用户名: 密码: 验证码:
地下水曝气法的模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机污染物是土壤和地下水中的重要污染物,发展土壤和地下水修复技术对人类环境的可持续发展具有重要的意义。地下水曝气法是有效的土壤地下水修复技术。本文采用不同粒径级配的高强度喷丸玻璃珠模拟自然砂土,进行了常规模型试验和离心模型试验,研究了曝气过程中的气体运动规律,分析了曝气压力与气体流量、单井影响区域的关系。本文取得了如下研究成果:
     1.常规模型试验和离心模型试验研究表明:1)多孔介质粒径级配决定气体的运动方式,颗粒粒径较大时气体以独立气泡方式运动,粒径较小时气体以离散的微通道方式运动;试样孔隙的不均匀性会影响气体的运动方式。2)单井影响区域形状与粒径、曝气压力等因素无关,为锥面形;而曝气影响区域大小受粒径、曝气压力等因素的影响明显,粒径越大,曝气影响区域越小;存在曝气压力临界值,达到该值之前,影响区域随曝气压力增大而增大,曝气压力达到该值后,影响区域大小趋于稳定。3)与试验中实测的曝气压力值相比,过去研究者提出的理论计算公式确定的最大曝气压力值偏低,需要修正。4)粒径级配、曝气压力等因素对气体流量有显著的影响,气体流量随曝气压力的增大而增大。5)地下水曝气过程中气体优势流现象和曝气区域附近水面隆起现象明显。
     2.提出采用最大渗气夹角和理论曝气点描述最大曝气影响区域的大小,认为最大影响区域是以理论曝气点为圆锥顶点、与竖直方向呈一定夹角的圆锥体区域,该方法简单易行,对不同粒径级配的均匀土层均适用。
     3.常规模型试验还研究了曝气过程中试样平均饱和度的变化以及试样的非均匀性对曝气过程的影响,试验结果表明:曝气试验前后,试样曝气影响区域内的平均饱和度变化受粒径、曝气压力等因素影响很小;试样的非均匀性对单井影响区域有显著影响。
     4.离心模型试验还研究了不同离心加速度对曝气过程的影响,试验结果表明:离心加速度越大,均匀试样中气体流量越大,气泡在土体中的运动速度越大,单井的曝气影响区域越小。曝气过程中的离心模型相似比有待于进一步深入研究。
Development of efficient techniques to remediate soils and groundwater contaminated with voltaic organic compounds is of great importance to sustainable development of human environment. Air sparging is one of themost efficient techniques. In this thesis, the physical mechanism of air sparging process is investigated by means of conventional modeling tests and centrifuge modeling tests using glass beads with different diameters of 0.8-1.0 mm、1.5-2.0 mm、4.0-5.0 mm and 0.8-5.0 mm as a substitute for sands. The features of air flow during sparging process are observed, and the effect of air pressure on air flow rate and zone of influence are studied systematically.The main achievements are summarized as follows:
     1. Conventional model tests and centrifuge model tests show that: 1) air flow patterns in porous media are determined by grain size distribution, e.g., air flows in discrete micro-channels in fine grain media but travels in bubbles in coarse media; air flow patterns are also influenced by inhomogeneity of distribution of pores; 2) the shape of zone of influence is always a cone in uniform porous media; the area of the cone is affected by grain size and sparging pressure obviously, i.e., the larger the diameter, the smaller the zone; there exits a critical sparging pressure, below which the zone of influence (ZOI) keeps enlargingwith the increase of sparging pressure, and exceeding which the ZOI tends to be steady; 3) the maximum sparging pressure calculated from equation proposed by the previous researchers is not agreeable with the experimental findings, and need to be modified; 4) air flux is significantly affected by grain size distribution and sparging pressure, e.g., air flux increases with the improvement of grain size and sparging pressure; 5) there are obvious preferential flow during sparging process and water mounding around the sparging area.
     2. The maximum sparging angle and the vitual sparging point can be used to quantificationally describe the zone of maximum influence, which is considered to be a cone with theoretical sparging point as the vertex This method is quite convinient and can be applied to uniform soil mass with different grain size.
     3. The average saturation inside ZOI is investigated during conventional modeling tests, and it is shown that the change of average saturation in effecting area is rarely affected by grain size and sparging pressure. The inhomogeneity of samples can significantly affect the zone of influence.
     4. The effects of centrifugeacceleration on sparging process are studied during centrifuge modeling tests, and it is shown that the greater the acceleration, the larger the air flux and bubble velocity, and the smaller the zone of influence. Scaling factors of centrifuge tests for air sparging process needs to further investigation.
引文
[1]里约环境与发展宣言.联合国环境与发展会议,1992年6月3日~4日,里约热内卢
    [2]吴亲帮.地下水资源可持续发展存在的问题及治理对策.武汉:中国水运,2009,182~183
    [3] Report of Office of Underground Storage Tanks, U.S. Environmental Protection Agency, January 2002
    [4]柴志明,王长江.中国加油站概述(上)80000家加油站的生存状态.北京:商业时代,2003.19
    [5]邢巍巍,胡黎明.轻非水相流体污染物运移的离心模型.清华大学学报,2006,46(3):341~345
    [6] Bedient, P. B., Rifai, H. S., Newell, C. J. Ground water contamination: transport and remediation. PTR Prentice Hall, New Jersey, USA. 1994
    [7] Bardos, P. Current development in contaminated land treatment technology in the UK. J. Insn. Wat. & Envir. Mangt, 1994, 8(5): 402~408
    [8]蒋小红,喻文熙,江家华.污染土壤的物理化学修复.杭州:环境污染与防治,2006, 28(3):210~214
    [9] Johnson, P. C., Johnson, R. L., Bruce, C. L., et al. Advances in in situ air sparging/biosparging, Bioremediation Journal, 2001, 5(4): 251-266
    [10]王业耀,孟凡生.石油烃污染物地下水原位修复技术研究进展.北京:化工环保, 2005,25(2):117~120
    [11] Tom, A. Pedersen, James, T. Curties. Soil vapor extraction technique. Newjersey: Noyes Data Corporation, 1991, 1~40
    [12] Ardito, C. P, Billings, J. F. Alternative remediation strategies: The subsurface volatilization and ventilation system. Proc., Petr. Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, National Ground Water Association, Westerville, Ohio, 1990, 281~296
    [13] Marley, M. C., Hazebrouck, D. J., Walsh, M. T. The application of in situ air sparging as an innovative soils and ground water remediation technology. Ground Water Monitoring Rev., 1992, 12(2): 137~145
    [14] Johnson, R. L., Johnson, P. C., McWhorter, D. B., Hinchee, R. E., Goodman, I. An overview of in situ air sparging. Ground Water Monitoring Rev., 1993, 13(4): 127~135
    [15] Reddy, K. R., Kosgi, S., and Zhou, J. A review of in-situ air sparging for the remediation ofVOC-contaminated saturated soils and groundwater. Haz. Waste and Haz. Mat., 1995, 12(2): 97~118
    [16] Reddy, K. R., Adams, J. A. System effects on benzene removal from saturated soils and ground water using air sparging. J. Envir. Engrg, ASCE, 1998, 124(3): 288~299.
    [17] How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. USEPA. 1995, EPA 510-B-95-007
    [18] Use of bioremediation at superfund sites. USEPA.Report, 2001, No.542-R-01-019
    [19] Hayden, N. J, Voice, T. C, Annable, M. D, etc. Change in gasoline constituent mass transfer during soil venting. Journal of Environmental Engineering, 1994, 120(6): 1598~1615
    [20] Jeffrey, A. Adams. System effects on the remediation of contaminated saturated soils and groundwater using air sparging. [Doctor Dissertation], Chicago, University of Illinois, 1999
    [21] Unger, A J A, Sudicky, E A, Forsyth P A. Mechanisms controlling vacuum extraction coupled with air sparging for remediation of heterogeneous formations contaminated by dense nonaqueous phase liquids, Water Resources Research, 1995, 31(8): 1913-1925
    [22] Semer, R, Reddy, K. R. Mechanisms controlling toluene removal from saturated soils during in situ air sparging, Journal of Hazardous Materials, 1998, 57: 209-230
    [23] Johnston, C. D., Rayner, J. L., Patterson, B. M., et al. Volatilisation and biodegradation during air sparging of dissolved BTEX-contaminated groundwater. Journal of Contaminant Hydrology, 1998, 33: 377-404
    [24] Johnson, P. C. Assessment of the contributions of volatilization and biodegradation to in situ air sparging performance, Environmental Science & Technology, 1998, 32(2): 276-281
    [25] Nyer, E. K., Sutherson, S. S. Air sparging: savior of ground water remediation or just blowing bubbles in the bathtub. Ground Water Monitoring Review, 1993, 13(4): 87~91
    [26] Krishna, R. Reddy, Jeffrey, Adams. Conceptual modeling of air sparing for groundwater remediation. Proceedings of the 9th international symposium on environmental geotechnology and global sustainable development, 2008
    [27] Widjaja, H., Duncan, J. M., Seed, H. B. Scale and Time Effects in Hydraulic Fracturing. US Army Corps of Engineers, Miscellaneous Paper GL-84-10, 1984, 192
    [28] Ji, W., Dahmani, A., Ahlfeld, D. P., Lin, J. D., Hill, E. Laboratory study of air sparging: air flow visualization. Ground Water Monitoring Review, 1993, 13(4): 115~126
    [29] Adams, J. A., Reddy, K. R. Laboratory study of air sparging of TCE-contaminated saturated soils and groundwater. Ground Water Monitoring and Remediation, 1999, 19(3): 82~190
    [30] Peterson, J. W, Lepczyk, P. A, Lake. K. L. Effect of sediment size on area of influence during groundwater remediation by air sparging: a laboratory approach. Environmental Geology, 1999, 38(1): 1~6
    [31]胡黎明,刘毅.地下水曝气修复技术的模型试验研究.南京:岩土工程学报, 2008,6:835~839
    [32] Lundegard, P. D., Andersen, G. Multiphase numerical simulation of air sparging performance. Ground Water, 1996, 34(3): 451~460.
    [33] McCray, J. E., Falta, R.W. Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water, 1997, 35(1): 99~100
    [34] Catalina, Marulanda, Patricia, J. Culligan, John T. Germaine. Centrifuge modeling of air sparging—a study of air flow through saturated porous media. Journal of Hazardous Materials, 2000, 72: 179~215
    [35] Rogers, S. W., Ong, S. K. Influence of porous media, airflow rate, and air channel spacing on benzene NAPL removal during air sparging. Environmental Science & Technology, 2000, 34(5): 764~770
    [36] Braida, W., Ong, S. K. Influence of porous media and airflow rate on the fate of NAPLs under air sparging. Transport in Porous Media, 2000, 38(1-2): 29~42
    [37]郑艳梅,王战强,黄国强,姜斌,李鑫钢.地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE).农业环境科学学报,2004,06:1200~1202
    [38]张英.地下水曝气(AS)处理有机物的研究.天津大学硕士学位论文,2004
    [39]王贞国,梁伟,杨询昌,冯守涛,苏丽,赵修地.曝气法对石油污染土壤的修复研讨. 2006,(6-7):107~108
    [40] Ahlfeld, D.P., Amine, D., Wei, J. Ground Water Monit. Rev. 1994, 14(4): 132
    [41] Brown, R.Handbook of Bioremediation. Lewis Publishers, Boca Raton, 1995, 257.
    [42] Daniel, M. Baker, Craig, H. Benson. Effect of system variables and particle size on physical characteristics of air sparging plumes. Geotech Geol Eng, 2007, 25, 543~558
    [43] McCray, J. E. R. W. Falta. Defining the air sparging radius of influence for groundwater remediation. Journal of Contaminant Hydrology, 1996, 24(1): 25~52
    [44] Taylor, R. N. Geotechnical Centrifuge Technology. Blackie Academic and Professional, Glasgow, 1995.
    [45] Arulanandan, K., Thompson P. Y., Kutter B. L., Meegoda N. J., et al. Centrifuge Modeling of Transport Processes for Pollutants in Soils. Journal of Geotechnical Engineering, ASCE. 1988, 114(2): 185~205
    [46] Nimmo, J. R. Experimental Testing of Transient Unsaturated Flow Theory at Low Water Content in a Centrifugal Field. Water Resources Research, 1990, 26(9): 1951~1960
    [47] Hu L.M., Lo. Irene M. C., Meegoda, N. J. Centrifuge Testing of LNAPL Migration and Soil Vapor Extraction for Soil Remediation. Practice Periodical of Hazardous, Toxic, and Radioactive Management, ASCE, 2006, 10(1):33~40
    [48] Sadek, S., Iskander, M. G., Liu J.Y. Geotechnical properties of transparent silica. Canadian Geotechnical Journal, 2002.1:111~124
    [49] Iskander, M. G., Liu J. Y., Sadek, S. Transparent amorphous silica to model clay. Journal of Geotechnical and GeoenvironmentalL Engineering, 2002, 3: 262~273
    [50]吴明喜.人工合成透明砂土及其三轴试验研究.大连理工大学硕士学位论文,2006
    [51] Hill, S. Chem. Eng. Sci. 1952.1(6): 247
    [52] Hubbert, M. K. The theory of ground water motion. J. Geol, 1940, 48(8):785~944
    [53]张嘎,张建民,梁东方.土与结构接触面实验中的土颗粒细观运动测量.南京:岩土工程学报, 2005,27(8): 903-907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700