N., O'Connor, M.J., Holm, R.H., Preparation, properties, and racemization kinetics of copper(II)-Schiff base-amino acid complexes related to vitamin B6 catalysis, Inorg. Chem.,1970,9(9):2104-2112
    [178]Okada, A., Shibuguchi, T., Ohshima, T., Enantio-and diastereoselective catalytic Mannich-type reaction of a glycine Schiff base using a chiral two-center phase-transfer catalyst, Angew. Chem. Int. Ed.,2005,44:4564-4567
    [179]Ichikawa, T., Maeda, S., Araki, Y., Synthetic studies of amino acids by the use of the copper complex, I. Syntheses of.beta.-hydroxy DL-amino acids by the use of the complex of copper(Ⅱ) with the Schiff base derived from glycine and pyruvic acid, J. Am. Chem. Soc.,1970,92(18):5514-5516
    [180]Koh, L.L., Ranford, J.O., Robinson, W.T., Svensson, J.O., Model for the Reduced Schiff Base Intermediate between Amino Acids and Pyridoxal:Copper(Ⅱ) Complexes of N-(2-Hydroxybenzyl)amino Acids with Nonpolar Side Chains and the Crystal Structures of [Cu(N-(2-hydroxybenzyl)-d,l-alanine)(phen)]-H2O and [Cu(N-(2-hydroxybenzyl)-d,l-alanine)(imidazole)], Inorg. Chem.,1996,35(22):6466-6472
    [181]Pessoa, J.C., Cavaco, I., Correia, I., Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from amino acids and aromatic o-hydroxyaldehydes, Inorgan. Chim. Acta,1999,293:1-11
    [182]Suzuki, M., Ishikawa, T., Harada, A, Chemical mechanism of dioxygen activation by manganese(Ⅲ) Schiff base compound in the presence of aliphatic aldehydes, Polyhedron,1997,16(15):2553-2561
    [183]Kumar, A; Mishra, G.S., Covalantly bonded Schiff base cobalt complex catalyst for the selective oxidation of linear alkanes using molecular oxygen, J. Mol. Catal. A-Chemical,2003,201(1-2):179-188
    [184]王荣民,何玉凤,氨基酸-水杨醛希夫碱金属配合物的制备及性能,西北师范大学学报,1998,34(3):97-102
    [185]Wang, R.M., Hao, C.J., He, Y.F., Polymer-round Schiff-base complex catalyst for effective oxidation of olefins with molecular oxygen, Polym. Adv. Technol.,2002, 13:6-10
    [186]段涛,彭同江,介孔Si02材料的研究进展,中国非金属矿工业导刊,2005,6:8-12
    [187]郑亚萍,宁荣昌,Si02纳米复合材料研究进展,纤维复合材料,2001,18(2):46-47
    [188]许俊强,储伟,陈慕华,苯乙烯环氧化反应分子筛催化剂研究进展,化工进展,2005,24(9):981-984
    [189]田进军,薛艳,环己烷催化氧化催化剂的研究进展,化工中间体,2007,923-27
    [190]Liu, H.F., Liu, R.S., Liew, K.Y., Partial oxidation of methane by nitrous oxide over molybdenum on silica, J. Am. Chem. Soc.,1984,106(15):4117-4121
    [191]Fey, T, Fischer, H., Bachmann, S., Silica-supported TEMPO catalysts: Synthesis and application in the Anelli oxidation of alcohols, J. Org. Chem.,2001, 66(24):8154-8159
    [192]Sheldon, R.A., Chen, J.D., Selective Oxidation of Hydrocarbons with O2 over Chromium Aluminophosphate-5 Molecular-Sieve, J. Catal.,153(1):1-8
    [193]Xiao, Y, Patolsky, F., Katz, E., "Plugging into enzymes":Nanowiring of redox enzymes by a gold nanoparticle, Science,2003,299(5614):1877-1881
    [194]Raghunadh, V, Baskaran, D., Sivaram, S., Efficiency of ligands in atom transfer radical polymerization of lauryl methacrylate and block copolymerization with methyl methacrylate, Polymer,2004,45(10):3149-3155
    [195]Horta, A., Freire, J.J., Block and alternating copolymer chains of styrene-vinylmethylether and styrene-methylmethacrylate by molecular dynamics simulation, Polymer,2004,45(4):1275-1286
    [196]Bronstein, L.M., Khotina, I.A., Chernyshov, D.M., Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers:Understand-ing of micelle and bulk structure, J. Phys. Chem. B,2005,109(40),18786-18798
    [197]Sulmana, E.M., Valetskyb, P.M., Steinc, B., Matesd, T., Bronstein, L.M., Influence of heterogenization on catalytic behavior of mono- and bimetallic nanoparticles formed in poly(styrene)-block-poly(4-vinylpyridine) micelles, J. Catal., 2009,262(1):150-158
    [198]Bronstein, L.M., Chernyshov, D.M., Valetsky, P.M., Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane), Langmuir,2000,16(22): 8221-8225
    [199]Akcora, P., Briber, R.M., Kofinas, P., Oxidation effect on templating of metal oxide nanoparticles within block copolymers,2009,50(5):1223-1227
    [200]Sulman, E., Matveeva, V, Bronstein, L., Sidorov, A., Lakina, N., Sidorov, S., Valetsky, P., Platinum-containing polymeric catalysts in direct L-sorbose oxidation, Green Chem.,2003,5(2):205-208
    [201]Tong, D., Yao, J., Li, H., Han, S., Synthesis and characterization of thermo-and pH-sensitive block copolymers bearing a biotin group at the PEO chain end, J. Appl. Polym. Sci.,2006,102(4):3552-3558
    [202]Domracheva, N., Mirea, A., Schwoerer, M., Torre-Lorente, L., Lattermann, G, EPR Characterisation of CuⅡ Complexes of Poly(propylene imine) Dendromesogens: Using the Orienting Effect of a Magnetic Field, ChemPhysChem 2005,6:110-119
    [203]Kivelson, D., Neiman, R., ESR Studies on the Bonding in Copper Complexes, J. Chem. Phys.,1961,35:149
    [204]Recupero, F., Punta, C., Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide, Chem. Rev.,2007,107:3800-3842
    [205]Grochowski, E., Boleslawska, T., Jurczak, J., Raction of diethyl azodicarb oxylate with ethers in presence of N-hydroxyimides as catalysts, Synth. Stut.,1977, 10:718-720
    [206]Masui, M., Yamagata, K., Ueda, C., Ohmori, H., N-cyanomethylation of 2,2,6,6-tetramethylpiperidines by anodic oxidation in acetonitrile, J. Chem. Soc., Chem. Commun.,1985,272-273
    [207]Masui, M., Kawaguchi, T., Ozaki, S., A simple and effective electrocatalytic deprotection of the 4-phenyl-1,3-dioxolane protecting group, J. Chem. Soc., Chem. Commun.,1985,1484-1485
    [208]Ishii, Y., Iwahama, T., Sakaguchi, S., Alkane oxidation with molecular oxygen using a new efficient catalytic system:N-hydroxyphthalimide (NHPI) combined with Co(acac)(n) (n=2 or 3), J. Org. Chem.,1996,61(14):4520-4526
    [209]Ishii, Y., Kato, S., Iwahama, T., Hydroxylation of polycyclic alkanes with molecular oxygen catalyzed by N-hydroxyphthalimide (NHPI) combined with transition metal salts, Tetrahedron Lett.,1996,37(28):4993-4996
    [210]Fukuda,0., Sakaguchi, S., Ishii, Y., Preparation of hydroperoxides by N-hydroxyphthalimide catalyzed aerobic oxidation of alkylbenzenes and hydroaromatic compounds and its application, Adv. Synth. Catal.,2001,343(8): 809-813
    [211]Ma, H., Xu, J., Zhang, Q.H., Selective oxidation of ethylbenzene by a biomimetic combination:Hemin and N-hydroxyphthalimide (NHPI), Catal. Commun.,2007,8(1):27-30
    [212]Tong, X.L., Xu, J., Miao, H., New efficient organocatalytic oxidation of benzylic compounds by molecular oxygen under mild conditions, Tetrahedron Lett., 2006,47(11):1763-1766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700