用户名: 密码: 验证码:
基于包结作用的聚合物空心球的表面修饰及超分子凝胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的20年中,我们组提出并发展了氢键诱导的“非共价键接胶束”(NCCM)的概念,已在该领域取得了丰硕的研究成果。最近,我们又将主-客体间的分子识别作用引入到大分子自组装研究领域,进一步扩充、深化了原有的NCCM研究体系。本论文的研究工作是在本课题组已有研究工作的基础上开展的。主要是利用环糊精与客体分子间的包结络合作用,在聚合物空心球的表面修饰、自组装有机-无机杂化超分子凝胶制备等方面展开研究:
     1.基于包结络合作用的聚合物空心球的表面修饰
     我们将作为主体分子的环糊精引入到半刚性聚合物链的两端,发现该端基修饰的刚性聚合物在水溶液中可以形成单层空心球结构。作为主体分子的环糊精均匀地分布在这种单壁空心球的内、外壁,因此可进一步通过主-客体分子间的包结络合作用,利用端基金刚烷修饰的不同分子量的PEG来实现聚合物空心球的内、外表面的非共价修饰。该研究为聚合物空心球的表面修饰,尤其是其内表面的修饰,提供了一条简便易行的新途径,为其在诸多领域的应用研究提供了极大的方便。
     2.基于低分子量PEG/α-CD的有机及有机-无机杂化超分子凝胶的研究
     诸多文献研究表明,高分子量的PEG与α-环糊精在水溶液中可通过包结络合作用形成超分子凝胶。由于该凝胶具有温度响应的gel-sol转变形为和剪切变稀(shear-thinning)的性质,在药物的传输和释放领域具有非常好的应用前景,受到了研究工作者的广泛关注。但是具有更好生物相容性的低分子量PEG(Mn≤2K)与α-环糊精却只能形成晶体沉淀而非凝胶。我们的研究发现,单端金刚烷修饰的低分子量PEG(Mn=1.1或2K),由于金刚烷的疏水聚集作用,使其可以和α-环糊精形成超分子凝胶。同时,表面β-环糊精修饰的SiO_2纳米粒子可以通过β-环糊精与金刚烷间的包结络合作用,很好地分散在上述超分子凝胶中,形成一种无机纳米粒子杂化的凝胶。且该β-环糊精修饰的SiO_2纳米粒子的引入可以大大提高杂化凝胶的强度和粘度。进一步研究表明,金刚烷的疏水聚集区域和β-环糊精修饰的SiO_2纳米粒子均可使PEG分子链的一端聚集在一起,起到了“超级交联剂”(Supra-cross-linker,简称为SCL)的作用。
     3.基于包结作用的以CdS量子点为超级交联剂的杂化超分子凝胶研究
     在上述超级交联剂的基础上,在这一部分我们利用主-客体分子间的超分子相互作用,以主体分子环糊精修饰的CdS为超级交联剂,为杂化超分子凝胶的制备提供了一条简单通用的新途径。利用这种超级交联剂,通过与各种功能性水溶性单体的共聚合反应,可以得到各种纳米结构的杂化超分子凝胶。在这种杂化超分子凝胶体系中,QDs通过其表面的环糊精与客体分子间的包结络合相互作用稳定均一地分散在凝胶中。所制杂化凝胶具有优良的透明性和均一性,使得其在各种光学器件和生物医用材料领域具有非常好的应用前景。
     4.基于包结络合作用的CdS量子点杂化水溶性超分子聚合物网络
     利用环糊精与金刚烷之间的主-客体包结络合作用,以CdS量子点为超级交联剂,构筑了一种新型的水溶性有机-无机杂化超分子三维网络结构。并利用TEM和AFM对这种杂化网络结构进行了表征。溶液中的荧光行为研究表明,所形成的超分子网络结构并没有破坏CdS量子点的表面结构,且可有效地增强其荧光强度。
During the last 20 years,our research group has suggested and developed a new concept of"Non-Covalent Connected Micelles"(NCCMs).Recently,we constructed a new kind of NCCMs using the host-guest recognition interactions as the driving force for the macromolecular self-assembly.Based on the previous research works in our research group,the present research works mainly focus on the surface modification of polymeric vesicles and self-assembly organic-inorganic hybrid supramolecular hydrogels using the inclusion complexation interactions between cyclodextrin(CD) and guest molecules as the driving force.The projects of this thesis are as follows:
     1.Surface modification of polymeric vesicles based on inclusion complexation
     A novel kind of vesicle,which is reactive in supramolecular chemistry, was prepared throughβ-CD-ended polyetherimide in water.On both the outer and inner surfaces of the vesicles,β-CD cavities are available for further surface modification via inclusion complexation betweenβ-CD and adamantane-monoended PEG with different molecular weights.This study opens a new,simple,mild avenue to the surface modification and functionalization of the vesicles,which of course would promote their applications in various areas.
     2.Low molecular weight PEG/α-CD based native and SiO_2 nanoparticle hybrid supramolecular hydrogels
     As quite generally stated in the literatures,low-molecular-weight(MW) poly(ethylene glycol)(PEG)(Mn less than 2K) andα-cyclodextrin(α-CD) can lead to only crystalline precipitates(not hydrogels).However,in this study we found that:(1) adamantane monoend-functionalized low-MW PEG(Ada-PEG, Mn=1.1 or 2K) andα-CD lead to hydrogels but not to crystalline precipitates and(2)β-cyclodextrin(β-CD) surface-functionalized silica nanoparticles (β-CD-SiO_2) can be well dispersed in low-MW Ada-PEG andα-CD aqueous mixtures,resulting in hybrid hydrogels.The hydrophobic aggregation of Ada-PEG in case 1 and the further functionalization ofβ-CD-SiO_2 with PEG chains due to the inclusion complexation betweenβ-CD and the Ada group attached to PEG in case 2 were found to play a key role as a supra-cross-linker (SCL) that promoted the gelation of the inclusion complexes ofα-CD and the low-MW Ada-PEG.
     3.Hybrid supramolecular hydrogels using CdS quantum dots as supra-cross-linkers via host-guest interaction
     Based on the above said SCL concept,a novel versatile and simple method of preparing QD hybrid supramolecular hydrogels usingβ-CD capped QDs as a Supra-Cross-Linker(SCL) via host-guest interaction was proposed in this part,. The QDs were stably fixed in the hydrogels by inclusion complexation rather than chemical bonding.Using this method,new nanostructured hybrid hydrogels can be prepared by copolymerization of the SCLs with water soluble monomers.The present hybrid hydrogels are transparent and homogenous, which benefits their applications in optical devices and biomaterials.
     4.CdS quantum dots hybrid water soluble supramolecular polymer network based on inclusion complexation
     In this part,a novel kind of water soluble organic-inorganic hybrid 3D supramolecular polymer network was constructed using the inclusion complexation interaction betweenβ-CD and adamantane andβ-CD capped CdS quantum dots as the driving force and supra-cross-linker,respectively. The hybrid network structure was characterized by TEM and AFM.The fluorescent experiments showed that the formation of the network structure did not destroy the surface structure of the quantum dots,and can improve the fluorescent strength of the quantum dots.
引文
[1]Szejtli,J.,Introduction and General Overview of Cyclodextrin Chemistry,Chem.Rev.1998,98(5),1743-1753.
    [2]Harada,A.,Cyclodextrin-Based Molecular Machines,Acc.Chem.Res.2001,34(6),456-464.
    [3]刘育,尤长城,张衡益,超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2001,p168-290.
    [4]童林荟,环糊精化学-基础与应用,北京,科学出版社,2001,p10-11.
    [5]Bender,M.L.,Komiyama,M.,Cyclodextrin Chemistry,NY:Springer-Verlag,1978.
    [6]Jozsef,S.,Cyclodextrin Technology,Dordrech/Boston/London:Kluwer Academic Press,1988.
    [7]Fromming,K.H.,Szejtli,J.,Cyclodextrins in Pharmacy,Netherlands:Kluwer Academic Press,1994.
    [8]Szijtli,J.,Osa,T.,Comprehensive Supramolecular Chemistry,Pergamon:Oxford UK,1996.
    [9]Connors,K.A.,The Stability of Cyclodextrin Complexes in Solution,Chem.Rev.1997,97(5),1325-1358.
    [10]Engeldinger,E.,Armspach,D.,Matt,D.,Capped Cyclodextrins,Chem.Rev.2003,103(11),4147-4174.
    [11]Hapiot,F.,Tilloy,S.,Monflier,E.,Cyclodextrins as Supramolecular Hosts for Organometallic Complexes,Chem.Rev.2006,106(3),767-781.
    [12]Wenz,G.,Han,B.H.,Muller,A.,Cyclodextrin Rotaxanes and Polyrotaxanes,Chem.Rev.2006,106(3),782-817.
    [13]Saenger,W.,Cyclodextrin Inclusion Compounds in Research and Industry,Angew.Chem.Int.Ed.1980,19(5),344-362.
    [14]Nelson,G.,Patonay,G.,Warner,I.M.,Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes,Appl.Spectroscopy.1987,41(7),1235-1238.
    [15]Palepu,R.,Reinsorough,V.C.,Beta-Cyclodextrin Inclusion of Adamantane Derivatives in Solution,Aust.J.Chem.1990,43(12),2119-2123.
    [16]Isnin,R.,Salam,C.,Kaifer,A.E.,Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing n-Alkyl Chains of Varying Length,J. Org.Chem.1991,56(1),35-41.
    [17]Harada,A.,Takahashi,S.,Preparation and Properties of Inclusion-Compounds of Cyclodextrins with Organotransition Metal-Complexes,J.Macromol.Sci-Chem.1989,A26(2-3),373-380.
    [18]Asanuma,H.,Kakazu,M.,Shibata,M.,Molecularly Imprinted Polymer of Beta-Cyclodextrin for the Efficient Recognition of Cholesterol,Chem.Commun.1997,(20),1971-1972.
    [19]Akihiko,U.,Iwao,S.,Tetsuo,O.,Host-Guest Sensory Systems for Detecting Organic Compounds by Pyrene Excimer Fluorescence,Anal.Chem.1990,62(22),2461-2466.
    [20]Sato,S.I.,Nakamura,T.,Nitobe,S.,Kiba,T.,Hosokawa,K.,Kasajima,T.,Otsuka,I.,Akimoto,S.,Kakuchi,T.,J.Phys.Chem.B.2006,110(43),21444-21449.
    [21]Yang,C.,Nakamura,A.,Wada,T.,Inoue,Y.,Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by Gamma-Cyclodextrins with a Flexible or Rigid Cap,Org.Lett.2006,8(14),3005-3008.
    [22]Holm,R.,Hartvig,R.A.,Nicolajsen,H.V,Westh,P.,Ostergaard,J.,Characterization of the Complexation of Tauro- and Glyco-Conjugated Bile Salts with Gamma-Cyclodextrin and 2-Hydroxypropyl-Gamma-Cyclodextrin Using Affinity Capillary Electrophoresis,J.Inclusion Phenom.Macrocyclic Chem.2008,61(1-2),161-169.
    [23]Harada,A.,Li,J.,Kamachi,M.,Preparation and Properties of Inclusion Complexes of Polyethylene Glycol with Alpha-Cyclodextrin,Macromolecules 1993,26(1),5698-5703.
    [24]Kawaguchi,Y.,Nishiyama,T.,Okada,M.,Kamachi,M.,Harada,A.,Complex Formation of Poly(ε-caprolactone) with Cyclodextrins,Macromolecules 2000,33(12),4472-4477.
    [25]Harada,A.,Okada,M.,Li,J.,Kamachi,M.,Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins,Macromolecules 1995,28(24),8406-8409.
    [26]Harada,A.,Okada,M.,Complex Formation between Hydrophobic Polymers and Methylated Cyclodextrins,Oligo(ethylene) and Poly(propylene), Polym. J. 1999, 31(11), 1095-1098.
    [27] Harada, A., Li, J., Kamachi, M., Complex-Formation between Poly(methyl vinyl ether) and Gamma-Cyclodextrin, Chem. Lett. 1993, (2),237-240.
    [28] Okumura, H., Okada, M., Kawaguchi, Y., Harada, A., Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins: New Pseudo-Polyrotaxanes Containing Inorganic Polymers, Macromolecules 2000, 33(12), 4297-4298.
    [29] Harada, A., Suzuki, S., Okada, M., Kamachi, M., Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins, Macromolecules 1996, 29(17), 5611-5614.
    [30] Konstantin, A.U., Lee, D.W., John, A. R., Solid Polyrotaxanes of Polyethylene Glycol and Cyclodextrins: The Single Crystal X-ray Structure of PEG-β-cyclodextrin, J. Am. Chem. Soc. 2000, 122(49),12375-12376.
    [31] Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P.,Supramolecular Polymers, Chem. Rev. 2001, 101 (12),4071-4097.
    [32] Lehn, J.M., Supramolecular Polymer Chemistry-Scope and Perspectives,Polym. Int. 2002, 51(10), 825-839.
    [33] Ciferri, A., Supramolecular polymers. 2nd ed. Boca raton/London/NY/Singapore: CRC, 2005.
    [34] Folmer, B.J.B., Sijbesma, R.P., Versteegen, R.M., van der Rijt, J.A.J.,Meijer, E.W., Supramolecular Polymer Materials: Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon,Adv.Mater. 2000,12(12), 874-878.
    [35] Lohmeijer, B.G.G., Schubert, U.S., Supramolecular Engineering with Macromolecules: An Alternative Concept for Block Copolymers, Angew.Chem. Int. Ed. 2002, 41(20), 3825-3829.
    [36] van der Schoot, P., Michels, M.A.J., Brunsveld, L., Sijbesma, R.P., Ramzi,A., Helical Transition and Growth of Supramolecular Assemblies of Chiral Discotic Molecules, Langmuir 2000, 16(26), 10076-10083.
    [37] Gale, P.A., Navakhun, K., Camiolo, S., Light, M.E., Hursthouse, M.B.,Anion-Anion Assembly: A New Class of Anionic Supramolecular Polymer Containing 3,4-Dichloro-2,5-diamido -substituted Pyrrole Anion Dimers, J. Am. Chem. Soc. 2002, 724(38), 11228-11229.
    [38] Michael, J. S., Stephen, L. C, Physical Organic Chemistry of Supramolecular Polymers, Langmuir 2007, 23(4), 1626-1634.
    [39] Miyauchi, M., Harada, A., Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests, J. Am. Chem. Soc. 2004, 126(37),11418-11419.
    [40] Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A., Chiral Supramolecular Polymers Formed by Host-Guest Interactions, J. Am.Chem. Soc. 2005, 127(9), 2984-2989.
    [41] Hasegawa, N., Miyauchi, M., Takashima, Y, Yamaguchi, H., Harada, A.,Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers, Macromolecules 2005, 38(9),3724-3730.
    [42] Miyauchi, M., Hoshino, T., Yamaguchi, H., Kamitori, S., Harada, A., A [2]Rotaxane Capped by a Cyclodextrin and a Guest: Formation of Supramolecular [2]Rotaxane Polymer, J. Am. Chem. Soc. 2005, 127(7),2034-2035.
    [43] Takahashi, H., Takashima, Y., Yamaguchi, H., Harada, A., Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrin-β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimmers, J. Org. Chem. 2006, 71(13), 4878-4883.
    [44] Ohga, K., Takashima, Y., Takahashi, H., Kawaguchi, Y., Yamaguchi, H., Harada, A., Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility, Macromolecules 2005, 38(14), 5897-5904.
    [45] Kuad, P., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.,External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer, J. Am. Chem. Soc. 2007, 129(42),12630-12631.
    [46] Liu, Y., Chen, Y., Cooperative Binding and Multiple Recognition by Bridged Bis(α-Cyclodextrin)s with Functional Linkers, Acc. Chem. Res.2006,39(10), 681-691.
    [47] Liu, Y., Fan, Z., Zhang, H. Y., Yang, Y.W., Ding, F., Liu, S.X., Wu, X., Wada, T., Inoue, Y., Supramolecular Self-Assemblies of β-Cyclodextrins with Aromatic Tethers: Factors Governing the Helical Columnar versus Linear Channel Superstructures,J. Org. Chem. 2003, 68(22), 8345- 8352.
    [48] Liu, Y., Fan, Z., Zhang, H.Y., Diao, C.H., Binding Ability and Self-Assembly Behavior of Linear Polymeric Supramolecules Formed by Modifiedp-Cyclodextrin, Org. Lett. 2003, 5(3), 251-254.
    [49] Liu, Y., Li, L., Fan, Z., Zhang, H.Y., Wu, X., Guan, X.D., Liu, S.X.,Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative, Nano. Lett. 2002, 2(4), 257-261.
    [50] Liu, Y., Yang, Z.X., Chen, Y., Syntheses and Self-Assembly Behaviors of the Azobenzenyl Modified β-Cyclodextrins Isomers, J. Org. Chem. 2008,73(14), 5298-5304.
    [51] Liu, Y., Zhao, Y.L., Zhang, H.Y., Recognition-Induced Supramolecular Porous Nanosphere Formation from Cyclodextrin Conjugated by Cholic Acid, Langmuir 2006, 22(7), 3434-3438.
    [52] Liu, Y., Chen, G.S., Chen, Y., Zhang, N., Chen, J., Zhao, Y.L.,Bundle-Shaped Cyclodextrin-Tb Nano-Supramolecular Assembly Mediated by C60: Intramolecular Energy Transfer, Nano Lett. 2006, 6(10),2196-2200.
    [53] Liu, Y., Ke, C.F., Zhang, H.Y., Cui, J., Ding, F., Complexation-Induced Transition of Nanorod to Network Aggregates: Alternate Porphyrin and Cyclodextrin Arrays, J. Am. Chem. Soc. 2008, 130(2), 600-605.
    [54] Tellini, V.H.S., Jover, A., Tato, J.V., Galantini, L., Meijide, F., Tato, J. V.,Thermodynamics of Formation of Host-Guest Supramolecular Polymers,J. Am. Chem. Soc. 2006, 128(7), 5728-5734.
    [55] Leggio, C, Anselmi, M., Nola, A.D., Galantini, B., Jover, A., Meijide, F.,Pavel, N.V., Tellini, V.H.S., Tato, J.V., Study on the Structure of Host-Guest Supramolecular Polymers, Macromolecules 2007, 40(16),5899-5906.
    [56] Galantini, L., Jover, A., Leggio, C, Meijide, F., Pavel ,N.V., Tellini,V.H.S., Tato, J.V., Tortolini, C, Early Stages of Formation of Branched Host-Guest Supramolecular Polymers, J. Phys. Chem. B 2008, 112(29),8536-8541.
    [57]Ogino,H.,Relatively High-Yield Syntheses of Rotaxanes.Syntheses and Properties of Compounds Consisting of Cyclodextrins Threaded by Alpha,Omega-Diaminoalkanes Coordinated to Cobalt(Ⅲ) Complexes,J.Am.Chem.Soc.1981,103(5),1303-1304.
    [58]Nepogodiev,S.A.,Stoddar,J.F.,Cyclodextrin-Based Catenanes and Rotaxanes,Chem.Rev.1998,98(5),1959-1976.
    [59]Harada,A.,Kamachi,M.On a Controversy about Interpretation of Nuclear Magnetic Resonance Observations in Poly-(dimethylsiloxan)Networks Cross-linked in Solution,Macromolecules 1990,23(10),2823-2824.
    [60]Harada,A.,Li,J.,Kamachi,M.,The Molecular Necklace:a Rotaxane Containing many Threaded Cyclodextrins,Nature 1992,356(6367),325-327.
    [61]Harada,A.,Li,J.,Kamachi,M.,Synthesis of a Tublar Polymer from Threaded Cyclodextrins,Nature 1993,364(6437),516-518.
    [62]Harada,A.,Li,J.,Kamachi,M.,Double-stranded Inclusion Complexes of Cyclodextrins Threaded on Poly(ethylene glycol),Nature 1994,370(6485),126-128.
    [63]Harada,A.,Li,J.,Suzuki,S.,Complex Formation between Polyisobutylene and Cyclodextrins:Inversion of Chain-length Selectivity between Beta-Cyclodextrin and Gamma-cyclodextrin,Macromolecules 1998,26(19),5267-5268.
    [64]Okada,M.,Kamachi,M.,Harada,A.,Preparation and Characterization of Inclusion Complexes between Methylated Cyclodextrins and Poly(tetrahydrofuran),Macromolecules 1999,32(21),7202-7207.
    [65]Kawaguchi,Y.,Harada,A.,A Cyclodextrin-Based Molecular Shuttle Containing Energetically Favored and Disfavored Portions in Its Dumbbell Component,Org.Lett.2000,2(10),1353-1356.
    [66]Kamitori,S.,Matsuzaka,O.,Kondo S.,Muraoka,S.,Okuyama,K.,Noguchi,K.,Okada,M.,Harada,A.,A Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer:Crystal Structures of Inclusion Complexes of β-Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol),Macromolecules 2000,33(5),1500 -1502.
    [67] Miyake, K., Yasuda, S., Harada, A., Sumaoka, J., Komiyama, M.,Shigekawa, H., Formation Process of Cyclodextrin Necklace-Analysis of Hydrogen Bonding on a Molecular Level, J. Am. Chem. Soc. 2003,125(17), 5080-5085.
    [68] Harada, A., Preparation and Structures of Supramolecules between Cyclodextrins and Polymers, Coordin. Chem. Rev. 1996, 148, 115-133.
    [69] Harada, A., Design and Construction of Supramolecular Architectures Consisting of Cyclodextrins and Polymers, Adv. Polym. Sci. 1997, 133,141-191.
    [70] Harada, A., Hashidzume, A., Takashima, Y., Cyclodextrin-Based Supramolecular Polymers, Adv. Polym. Sci. 2006, 201, 1-43.
    [71] Takashima, Y., Sakamoto, K., Oizumi, Y., Yamaguchi, H., Kamitori, S.,Harada, A., Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes Containing Poly(thiophene)s, J. Inclu. Phenom. Macro. Chem. 2006, 56(1-2), 45-53.
    [72] Sakamoto, K., Takashima, Y., Yamaguchi, H., Harada, A., Preparation and Properties of Rotaxanes Formed by Dimethyl-α-Cyclodextrin and Oligo(thiophene)s with α-Cyclodextrin Stoppers, J. Org. Chem. 2007,72(2), 459-465.
    [73] Osaki, M., Takashima, Y., Yamaguchi, H., Harada, A., An Artificial Molecular Chaperone: Poly-pseudo-rotaxane with an Extensible Axle, J.Am. Chem. Soc. 2007, 129(46), 14452-14457.
    [74] Okada, M., Harada, A., Preparation of β-Cyclodextrin Polyrotaxane:Photodimerization of pseudo-Polyrotaxane with 2-Anthryl and Triphenylmethyl Groups at the Ends of Poly(propylene glycol), Org. Lett.2004, 6(3), 361-364.
    [75] Okada, M., Harada, A., Poly(polyrotaxane): Photoreactions of 9-Anthracene-Capped Polyrotaxane, Macromolecules 2003, 36(26),9701-9703.
    [76] Okada, M., Takashima, Y., Harada, A., One-Pot Synthesis of γ-Cyclodextrin Polyrotaxane: Trap of γ-Cyclodextrin by Photodimerization of Anthracene-Capped pseudo-Polyrotaxane, Macromolecules 2004, 37(19), 7075-7077.
    [77] Liu, Y., Yang, Y.W., Chen, Y., Zhou, H.X., Polyrotaxane with Cyclodextrins as Stoppers and Its Assembly Behavior, Macromolecules 2005, 38(13), 5838-5840.
    [78] Liu, Y., Zhao, Y.L., Zhang, H.Y., Li, X.Y., Liang, P., Zhang, X.Z., Xu,J.J., Supramolecular Polypseudorotaxane with Conjugated Polyazomethine Prepared Directly from Two Inclusion Complexes of β-Cyclodextrin with Tolidine and Phthaldehyde, Macromolecules 2004,37(17), 6362-6369.
    [79] Yang, Y.W., Chen, Y., Liu, Y., Linear Polypseudorotaxanes Possessing Many Metal Centers Constructed from Inclusion Complexes of α-, β-, and γ-Cyclodextrins with 4, 4'-Dipyridine, Inorg. Chem. 2006, 45(7),3014-3022.
    [80] Liu, Y., You, C.C., Zhang, H.Y.,Kang, S.Z., Zhu, C.F., Wang, C,Bis(molecular tube)s: Supramolecular Assembly of Complexes of Organoselenium-Bridged β-Cyclodextrins with Platinum(Ⅳ), Nano. Lett.2001, 1(11), 613-616.
    [81] Liu, Y., Li, L., Zhang, H. Y., Zhao, Y.L., Wu, X.,Bis(pseudopolyrotaxane)s Possessing Copper(Ⅱ) Ions Formed by Different Polymer Chains and Bis(P-cyclodextrin)s Bridged with a 2,2'-Bipyridine-4,4'-Dicarboxy Tether, Macromolecules 2002, 35(27),9934-9938.
    [82] Liu, Y., Song, Y., Wang, H., Zhang, H.Y. Li, X.Q.,Bis(polypseudorotaxane)s Formed by Multiple Metallo-Bridged β-Cyclodextrins and the Thermodynamic Origin of Their Molecular Aggregation, Macromolecules 2004, 37(17), 6370-6375.
    [83] Liu, Y., Liang, P., Chen, Y., Zhang, Y.M., Zheng, J.Y., Yue, H.,Interlocked Bis(polyrotaxane) of Cyclodextrin-Porphyrin Systems Mediated by Fullerenes, Macromolecules 2005, 38(22), 9095-9099.
    [84] Liu, Y., Yang, Z.X., Chen, Y., Song, Y., Shao, N., Construction of a Long Cyclodextrin-Based Bis(molecular tube) from Bis(polypseudorotaxane) and Its Capture of C60, ACS Nano 2008, 2(3), 554-560.
    [85] Liu, Y., Ke, C. F., Zhang, H.Y., Wu, W.J., Shi, J., Reversible 2D Pseudopolyrotaxanes Based On Cyclodextrins and Cucurbit[6]uril, J. Org. Chem. 2007, 72(1), 280-283.
    [86] Liu, Y., Zhao, Y.L., Chen, Y., Wang, M., Supramolecular Assembly of Gold Nanoparticles Mediated by Polypseudorotaxane with Thiolated β-Cyclodextrin, Macromol. Rapid Commun. 2005, 26(5), 401-406.
    [87] Liu, Y., Wang, H., Chen, Y., Ke, C.F., Liu, M., Supramolecular Aggregates Constructed from Gold Nanoparticles and L-Try-CD Polypseudorotaxanes as Captors for Fullerenes, J. Am. Chem. Soc. 2005,127(2), 657-666.
    [88] Liu, Y., Yu, L., Chen, Y., Zhao, Y.L., Yang, H., Construction and DNA Condensation of Cyclodextrin-Based Polypseudorotaxanes with Anthryl Grafts, J. Am. Chem. Soc. 2007,129(35), 10656-10657.
    [89] Liu, Y., Yu, Z. L., Zhang, Y. M., Guo, D. S., Liu, Y. P., Supramolecular Architectures of β-Cyclodextrin-Modified Chitosan and Pyrene Derivatives Mediated by Carbon Nanotubes and Their DNA Condensation,J. Am. Chem. Soc. 2008, 130(31), 10431-10439.
    [90] Fujita, H., Ooya, T., Yui, N., Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of Beta-Cyclodextrins and Poly(ethylene glycol)-Poly(propylene glycol) Triblock Copolymer,Macromolecules 1999, 32 (8), 2534-2541.
    [91] Li, J., Ni, X.P., Leong, K., Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly (ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and Alpha-Cyclodextrin, Angew. Chem. Int. Edit. 2003, 42 (1), 69-72.
    [92] Fujita, H., Ooya, T., Yui, N., Synthesis and Characterization of a Polyrotaxane Consisting of Beta-Cyclodextrins and a Poly(ethylene glycol) Poly(propylene glycol) Triblock Copolymer, Macromol. Chem. Phys. 1999, 200(4), 706-713.
    [93] Mayer, B., Klein, C.T., Topchieva, I.N., Kohler, G., Selective Assembly of Cyclodextrins on Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers, J. Comput. Aided Mol. Des. 1999, 13 (4), 373-383.
    [94] Olson, K., Chen, Y.Y., Baker, G.L., Inclusion Complexes of Alphacyclodextrin and (AB)(n) Block Copolymers, J. Polym. Sci. Pol.Chem. 2001, 39 (16), 2731-2739.
    [95] Li, J., Li, X., Toh, K.C., Ni, X.P., Zhou, Z.H., Leong, K.W., Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene oxide)-ran-(propylene oxide)]and Cyclodextrins,Macromolecules 2001,34(26),8829-8831.
    [96]Li,J.,Ni,X.P.,Zhou,Z.H.,Leong,K.W.,Preparation and Characterization of Polypseudorotaxanes based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and Alpha-Cyclodextrin,J.Am.Chem.Soc.2003,125(7),1788-1795.
    [97]Li,X.,Li,J.,Leong,K.W.,Preparation and Characterization of Cnclusion Complexes of Biodegradable Amphiphilic Poly(ethylene oxide)-Poly[(R)-3-hydroxybutyrate]-Poly(ethylene oxide) Triblock Copolymers with Cyclodextrins,Macromolecules 2003,36(4),1209-1214.
    [98]Li,X.,Li,J.,Leong,K.W.,Role of Intermolecular Interaction between Hydrophobic Blocks in Block-Selected Inclusion Complexation of Amphiphilic Poly(ethylene oxide)-Poly[(R)-3-hydroxybutyrate]-Poly (ethylene oxide) Triblock Copolymers with Cyclodextrins,Polymer 2004,45(20),6845-6851.
    [99]Liu,K.L.,Goh,S.H.,Li,J.,Threading R-Cyclodextrin through Poly [(R,S)-3-hydroxybutyrate]in Poly[(R,S)-3-hydroxybutyrate]-Poly (ethylene glycol)-Poly[(R,S)-3-hydroxybutyrate]Triblock Copolymers:Formation of Block-Selected Polypseudorotaxanes,Macromolecules 2008,41(16),6027-6034.
    [100]Li,J.,Chen,B.,Wang,X.,Goh,S.H.,Preparation and Characterization of Inclusion Complexes Formed by Biodegradable Poly(epsilon-caprolactone)-Poly(tetrahydrofuran)-Poly(epsilon-caprolactone) Triblock Copolymer and Cyclodextrins,Polymer 2004,45(6),1777-1785.
    [101]Lee,S.C.,Choi,H.S.,Ooya,T.,Yui,N.,Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation,Macromolecules 2004,37(20),7464-7468.
    [102]Choi,H.S.,Ooya,T.,Yui,N.,One-Pot Synthesis of a Polyrotaxane via Selective Threading of a PEI-b-PEG-b-PEI Copolymer,Macromol.Biosci.2006,6(6),420-424.
    [103]Shuai,X.T.,Porbeni,F.E.,Wei,M.,Shin,I.D.,Tonelli,A.E.,Formation of and Coalescence from the Inclusion Complex of a Biodegradable Block Copolymer and Alpha-Cyclodextrin: a Novel Means to Modify the Phase Structure of Biodegradable Block Copolymers, Macromolecules 2001,34(21), 7355-7361.
    [104]Shuai, X.T., Porbeni, F.E., Wei, M., Bullions, T., Tonelli, A.E., Inclusion Complex Formation between Alpha-, Gamma-Cyclodextrins and a Triblock Copolymer and the Cyclodextrin-type-dependent Microphase Structures of their Coalesced Samples, Macromolecules 2002, 35(6),2401-2405.
    [105]Lu, J., Mirau, P.A., Shin, I.D., Nojima, S., Tonelli, A.E., Molecular Motions in the Supramolecular Complexes between Poly (epsilon-caprolactone) -Poly(ethylene oxide)-Poly(epsilon-caprolactone) and Alpha- and Gamma-Cyclodextrins, Macromol. Chem. Phys. 2002,203(1), 71-79.
    [106]Choi, H.S., Ooya, T., Sasaki, S., Yui, N., Ohya, Y., Nakai, T., Ouchi, T.,Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(L-lactide) /Poly(ethylene glycol) Triblock Copolymers, Macromolecules 2003, 36(25), 9313-9318.
    [107]Cheng, C.X., Tang, R.P., Xi, F., Preparation and Aggregation of Polypseudorotaxane from Dendronized Poly(methacrylate)-Poly(ethylene oxide) Diblock Copolymer and α-Cyclodextrin, Macro. Rapid Commun.2005, 26(9), 744-749.
    [108]He, L.H., Huang, J., Chen, Y.M., Liu, L., Inclusion Complexation between Comblike PEO Grafted Polymers and α-Cyclodextrin, Macromolecules 2005, 38(8), 3351-3355.
    [109]He, L.H., Huang, J., Chen, Y.M., Xu, X., Liu, L., Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and α-Cyclodextrin, Macromolecules 2005, 38(9), 3845-3851.
    [110]Zhu, X.Y, Chen, L., Yan, D.Y., Chen, Q., Yao, Y., Xiao, Y, Hou, J., Li, J.,Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins, Langumir 2004, 20(2),484-490.
    [111]Wang, L., Wang, J.L., Dong, CM., Preparation and Characterization of Inclusion Complexes of Two-arm Linear and Four-arm Star-shaped Poly(epsilon-caprolactone)s with Alpha-Cyclodextrin,Chin.J.Polym.Sci.2006,24(3),245-252.
    [112]Dai,X.H.,Dong,C.M.,Fa,H.B.,Yah,D.Y,Wei,Y.,Supramolecular Polypseudorotaxanes Composed of Star-Shaped Porphyrin-Cored Poly(ε-caprolactone) and α-Cyclodextrin,Biomacromolecules 2006,7(12),3527-3533.
    [113]Wang,L.,Wang,J.L.,Dong,C.M.,Supramolecular Inclusion Complexes of Star-shaped Poly(ε-caprolactone) with α-Cyclodextrin,J.Polym.Sci:Part A.2005,43(20),4721-4730.
    [114]Huang,J.,Li,Z.Y.,Xu,X.W.,Ren,Y.,Huang,J.L.,Preparation of Novel Poly(ethylene oxide-co-glycidol)-Graft-Poly(ε-caprolactone) Copolymers and Inclusion Complexation of the Grafted Chains with α-cyclodextrin,J.Polym.Sci:Part A.2006,44(11),3684-3691.
    [115]Chan,S.C.,Kuo,S.W.,Chang,F.C.,Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins,Macromolecules 2006,38(8),3099-3107.
    [116]Sabadini,E.,Cosgrove,T.,Inclusion Complex Formed between Star-Poly(ethylene glycol) and Cyclodextrins,Langmuir 2003,19(23),9680-9683.
    [117]Okumura,Y.,Ito,K.,Hayakawa,R.,Self-Assembling Dendritic Supramolecule of Molecular Nanotubes and Starpolymers,Langmuir 2000,16(26),10278-10280.
    [118]Huang,J.C.,Li,X.,Lin,T.T.,He,C.B.,Mya,K.Y.,Xiao,Y.,Li,J.,Inclusion Complex Formation between Alpha-,Beta-cyclodextrins and Organic-Inorganic Star-shaped Poly(ethylene glycol) from an Octafunctional Silsesquioxane Core,J.Polym.Sci.,Part B,Polym.Phys.2004,42(7),1173-1180.
    [119]Li,J.,Harada,A.,Kamachi,M.,Sol-gel Transition during Inclusion Complex Formation between Alpha-Cyclodextrin and High-Molecular-Weight Poly(ethylene glycol)s in Aqueous-Solution,Polym.J.1994,26(9),1019-1026.
    [120]Li,J.,Ni,X.P.,Leong,K.W.,Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide) and alphacyclodextrin,J.Biomed.Mater.Res.Part A 2003,65A(2),196-202.
    [121]Yu, L., Ding, J.D, Injectable Hydrogels as Unique Biomedical Materials,Chem. Soc. Rev. 2008, 37(8), 1473-1481.
    [122]Kataoka, T., Kidowaki, M., Zhao, C, Minamikawa, H., Shimizu, T., Ito,K., Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated α-Cyclodextrins, J. Phys. Chem. B. 2006, 110(48), 24377-24383.
    [123]Choi, H.S., Ooya, T., Sasaki, S., Yui, N., Kurisawa, M., Uyama, H.,Kobayashi, S., Spontaneous Change of Physical State from Hydrogels to Crystalline Precipitates during Polypseudorotaxane Formation,ChemPhysChem. 2004, 5(9), 1431-1434.
    [124]Huh, K.M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui,N., Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and α-Cyclodextrin, Macromolecules 2001, 34(25),8657-8662.
    [125]Choi, H.S., Kontani, K., Huh, K.M., Sasaki, S., Ooya, T., Lee, W.K., Yui,N., Rapid Induction of Thermoreversible Hydrogel Formation Based on Poly(propylene glycol)-Grafted Dextran Inclusion Complexes, Macromol.Biosci. 2002, 2(6), 298-303.
    [126]Huh, K. M., Cho, Y.W., Chung, H., Kwon, I.C., Jeong, S.Y., Ooya, T.,Lee, W.K., Sasaki, S., Yui, N., Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly(ethylene glycol)-Modified Chitosan and α-Cyclodextrin, Macromol. Biosci. 2004,4(2), 92-99.
    [127]Choi, H.S., Yamamoto, K., Ooya, T., Yui, N., Synthesis of Poly(epsilon-lysine) -Grafted Dextrans and their pH- and Thermosensitive Hydrogelation with Cyclodextrins, ChemPhysChem.2005,6(6), 1081-1086.
    [128]Li, J., Li, X., Zhou, Z.H., Ni, X.P., Leong, K.W., Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and Alpha-Cyclodextrin, Macromolecules 2001,34(21),7236-7237.
    [129]Ni, X.P., Cheng, A., Li, J., Supramolecular hydrogels based on selfassembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin, J. Biomed. Mater. Res. Part A. 2009, 88A(4),1031-1036.
    [130]Li, J., Li, X., Ni, X.P., Wang, X., Li, H.Z., Leong, K.W., Self-assembled Supramolecular Hydrogels Formed by Biodegradable PEO-PHB-PEO Triblock Copolymers and Alpha-Cyclodextrin for Controlled Drug Delivery, Biomaterials 2006, 27(22), 4132-4140.
    [131] Li, X., Li, J., Supramolecular Hydrogels Based on Inclusion Complexation between Poly(ethylene oxide)-b-PoIy(e-caprolactone) Diblock Copolymer and α-Cyclodextrin and their Controlled Release Property, J. Biomed. Mater. Res. Part A. 2008, 86A(4), 1055-1061.
    [132]Zhao, S.P., Zhang, L.M., Ma, D., Yang, C, Yan, L., Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly (ε-caprolactone)-Poly(Ethylene Glycol)-Poly(ε-caprolactone) Block Copolymers with α-Cyclodextrin in Aqueous Solutions, J. Phys. Chem. B.2006, 110(25), 16503-16507.
    [133]Wu, D.Q., Wang, T., Lu, B., Xu, X.D., Cheng, S.X., Jiang, X.J., Zhang,X.Z., Zhuo, R.X., Fabrication of Supramolecular Hydrogels for Drug Delivery and Stem Cell Encapsulation, Langmuir 2008, 24(18),10306-10312.
    [134]Jiang, X.J., Wang, T., Li, X.Y., Wu, D.Q., Zheng, Z.B., Zhang, J.F., Chen,J.L., Peng, B., Jiang, H., Huang, C.X., Zhang, X.Z., Injection of Novel Synthetic Hydroel Preserves Left Ventricle Function after Myocardial Infarction,J. Biomed. Mater. Res. Part A. 10.1002/jbm.a.32118
    [135]Sabadini, E., Cosgrove, T., Taweepreda, W., Complexation between α-Cyclodextrin and Poly(ethylene xide) Physically Adsorbed on the Surface of Colloidal Silica, Langmuir, 2003, 19(11), 4812-4816.
    [136]Wang, Z., Chen, Y., Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes, Macromolecules 2007, 40(9),3402-3407.
    [137]Yu, H.Q., Feng, Z.G., Zhang, A.Y., Sun, L.Y., Qian, L.J., Synthesis and Characterization of Three-dimensional Crosslinked Networks Based on Self-assemly of α-Cyclodextrins with Thiolated 4-Arm PEG Using a Three-step Oxidation, Soft Matter 2006, 2(4), 343-349.
    [138]Wei, H.L., Zhang, A.Y., Qian, L. J., Yu, H.Q., Hou, D.D., Qiu, R.G., Feng, Z.G., Supramolecular Structured Hydrogel Preparation Based on Self-Assemblies of Photocurable Star-Shaped Macromers with a-Cyclodextrins, J. Polym. Sci., Part A: Polym. Chem. 2005, 43(13),2941-2949.
    [139]Wei, H.L., Yu, H.Q., Zhang, A.Y., Sun, L.G., Hou, D.D., Feng, Z.G.,Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels, Macromolecules, 2005, 38(21), 8833-8839.
    [140]Wei, H.L., He, J.Y., Sun, L.G., Zhu, K.Q., Feng, Z.G., Gel Formation and Photopolymerization During Supramolecular Self-assemblies of α-CDs with LA-PEG-LA Copolymer End-capped with Methacryloyl Groups, Eur. Polym. J. 2005, 41(5), 948-957.
    [141]Zhao, S.P., Zhang, L.M., Ma, D., Yang, C., Yan, L., Fabrication of Novel Supramolecular Hydrogels with High Mechanical Strength and Adjustable Thermosensitivity, J. Phys. Chem. B. 2006, 110(33),16503-16507.
    [142]Okumura, Y., Ito, K., The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, Adv. Mater. 2001, 13(7), 485-487.
    [143]Granick, S., Rubinstein, M., A multitude of macromolecules, Nature Mater. 2004, 3(9), 586-587.
    [144]Ichi, T., Watanabe, J., Ooya, T., Yui, N., Controllable Erosion Time and Profile in Poly(ethylene glycol) Hydrogels by Supramolecular Structure of Hydrolyzable Polyrotaxane, Biomacromolecules 2001, 2(1), 204-210.
    [145]Fleury, G., Schlatter, G., Brochon, C., Hadziioannou, G., From High Molecular Weight Precursor Polyrotaxanes to Supramolecular Sliding Networks. The 'sliding gels', Polymer 2005, 46(19), 8494-850.
    [146]Samitsu, S., Araki, J., Kataoka, T., Ito, K., New Solvent for Polyrotaxane. Ⅱ. Dissolution Behavior of Polyrotaxane in Ionic Liquids and Preparation of Ionic Liquid-Containing Slide-Ring Gels, J. Polym. Sci.: Part B:Polym.Phys. 2006, 44(14), 1985-1994.
    [147]Sakai, T., Murayama, H., Nagano, S., Takeoka, Y., Kidowaki, M., Ito, K.,Seki, T., Photoresponsive Slide-Ring Gel, Adv. Mater. 2007, 19(15),2023-2025.
    [148]Karaky, K., Brochon, C., Schlatter, G., Hadziioannou, G, pH-Switchable supramolecular sliding gels based on polyrotaxanes of polyethyleneimine -block-poly(ethylene oxide)-block-polyethyleneimine block copolymer and α-cyclodextrin:synthesis and swelling behaviour,Soft Matter 2008,4(6),1165-1168.
    [149]Araki,J.,Kataoka,T.,Ito,K.,Preparation of a "sliding graft copolymer",an organic solvent-soluble polyrotaxane containing mobile side chains,and its application for a crosslinked elastomeric supramolecular film,Soft Matter 2008,4(2),245-249.
    [150]Murayama,H.,Imran,A.B.,Nagano,S.,Seki,T.,Kidowaki,M.,Ito,K.,Takeoka,Y.,Chromic Slide-Ring Gel Based on Reflection from Photonic Bandgap,Macromolecules 2008,41(5),1808-1814.
    [151]Zhao,C.M.,Domon,Y.,Okumura,Y.,Okabe,S.,Shibayama,M.,Ito,K.,Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel,J.Phys.:Condens.Matter.2005,17(31),S2841-2846.
    [152]Karino,T.,Shibayama,M.,Okumura,Y.,Ito,K.,SANS study on pulley effect of slide-ring gel,Phys B.2006,385-386,807-809.
    [153]Karino,T.,Shibayama,M.,Ito,K.,Slide-ring gel:Topological gel with freely movable cross-links,Phys.B 2006,385-386(Part 1),692-696.
    [154]Shinohara,Y.,Kayashima,K.,Okumura,Y.,Zhao,C.M.,Ito,K.,Amemiya,Y.,Small-Angle X-ray Scattering Study of the Pulley Effect of Slide-Ring Gels,Macromolecules 2006,39(21),7386-7391.
    [155]Karino,T.,Okumura,Y.,Ito,Kohzo,Shibayama,M.,SANS Studies on Spatial Inhomogeneities of Slide-Ring Gels,Macromolecules 2004,37(16),6177-6182.
    [156]Karino,T.,Okumura,Y.,Zhao,C.M.,Kataoka,T.,Ito,K.,Shibayama,M.,SANS Studies on Deformation Mechanism of Slide-Ring Gel,Macromolecules 2005,38(14),6161-6167.
    [157]Fleury,G.,Schlatter,G.,Brochon,C.,Travelet,C.,Lapp,A.,Lindner,P.,Hadziioannou,G.,Topological Polymer Networks with Sliding Cross-Link Points:The "Sliding Gels".Relationship between Their Molecular Structure and the Viscoelastic as Well as the Swelling Properties,Macromolecules 2007,40(3),535-543.
    [158]Samitsu,S.,Araki,J.,Shimomura,T.,Ito,K.,Synthesis of a Molecular Tube in Dimethyl Sulfoxide and Its Inclusion Complexation Behavior with Poly(ethylene oxide-ran-propylene oxide),Macromolecules 2008, 41(14), 5385-5392.
    [159]Ohira, A., Ishizaki, T., Sakata, M., Taniguchi, I., Hirayama, C, Kunitake,M., Formation of the 'Nanotube' Structure of β-Cyclodextrin on Au(Ⅲ)Surfaces Induced by Potential Controlled Adsorption, Colloids Surf. A 2000, 169(1-3), 27-33.
    [160]Ohira, A., Sakata, M., Taniguchi, I., Hirayama, C, Kunitake, M.,Comparison of Nanotube Structures Constructed from α-, β-, and γ-Cyclodextrins by Potential-Controlled Adsorption, J. Am. Chem. Soc. 2003, 125(17), 5057-5065.
    [161]Shimomura, T., Akai, T., Abe, T., Ito, K., Atomic Force Microscopy Observation of Insulated Molecular Wire Formed by Conducting Polymer and Molecular Nanotube, J. Chem. Phys. 2002, 116(5), 1573-1576.
    [162]Ikeda, T., Ooya, T., Yui, N., Inclusion Complexation of Fractionated α-Cyclodextrin Molecular Tube with Sodium Dodecyl Sulfate, Polym. Adv. Technol. 2000, 11(8-12), 830-836.
    [163]Ikeda, T., Hirota, E., Ooya, T., Yui, N., Thermodynamic Analysis of Inclusion Complexation between γ-Cyclodextrin-Based Molecular Tube and Sodium Alkyl Sulfonate, Langmuir 2001, 17(1), 234-238.
    [164]Ooya, T., Kobayashi, N., Ichi, T., Sasaki, S., Yui, N., Hydrogels Having Tubular α-Cyclodextrin Structure: Effect of Nano-tube Structure on Long Alkyl Chain Partitions, Sci. Technol. Adv. Mater. 2003, 4(1), 39-42.
    [165]Okumura, Y., Ito, K., Hayakawa, R., Nishi, T., Self-Assembling Dendritic Supramolecule of Molecular Nanotubes and Starpolymers, Langmuir 2000, 16(26), 10278-10280.
    [166]Karlson, L., Thuresson, K., Lindman, B., Cyclodextrins in Hydrophobically Modified Poly(ethylene glycol) Solutions: Inhibition of Polymer-Polymer Associations, Langmuir 2002, 18(23), 9028-9034.
    [167]Gaitano, G.G., Brown, W., Tardajos, G., Inclusion Complexes between Cyclodextrins and Triblock Copolymers in Aqueous Solution: A Dynamic and Static Light-Scattering Study, J. Phys. Chem. B 1997, 101(5),710-719.
    [168]He, Y., Inoue, Y., α-Cyclodextrin-Enhanced Crystallization of Poly(3-hydroxybutyrate), Biomacromolecules 2003, 4(6), 1865-1867.
    [169]Shuai, X.T., Wei, M., Porbeni, F. E., Bullions, T.A., Formation of and Coalescence from the Inclusion Complex of a Biodegradable Block Copolymer and α-Cyclodextrin. 2: A Novel Way To Regulate the Biodegradation Behavior of Biodegradable Block Copolymers, Biomacromolecules 2002, 3(1), 201-207.
    [170]Shuai, X.T., Porbeni, F.E., Wei, M., Bullions, T., Tonelli, A.E.,Forrmation of Inclusion Complexes of Poly(3-hydroxybutyrate)s with Cyclodextrins. 1. Immobilization of Atactic Poly(R,S-3-hydroxybutyrate) and Miscibility Enhancement between Poly(R,S-3- hydroxybutyrate) and Poly(ε-caprolactone), Macromolecule 2002, 35(8), 3126-3132.
    [171]Taylor, P.N., O'Connell, M.J., Mcneill, A., Hall, M.J., Aplin, R.T.,Anderson, H.L., Insulated Molecular Wires: Synthesis of Conjugated Polyrotaxanes by Suzuki Coupling in Water, Angew. Chem., Int. Ed. 2000,39(19), 3456-3460.
    [172]Michels, J.J., O'Connell, M.J., Taylor, P.N., Wilson, J.S., Cacialli, F.,Anderson, H.L., Synthesis of Conjugated Polyrotaxanes, Chem. Eur. J.2003,9(24), 6167-6176.
    [173]Ooya, T., Mori, H., Yui, N., Terano, M., Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery, Macromol. Rapid Commun. 1995, 16(4), 259-263.
    [174]Ooya, T., Yui, N., Synthesis of Theophylline-Polyrotaxane Conjugates and Their Drug Release via Supramolecular Dissociation, J. Controlled Release 1999, 58(3), 251-368.
    [175]Ooya, T., Eguchi, M., Yui, N., Enhanced Accessibility of Peptide Substrate toward Membrane-Bound Metalloexopeptidase by Supramolecular Structure of Polyrotaxane, Biomacromolecules 2001, 2(1),200-203.
    [176]Kamimura, W., Ooya, T., Yui, N., Interaction of Supramolecular Assembly with Hairless Rat Stratum Corneum, J. Controlled Release 1997, 44(2-3), 295-299.
    [177]Salmaso, S., Semenzato, A., Bersani, S., Matricardi, P., Rossi, F., Caliceti,P., Cyclodextrin/PEG Based Hydrogels for Multi-drug Delivery, Int. J.Pharm. 2007, 345(1-2), 42-50.
    [178]Ooya, T., Yui, N., Multivalent Interactions between Biotin-Polyrotaxane Conjugates and Streptavidin as a Model of New Targeting for Transporters, J. Controlled Release 2002, 50(1-3), 219-228.
    [179]Ooya, T., Eguchi, M., Yui, N., Supramolecular Design for Multivalent Interaction: Maltose Mobility along Polyrotaxane Enhanced Binding with Concanavalin, J. Am. Chem. Soc. 2003, 125(43), 13016-13017.
    [180]Nelson, A., Belitsky, J.M., Vidal, S., Joiner, C.S., Baum, L.G., Stoddart, J.F., A Self-Assembled Multivalent Pseudopolyrotaxane for Binding Galectin-1, J. Am. Chem. Soc. 2004, 126(38), 11914-11922.
    [181]Huh, K M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui,N., Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and α-Cyclodextrin, Macromolecules 2001, 34(25),8657-8662
    [182]Li, J., Li X., Zhou, Z.H., Ni, X., Leong, K. W., Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and a-Cyclodextrin, Macromolecules 2001, 34(21), 7236-7237.
    [183]Karino, T., Okumura, Y., Zhao, C, Kataoka, T., Ito, K., Shibayama, M.,SANS Studies on Deformation Mechanism of Slide-Ring Gel, Macromolecules 2005, 38(14), 6161-6167.
    [184]Okumura, Y., Ito, K., The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, Adv. Mater. 2001, 13(7), 485-487.
    [185]Han, B. H., Smarsly, B., Gruber, C, et al., Towards Porous Silica Materials via Nanocasting of Stable Pseudopolyrotaxanes from α-Cyclodextrin and Polyamines, Microporous. Mesoporous. Mater. 2003,66(1), 127-132.
    [186]Han, B. H., Antonietti, M., Cyclodextrin-Based Pseudopolyrotaxanes as Templates for the Generation of Porous Silica Materials, Chem. Mater. 2002, 14(8), 3477-3485.
    [187]Moffitt, M, Khougaz, K., Eisenberg, A., Micellization of Ionic Block Copolymers, Acc. Chem. Res. 1996, 29(2), 95-102.
    [188] Jiang, M., Li, M., Xiang, M.L., Zhou, H., Interpolymer complexation and miscibility enhancement by hydrogen bonding, Adv. Polym. Sci. 1999,146, 121-196.
    [189]Chen, D.Y., Jiang, M., Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions, Acc. Chem.Res.2005,38(6),494-502.
    [190]江明,Esienberg,A.,刘国军,张希等著,大分子自组装,第四章,高分子胶束化的新途径研,北京:科学出版社,2006,p71-107.
    [191]Wang,J.,Jiang,M.,Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation,J.Am.Chem.Soc.2006,128(11),3703-3708.
    [192]Zou,J.,Tao,F.G.,Jiang,M.,Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles,Langmuir 2007,23(26),12791-12794.
    [193]Liu,X.K.,Jiang,M.,Optical Switching of Self-Assembly:Micellization and Micelle- Hollow-Sphere Transition of Hydrogen-Bonded Polymers,Angew.Chem.Int.Ed.2006,45(23),3846-3850.
    [194]Wang,Y.P.,Ma,N.,Wang,Z.Q.,Zhang,X.,Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with α-Cyclodextrin,Angew.Chem.Int.Ed.2007,46(16),2823-2826.
    [195]Liu,J.H.,Sondjaja,H.R.,Tam,K.C.,α-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution,Langmuir 2007,23(9),5106-5109.
    [196]Huang,J.,Ren,L.X.,Zhu,H.,Chen,Y.M.,Hydrophilic Block Copolymer Aggregation in Solution Induced by Selective Threading of Cyclodextrins,Macromol.Chem.Phys.2006,207(19),1764-1772.
    [197]Huang,J.,Ren,L.X.,Chen,Y.M.,pH-/Temperature-sensitive Supramolecular Micelles Based on Cyclodextrin Polyrotaxane,Polym.Int.2008,57(5),714-721.
    [198]Yuan,R.X.,Shuai,X.T.,Supramolecular Micellization and pH-Inducible Gelation of a Hydrophilic Block Copolymer by Block-specific Threading of a-Cyclodextrin,J.Polym.Sci.Part B.Polym.Phys.2008,46(28),782-790.
    [199]Choi,H.S.,Yui,N.,Design of rapidly assembling supramolecular systems responsive to synchronized stimuli,Prog.Polym.Sci.2006,31(2),121-144.
    [200]Choi,H.S.,Ooya,T.,Huh,K.M.,Yui,N.,pH-Triggered Changes in Assembling Properties of β-Cyclodextrin-Conjugated Poly(ε-lysine)Complexes,Biomacromolecules 2005,6(3),1200-1204.
    [201]Nozaki, T., Maeda, Y., Ito, K., Kitano, H., Cyclodextrins Modified with Polymer Chains Which Are Responsive to External Stimuli,Macromolecules 1996, 28(2), 522-524.
    [202] Wei, H.L., Yu, H.Q., Zhang, A. Sun, L., Hou, D.D., Feng, Z.G., Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels, Macromolecules, 2005, 38(21), 8833-8839.
    [203]Wintgens, V., Charles, M., Allouache, F., Amiel, C, Triggering the Thermosensitive Properties of Hydrophobically Modified Poly(N-isopropylacrylamide) by Complexation with Cyclodextrin Polymers, Macromol. Chem. Phys. 2005, 206(18), 1853-1861.
    [204]Ritter, H., Sadowski, O., Tepper, E., Influence of Cyclodextrin Molecules on the Synthesis and the Thermoresponsive Solution Behavior of N-Isopropylacrylamide Copolymers with Adamantyl Groups in the Side-Chains, Angew. Chem. Int. Ed. 2003, 42(27), 3171-3173.
    [205]Schmitz, S., Ritter, H., Unusual Solubility Properties of Polymethacrylamides as a Result of Supramolecular Interactions with Cyclodextrin, Angew. Chem. Int. Ed. 2005, 44(35), 5658-5661.
    [206]Kretschmann, O., Kretschmann, S. W., Miyauchi, M., Tomatsu, I.,Harada, A., Ritter, H., Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl -Containing LCST Copolymers with Cyclodextrin Dimers, Angew. Chem. Int. Ed. 2006, 45(26), 4361-4365.
    [207]Tomatsu, I., Hashidzume, A., Harada, A., Photoresponsive Hydrogel System Using Molecular Recognition of α-Cyclodextrin, Macromolecules 2005, 38(12), 5223-5227.
    [208]Tomatsu, I., Hashidzume, A., Harada, A., Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based α-Cyclodextrin and Azobenzene Polymers, J. Am. Chem. Soc. 2006,128(7), 2226-2227.
    [209]Tomatsu, I., Hashidzume, A., Harada, A., Redox-Responsive Hydrogel System Using the Molecular Recognition of beta-Cyclodextrin, Macromol. Rapid.Commun. 2006, 27(4), 238-241.
    [210]Ogoshi, T., Takashima, Y., Yamaguchi, H., Harada, A.,Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins,J.Am.Chem.Soc.2007,129(16),4878-4879.
    [211]Deng,W.,Yamaguchi,H.,Takashima,Y.,Harada,A.,A Chemical-Responsive Supramolecular Hydrogel from Modified Cyclodextrins,Angew.Chem.Int.Ed.,2007,46(27),5144-5147.
    [212]Deng,W.,Yamaguchi,H.,Takashima,Y.,Harada,A.,Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins,Chem.Asian J.2008,3(4),687-695.
    [213]Kretschmann,O.,Choi,S.W.,Miyauchi,M.,Tomatsu,I.,Harada,A.,Ritter,H.,Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers,Angew.Chem.Int.Ed.2006,45(26),4361-4365.
    [214]Tomatsu,I.,Hashidzume,A.,Harada,A.,Cyclodextrin-Grafted Poly(phenylene ethynylene) with Chemically-Responsive Properties,Chem.Commun.2006,(35),3702-3704.
    [215]Ueno,A.,Kuwabara,T.,Nakamura,A.,Toda,F.,A Modified Cyclodextrin as a Guest Responsive Colour-Change Indicator,Nature 1992,356(6365),136-137.
    [216]Ikeda,H.,Nakamura,M.,Ueno,A.,Ise,N.,Oguma,N.,Nakamura,A.,Ikeda,T.,Toda,F.,Fluorescent Cyclodextrins for Molecule Sensing:Fluorescent Properties,NMR Characterization,and Inclusion Phenomena of N-Dansylleucine-Modified Cyclodextrins,J.Am.Chem.Soc.1996,118(45),10980-10988.
    [217]Ueno,A.,Takahashi,M.,Nagano,Y.,Shibano,H.,Aoyagi,T.,Ikeda,H.,Guest-Responsive Excimer Fluorescence of β-Cyclodextrin Bearing a Pendant Group with Two Pyrene Moieties,Macromol.Rapid.Commun.1998,19(6),315-317.
    [218]Ueno,A.,Ikeda,A.,Ikeda,H.,Ikeda,T.,Toda,F.,Fluorescent Cyclodextrins Responsive to Molecules and Metal Ions.Fluorescence Properties and Inclusion Phenomena of N~α-Dansyl-L-lysine-β-cyclodextrin and Monensin-Incorporated N~α-Dansyl-L-lysine-β-cyclodextrin,J.Org.Chem.1999,64(2),382-387.
    [219]Yoshida,A.,Ueno,A.,γ-Cyclodextrin Derivatives Bearing Thymolphthalein Dyes in Their Secondary Hydroxyl Side as Guest-Responsive Color Change Indicators,Macromol.Rapid.Commun.2002,23(2),122-125.
    [220]Ueno,A.,Chen,Q.,Suzuki,I.,Osa,T.,Detection of Organic Compounds by Guest-Responsive Circular Dichroism Variations of Ferrocene-Appended Cyclodextrins,Anal.Chem.1992,64(15),1650-1655.
    [221]Ueno,A.,Minato,S.,Osa,T.,Detection of Organic Compounds by Guest-Responsive Monomer and Excimer Fluorescence of 6A,6B-,6A,6C-,and 6A,6D-bis(2-naphthylsulfonyl)-beta-cyclodextrins,Anal.Chem.1992,64(21),2562-2565.
    [222]Hossain,M.A.,Mihara,H.,Ueno,A.,Fluorescence Resonance Energy Transfer in a Novel Cyclodextrin-Peptide Conjugate for Detecting Steroid Molecules,Bioorg.Med Chem.Lett.2003,13(24),4305-4308.
    [223]Nakamura,M.,Ikeda,A.,Ise,N.,Ikeda,T.,Ikeda,H.,Toda,F.,Ueno,A.,Dansyl-Modified Beta-Cyclodextrin with a Monensin Residue as a Hydrophobic,Metal-Responsive Cap,J.Chem.Soc.Chem.Commu.1995,(7),721-722.
    [224]Furukawa,S.,Mihara,H.,Ueno,A.,Sensing Behavior of Fluorescent Cyclodextrin/Peptide Hybrids Bearing a Macrocyclic Metal Complex,Macromol.Rapid Commun.2003,24(2),202-206.
    [225]Pouliquen,G.,Amiel,C.,Tribet,C.,Photoresponsive Viscosity and Host-Guest Association in Aqueous Mixtures of Poly-Cyclodextrin with Azobenzene-Modified Poly(acrylic)acid,J.Phys.Chem.B 2007,111(20),5587-5595.
    [226]Liu,Z.,Jiang,M.,Reversible Aggregation of Gold Nanoparticles Driven by Inclusion Complexation,J.Mater.Chem.2007,17(40),4249-4254.
    [227]沈家骢等著,超分子层状结构.组装与功能,北京:科学出版社,2004.
    [228]SukhishVili,S.A.,ResponsiVe P0lymet Films and Capsules Via Layer-by-Layer Assemblv,,Curr.Opin.Colloid Interface Sci.2005,10(1-2),31—44.
    [229]Jiang,C.Y.,Tsukruk,V.V.,Freestanding Nanostructures Via Layer-by-Layer Assembl,v,Adv.Mater.2006,18(7),829-840.
    [230]Tang,Z.Y.,Wang,Y.,Podsiadlo,P.,Kotov,N.A.,Biomedical Applications of Layer-by-Layer Assembly:From Biomimetics to Tissue Engineering,Adv.Mater.2006,18(4),3203-3224.
    [231]Ariga,K.,Hill,J.P.,Ji,Q.M.,Layer-by-layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application,Phys.Chem.Chem.Phys.2007,9(19),2319-2340.
    [232]Wang,Y.,Angelatos,A.S.,Caruso,F.,Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly,Chem.Mater 2008,20(3),848-858.
    [233]Decher,G.,Hong,J.D.,Buildup of Ultrathin Multilayer Films by a Self-Assembly Process.1.Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces,Macromol.Chem.Macromol.Symp.1991,46,321-327.
    [234]Fischer,P.,Koetse,M.,Laschewsky,A.,Wischerhoff,E.,Jullien,L.,Persoons,A.,Verbiest,T.,Orientation of Nonlinear Optical Active Dyes in Electrostatically Self-Assembled Polymer Films Containing Cyclodextrins,Macromolecules 2000,33(26),9471-0473.
    [235]Suzuki,I.,Egawa,Y.,Mizukawa,Y.,Hoshi,T.,Anzai,J.,Construction of Positively-Charged Layered Assemblies Assisted by Cyclodextrin Complexation,Chem.Commun.2002,(2),164-165.
    [236]David,C.,Millot,M.C.,Sebille,B.,Levy,Y.,The Reversible Binding of Hydrophobically End-Capped Poly(ethylene glycoi)s to Poly-b-Cyclodextrin -Coated Gold Surfaces:a Surface Plasmon Resonance Investigation,Sens.Actuators,B.2003,90(1-3),286-295.
    [237]Crespo-Biel,O.,Dordi,B.,Reinhoudt,D.N.,Huskens,J.,Supramolecular Layer-by-Layer Assembly:Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions,J.Am.Chem.Soc.2005,127(20),7594-7600.
    [238]Crespo-Biel,O.,Dordi,B.,Maury,P.,Peter,M.,Reinhoudt,D.N.,Huskens,J.,Patterned,Hybrid,Multilayer Nanostructures Based on Multivalent Supramolecular Interactions,Chem.Mater.2006,18(10),2545-2551.
    [239]Nijhuis,C.A.,Boukamp,B.A.,Ravoo,B.J.,Huskens,J.,Reinhoudt,D.N.,Electrochemistry of Ferrocenyl Dendrimer-α-Cyclodextrin Assemblies at the Interface of an Aqueous Solution and a Molecular Printboard, J. Phys.Chem. C 2007, 111(27), 9799-9810.
    [240]Ling, X.Y., Reinhoudt, D.N., Huskens, J., Reversible Attachment of Nanostructures at Molecular Printboards through Supramolecular Glue, Chem. Mater. 2008, 20(11), 3574-3578.
    [241]Ludden, M.J.W., Reinhoudt, D.N., Huskens, J., Molecular Printboards:Versatile Platforms for the Creation and Positioning of Supramolecular Assemblies and Materials, Chem. Soc. Rev. 2006, 35(11), 1122-1134.
    [242]Crespo-Biel, O., Ravoo, B.J., Huskens, J., Reinhoudt, D.N., Writing with Molecules on Molecular Printboards, Dalton Trans. 2006, (23),2737-2741.
    [243]Maury, P.A., Reinhoudt, D.N., Huskens, J., Assembly of Nanoparticles on Patterned Surfaces by Noncovalent Interactions, Curr. Opin. Colloid Interface Sci. 2008, 13(1-2), 74-80.
    [244]Escalante, M., Zhao, Y.P., Ludden, M.J.W., Vermeij, R., Olsen, J. D.,Berenschot, E., Neil, H. C, Huskens, J., Subramaniam, V., Otto, C,Nanometer Arrays of Functional Light Harvesting Antenna Complexes by Nanoimprint Lithography and Host-Guest Interactions, J. Am. Chem. Soc. 2008, 130(28), 8892-8893.
    [245]Ludden, M.J.W., Li, X., Greve, J., Amerongen, A.V., Escalante, M.,Subramaniam, V., Reinhoudt, D.N., Huskens, J., Assembly of Bionanostructures onto p-Cyclodextrin Molecular Printboards for Antibody Recognition and Lymphocyte Cell Counting, J. Am. Chem. Soc.2008,130(22), 6964-6973.
    [246]Ludden, M. J. W., Mulder, A., Schulze, K., Subramaniam, V., Tamp, R.,Huskens, J., Anchoring of Histidine-Tagged Proteins to Molecular Printboards: Selfassembly, Thermodynamic Modeling, and Patterning,Chem. Eur. J. 2008, 14, 2044-2051.
    [247]Ludden, M.J.W., Ling, X.Y., Gang, T., Bula, W.P., Gardeniers, H.J.G.E.,Reinhoudt, D.N., Huskens, J., Multivalent Binding of Small Guest Molecules and Proteins to Molecular Printboards inside Microchannels,Chem. Eur. J. 2008, 14(1), 136-142.
    [248]Park, I.K., von Recum, H.A., Jiang, S.Y., Pun, S.H., Supramolecular Assembly of Cyclodextrin-Based Nanoparticles on Solid Surfaces for Gene Delivery, Langmuir 2006, 22(20), 8478-8484.
    [249]Cristiano, A., Lim, C.W., Rozkiewicz, D.I., Reinhoudt, D.N., Ravoo, B.J., Solid-Supported Monolayers and Bilayers of Amphiphilic β-Cyclodextrins, Langmuir 2007, 23(17), 8944-8949.
    [250]Camacho, C, Matias, J.C., Cao, R., Matos, M., Chico, B., Hernandez, J.,Longo, M.A., Sanroman, M.A., Villalonga, R., Hydrogen Peroxide Biosensor with a Supramolecular Layer-by-Layer Design, Langmuir 2008,24(15), 7654-7657.
    [251]Wang, Z.P, Feng, Z.Q., Gao, C.Y., Stepwise Assembly of the Same Polyelectrolytes Using Host-Guest Interaction To Obtain Microcapsules with Multiresponsive Properties, Chem. Mater. 2008, 20(13), 4194-4199.
    [252]Qu, D.H., Wang, Q.C. Tian, H., A Half Adder Based on a Photochemically Driven [2] Rotaxane, Angew. Chem. Int. Ed. 2005, 44(3),5296-5299.
    [253]Shigekawa, H., Miyake, K., Sumaoka, J., Harada, A., Komiyama, M., The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace, J. Am. Chem. Soc. 2000, 122(22), 5411-5412.
    [254]Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath,J.R., Switching Devices Based on Interlocked Molecules, Acc. Chem. Res.2001, 34(6), 433-444.
    [1] Allen, T. M., Cullis, P. R., Drug Delivery Systems: Entering the Mainstream, Science, 2004, 303(5665), 1818-1822.
    [2] Jiang, M.; Eisenberg, A.; Liu, G. J.; Zhang X., Eds. Macromolecular Self-Assembly (In Chinese); Science Press: Beijing, 2006.
    [3] Gohy, J. F., Block Copolymer Micelles, Adv. Polym. Sci. 2005, 190,65-136.
    [4] Nishiyama, N., Kataoka, K., Current State, Achievements, and Future Prospects of Polymeric Micelles as Nanocarriers for Drug and Gene Delivery, Pharmacol. Ther. 2006, 112(3), 630-648.
    [5] Rapoport, N., Physical Stimuli-Responsive Polymeric Micelles for Anti-Cancer Drug Delivery, Prog. Polym. Sci. 2007, 32(8-9), 962-990.
    [6] Kataoka K., Harada A., Nagasaki, Y., Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance, Adv. Drug Delivery Rev., 2001, 47(1), 113-131.
    [7] McCormick, C. L., Kirkland, S. E., York, A. W., Synthetic Routes to Stimuli-Responsive Micelles, Vesicles, and Surfaces via Controlled/Living Radical Polymerization, Polym. Rev. 2006, 46(4), 421-443.
    [8] Harada, A., Kataoka, K., Supramolecular Assemblies of Block Copolymers in Aqueous Media as Nanocontainers Relevant to Biological Applications, Prog. Polym. Sci. 2006, 31 (11), 949-982.
    [9] Read, E. S., Armes, S. P., Recent Advances in Shell Cross-Linked Micelles,Chem. Commun. 2007, (29), 3021-3035.
    [10] Rodriguez-Hernandez, J, Checot, F, Gnanou, Y., Gnanou, Y.,Lecommandoux, S., Toward 'Smart' Nano-Objects by Self-Assembly of Block Copolymers in Solution, Prog.Polym. Sci. 2005, 30(7), 691-724.
    [11] O'Reilly, R. K., Hawker, C. J., Wooley, K. L., Cross-Linked Block Copolymer Micelles: Functional Nanostructures of Great Potential and Versatility, Chem. Soc. Rev. 2006, 35, 1068-1083.
    [12] Dirks, A. J., Cornelissen, J. J. L. M., van Delft, F. L., van Hest, J. C. M.,Nolte, R. J. M., Rowan, A. E., Rutjes, P. J. T., From (Bio)molecules to Biohybrid Materials with the Click Chemistry Approach, QSAR Comb. Sci.2007,26(11-12), 1200-1210.
    [13] Kita-Tokarczyk, K., Grumelard, J., Haefele, T., Meier, W., Block Copolymer Vesicles-using Concepts from Polymer Chemistry to Mimic Biomembranes, Polymer 2005, 46(11), 3540-3563.
    [14] Xiong, M, Chen, Y.M., Maskos, M., Functionalization of Crosslinked Vesicles by Co-Self-Assembly of a Gelable Diblock Copolymer and Mercaptosilane, Macromol. Rapid Commun. 2008, 29(16), 1368-1371.
    [15] Segota, S, Tezak, D., Spontaneous Formation of Vesicles, Adv. Colloid Interface Sci. 2006,121(1-3), 51-75.
    [16] Chen, D. Y., Jiang, M., Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions, Acc.Chem. Res. 2005, 38(6), 494-502.
    [17] van Dongen, S. F. M., Nallani, M., Schoffelen, S., Cornelissen, J. J. L. M.,Nolte, R. J. M., van Hest, J. C. M., A Block Copolymer for Functionalisation of Polymersome Surfaces, Macromol. Rapid Commun. 2008, 29(4), 321-325.
    [18] Opsteen, J. A., Brinkhuis, R. P., Teeuwen, R. L. M., Lowik, D. W. P. M.,van Hest, J. C. M., "Clickable" Polymersomes, Chem. Commun. 2007, (30),3136-3138.
    [19] Duan, H. W., Chen, D. Y., Jiang, M., Gan, W. J., Li, S. J., Wang, M., Gong,J. J., Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent, J. Am. Chem. Soc. 2001, 123(48), 12097-12098.
    [20] Kuang, M., Duan, H. W., Wang, J., Chen, D. Y., Jiang, M., A Novel Approach to Polymeric Hollow Nanospheres with Stabilized Structure, Chem.Commu. 2003, (4), 496-497.
    [21] Duan, H. W., Kuang, M., Wang, J., Chen, D. Y., Jiang, M., Self-assembly of Rigid and Coil Polymers into Hollow Spheres in their Common Solvent, J. Phys. Chem.B 2004, 108(2), 550-555.
    [22] Kuang, M., Duan, H. W., Wang, J., Jiang, M., Structural Factors of Rigid-Coil Polymer Pairs Influencing their Self-assembly in Common Solvent,/. Phys. Chem. B, 2004, 108(41), 16023-16029.
    [23] Mu, M. F., Ning, F. L., Jiang, M., Chen, D. Y., Giant Vesicles Based on Self-assembly of a Polymeric Complex Containing a Rodlike Oligomer, Langmuir 2003, 19(24), 9994-9996.
    [24] Wang, J., Kuang, M., Duan, H. W., Chen, D. Y., Jiang, M., pH-Dependent Multiple Morphologies of Novel Aggregates of Carboxyl-Terminated Polymide in Water, Eur. Phys.J. E 2004, 15(2), 211-215.
    [25] Wang, J., Jiang, M., Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation, J. Am. Chem. Soc. 2006, 128(11), 3703-3708.
    [26] Wang, J., Jiang, M., Studies on Self-Assembly from Lightly-Crosslinked Polymers via Inclusion Interaction, Acta Polym. Sin. 2007, (10), 979-985.
    [27] Wang, J., Wang, D. Y., Sobal, N. S., Giersig, M., Jiang, M., Mohwald, H.,Stepwise Directing of Nanocrystals to Self-Assemble at Water/Oil Interfaces, Angew. Chem., Int. Ed. 2006, 45(47), 7963-7966.
    [28] Liu, Z., Jiang, M., Reversible Aggregation of Gold Nanoparticles Driven by Inclusion Complexation,J. Mater. Chem. 2007, 17(40), 4249-4254.
    [29] Andre, S., Pietrasanata, F. G., Rousseau, A., Boutevin, B., Caporiccio, G.,Synthesis, Characterization, and Thermal Properties of Anhydride Terminated and Allyl Terminated Oligoimides, J. Polym. Sci. Part A., 2000,38(16), 2993-3003.
    [30] Liu, S. Y., Weaver, J. V. M., Save, M., Armes, S. P., Synthesis of pH-Responsive Shell Cross-Linked Micelles and their Use as Nanoreactors for the Preparation of Gold Nanoparticles, Langmuir 2002, 18(22),8350-8357.
    [31] Zhang, G. Z., Lu, L., Zhao, Y., Ning, F. L., Jiang, M., Wu, C.,Self-Assembly of Carboxylated Poly (Styrene-b-Ethylene-co- Butylene-b-Styrene) Triblock Copolymer Chains in Water via a Microphase Inversion, Macromolecule. 2000, 33(17), 6340-6343.
    [32] Wu, C., Zhou, S. Q., First Observation of the Molten Globule State of a Single Homopolymer Chain, Phys. Rev. Lett. 1996, 77(14), 3053-3055.
    [33] Dodziuk, H. Cyclodextrins and Their Complexes; Wiley-VCH: Weinheim,Germany, 2006, pp 1-191.
    [34] Rekharsky, M. V., Inoue, Y., Complexation Thermodynamics of Cyclodextrins, Chem. Rev. 1998, 98(5), 1875-1917.
    [35] Harries, D., Rau, D. C, Parsegian, V. A., Solutes Probe Hydration in Specific Association of Cyclodextrin and Adamantane, J. Am. Chem. Soc. 2005, 127(7), 2184-2190.
    [36] Soto-Tellini, V. H., Jover, A., Garcia, J. C., Galantini, L., Meijide, F., Tato,J. V., Thermodynamics of Formation of Host-guest Supramolecular Polymers, J. Am. Chem. Soc. 2006, 128(17), 5728-5734.
    [37] Kuad, P., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.,External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer, J. Am. Chem. Soc. 2007, 129(42),12630-12631.
    [38] Danial, M., Klok, H. A., Norde, W., Cohen Stuart, M. A., Complex Coacervate Core Micelles with a Lysozyme-Modified Corona, Langmui 2007, 23(15), 8003-8009.
    [1] Hapiot, F., Tilloy, S., Monflier E., Cyclodextrins as Supramolecular Hosts for Organometallic Complexes, Chem. Rev., 2006,106(3), 767-781.
    [2] Villalonga, R., Cao, R., Fragoso, A., Supramolecular Chemistry of Cyclodextrins in Enzyme Technology, Chem. Rev., 2007, 107(7),3088-3116.
    [3] Wenz, G., Han, B. H., Miiller, A., Cyclodextrin Rotaxanes and Polyrotaxanes, Chem. Rev., 2006, 106(3), 782-817.
    [4] Huang F.H., Gibson, H. W., Polypseudorotaxanes and Polyrotaxanes,Prog. Polym. Sci. 2005, 30(10), 982-1018.
    [5] Harada, A., Preparation and Structures of Supramolecules Between Cyclodextrin and Polymers, Coord. Chem. Rev. 1996, 148, 115-133.
    [6] Harada, A., Design and Construction of Supramolecular Architectures Consisting of Cyclodextrins and Polymers, Adv. Polym. Sci. 1997, 133,141-191.
    [7] Harada, A., Kamachi, M., Complex Formation between Poly (ethylene-glycol) and α-Cyclodextrin, Macromolecules 1990, 23(10),2821-2824.
    [8] Harada, A., Cyclodextrin-Based Molecular Machines, Acc. Chem. Res.,2001, 34(6), 456-464.
    [9] Loethen, S., Kim, J-M., Thompson, D. H., Biomedical Applications of Cyclodextrin based Polyrotaxanes, Polym. Rev. 2007, 47(3), 383-418.
    [10] Li, J., Harada, A., Kamachi, M., Sol-gel Transition during Inclusion Complex-Formation between Alpha-Cyclodextrin and High-Molecular-Weight Poly (ethylene glycol)s in Aqueous-Solution, Polym. J. 1994, 26(9), 1019-1026.
    [11] Watanabe, J., Ooya, T., Yui, N., Preparation and Characterization of a Polyrotaxane with Non-Enzymatically Hydrolyzable Stoppers, Chem. Lett.1998, (10), 1031-1032.
    [12] Watanabe, J., Ooya, T., Yui, N., Effect of Acetylation of Biodegradable Polyrotaxanes on its Supramolecular Dissociation via Terminal Ester Hydrolysis, J. Biomater. Sci. Polym. Ed. 1999, 10(12), 1275-1288.
    [13] Ichi, T., Watanabe, J., Ooya, T., Yui, N., Controllable Erosion Time and Profile in Poly (ethylene glycol) Hydrogels by Supramolecular Structure of Hydrolyzable Polyrotaxane, Biomacromolecules 2001, 2(1), 204-210.
    [14] Ichi, T., Ooya, T., Yui, N., Supramolecular Control of Ester Hydrolysis in Poly(ethylene glycol)-Interlocked Hydrogels, Macromol. Biosci. 2003,3(7), 373-380.
    [15] Okumura, Y., Ito, K., The Polyrotaxane Gel: A Topological Gel by Figure-of-eight Cross-Links, Adv. Mater. 2001, 13(7), 485-487.
    [16] Zhao, C. M., Domon, Y., Okumura, Y., Okabe, S., Shibayama, M., Ito, K.,Sliding Mode of Cyclodextrin in Polyrotaxane and Slide-Ring Gel, J. Phys.: Condens. Matter. 2005, 17(31), S2841-S2846.
    [17] Karino, T., Okumura, Y., Zhao, C. M., Kataoka, T., Ito, K., Hibayama, M.,SANS Studies on Deformation Mechanism of Slide-Ring Gel,Macromolecules 2005, 38(14), 6161-6167.
    [18] Karino, T., Okumura, Y., Ito, K., Shibayama, M., SANS Studies on Spatial Inhomogeneities of Slide-Ring Gels, Macromolecules 2004,37(16), 6177-6182.
    [19] Wei, H.L., He, J., Sun, L., Zhu, K., Feng, Z.G., Gel Formation and Photopolymerization during Supramolecular Self-Assemblies of Alpha-CDs with LA-PEG-LA Copolymer End-capped with Methacryloyl Groups, Eur. Polym. J., 2005, 41(5), 948-957.
    [20] Wei, H.L., Yu, H., Zhang, A., Sun, L., Hou, D., Feng, Z.G., Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels, Macromolecules, 2005, 38(21), 8833-8839.
    [21] Wei, H.L., Zhang, A., Qian, L., Yu, H., Hou, D., Qiu, R., Feng, Z.G.,Supramolecular Structured Hydrogel Preparation Based on Self-Assemblies of Photocurable Star-Shaped Macromers with Alpha-Cyclodextrins, J. Polym. Sci. Part A: Polym. Chem. 2005, 43(18),2941-2949.
    [22] Yu, H., Feng, Z., Zhang, A., Sun, L., Qian, L., Synthesis and Characterization of Three-Dimensional Crosslinked Networks Based on Self-Assemly of Alpha-Cyclodextrins with Thiolated 4-Arm PEG Using a Three-Step Oxidation, Soft Matter 2006, 2(4), 343-349.
    [23] Zhao, S. P., Zhang, L. M., Ma, D., Yang, C., Yan, L., Fabrication of Novel Supramolecular Hydrogels with High Mechanical Strength and Adjustable Thermosensitivity, J. Phys. Chem. B. 2006, 110(33), 16503-16507.
    [24] Li, J., Ni, X., Leong, K. W., Injectable Drug-Delivery Systems Based on Supramolecular Hydrogels Formed by Poly(ethylene oxide) and Alpha-Cyclodextrin, J. Biomed. Mater. Res. 2003, 65A(2), 196-202.
    [25] Kataoka, T., Kidowaki, M., Zhao, C, Minamikawa, H., Shimizu, T., Ito,K., Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated Alpha-Cyclodextrins, J. Phys. Chem. B. 2006, 110(48), 24377-24383.
    [26] Huh, K. M., Cho, Y. W., Chung, H., Kwon, I. C., Jeong, S. Y., Ooya, T.,Lee, W. K., Sasaki, S., Yui, N., Supramolecular Hydrogel Formation Based on Inclusion Complexation between Poly(ethylene glycol)-Modified Chitosan and Alpha-Cyclodextrin, Macromol. Biosci.2004, 4(2), 92-99.
    [27] Huh, K. M., Ooya, T., Lee, W. K., Sasaki, S., Kwon, I. C, Jeong, S. Y.,Yui, N., Polymer Inclusion Complex Consisting of Poly(epsilon-lysine) and Alpha-Cyclodextrin, Macromolecules 2001, 34(8), 8657-8662.
    [28] Choi, H. S., Yamamoto, K., Ooya, T., Yui, N., Synthesis of Poly(epsilon-lysine)-Grafted Dextrans and their pH- and Thermosensitive Hydrogelation with Cyclodextrins, ChemPhysChem 2005, 6(6),1081-1086.
    [29] He, L.H., Huang, J., Chen, Y.M., Xu, X.J., Liu, L.P., Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and α-Cyclodextrin,Macromolecules 2005, 38(9), 3845-3851.
    [30] Zhao, S. P., Zhang, L. M., Ma, D., Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly(epsilon-caprolactone)-Poly(ethylene glycol)-Poly(epsilon-caprolactone) Block Copolymers with Alpha-Cyclodextrin in Aqueous Solutions, J. Phys. Chem. B 2006,110(25), 12225-12229.
    [31] Li. J., Li, X., Zhou, Z., Ni, X., Leong, K. W., Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and Alpha-Cyclodextrin, Macromolecules 2001, 34(21),7236-7237.
    [32] Li, J., Li, X., Ni, X., Wang, X., Li, H., Leong, K. W., Self-Assembled Supramolecular Hydrogels formed by Biodegradable PEO-PHB-PEO Triblock Copolymers and Alpha-Cyclodextrin for Controlled Drug Delivery, Biomaterials 2006, 27(22), 4132-4140.
    [33] Yuan, R. X., Shuai, X. T., Supramolecular Micellization and pH-Inducible Gelation of a Hydrophilic Block Copolymer by Block-Specific Threading of Alpha-Cyclodextrin, J. Polym. Sci., Part B: Polym. Phys. 2008, 46(8),782-790.
    [34] Sabadini, E., Cosgrove, T., Inclusion Complex Formed Between Star-Poly (ethylene glycol) and Cyclodextrins, Langmuir 2003, 19(23), 9680-9683.
    [35] Zhu, X. Y., Chen, L., Yan, D. Y, Chen, Q., Yao, Y. F., Xiao, Y, Hou, J., Li,J. Y., Supramolecular Self-assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins, Langmuir 2004,20(2), 484-490.
    [36] Zhang, Z. X., Liu, X., Xu, F. J., Loh, X. J., Kang E. T., Neoh, K. G., Li,J., Pseudo-Block Copolymer based on Star-Shaped Poly(N-isopropylacrylamide) with a Beta-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity Through Supramolecular Self-Assembly, Macromolecules 2008, 41(16),5967-5970.
    [37] Jeong, B., Bae, Y. H., Lee, D. S., Kim, S. W., Biodegradable Block Copolymers as Injectable Drug-Delivery Systems, Nature 1997,388(6654), 860-862.
    [38] Liu, S. Y., Weaver, J. V. M., Save, M., Armes, S. P., Synthesis of pH-Responsive Shell Cross-Linked Micelles and their Use as Nanoreactors for the Preparation of Gold Nanoparticles, Langmuir 2002,18(22), 8350-8357.
    [39] Stoeber, W., Fink, A., Bohn, E., Controlled Growth of Monodisperse Silica Spheres in Micron Size Range, J. Colloid Interface Sci. 1968, 26(1),62-69.
    [40] Mahalingam, V., Onclin, S., Peter, M., Ravoo, B. J., Huskens, J.,Reinhoudt, D. N., Directed Self-Assembly of Functionalized Silica Nanoparticles on Molecular Printboards through Multivalent Supramolecular Interactions, Langmuir 2004, 20(26), 11756-11762.
    [41] Xue, J., Jia, Z. F., Jiang, X. L., Wang, Y. P., Chen, L., Zhou, L., He, P.,Zhu, X. Y., Yan, D. Y., Kinetic Separation of Polymers with Different Terminals through Inclusion Complexation with Cyclodextrin, Macromolecules 2006,39(26),8905-8907.
    [42]Harries,D.,Rau,D.C.,Parsegian,V.A.,Solutes Probe Hydration in Specific Association of Cyclodextrin and Adamantane,J.Am.Chem.Soc.2005,127(7),2184-2190.
    [43]Sabadini,E.,Cosgrove,T.,Taweepreda,W.,Complexation Between Alpha-Cyclodextrin and Poly(ethylene oxide) Physically Adsorbed on the Surface of Colloidal Silica,Langmuir 2003,19(11),4812-4816.
    [44]Wang,Z.M.,Chert,Y.M.,Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes,Macromolecules 2007,40(9),3402-3407.
    [1] Brus, L., Nirmal, M., Luminescence Photophysics in Semiconductor Nanocrystals, Acc. Chem. Res. 1999, 32(5), 407-414.
    [2] Scholes, G. D., Controlling the Optical Properties of Inorganic Nanoparticles, Adv. Funct. Mater. 2008, 18(8), 1157-1172.
    [3] Biju, V., Itoh, T., Anas, A., Sujith, A., Ishikawa, M., Semiconductor Quantum Dots and Metal Nanoparticles: Syntheses, Optical Properties, and Biological Applications, Anal. Bioanal. Chem. 2008, 391(7), 2469-2495.
    [4] Bhattacharya, P., Mi, Z., Quantum-Dot Optoelectronic Devices, P. IEEE.2007, 95(9), 1723-1740.
    [5] Hammer, N. I., Emrick, T., Barnes, M. D., Quantum Dots Coordinated with Conjugated Organic Ligands: New Nanomaterials with Novel Photophysics, Nanoscale. Res. Lett. 2007, 2(6), 282-290.
    [6] Kang, S., Yasuda, M., Miyasaka, H., Hayashi, H., Kawasaki, M.,Umeyama, T., Matano,Y., Yoshida, K., Isoda, S., Imahori, H., Light Harvesting and Energy Transfer in Multiporphyrin-Modified CdSe Nanoparticles, ChemSusChem, 2008, 1(3), 254-261.
    [7] Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P. V.,Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture, J. Am. Chem. Soc. 2008, 130(12),4007-4015.
    [8] Kamat, P. V., Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C. 2008, 112(48), 18737-18753.
    [9] Wu, C. L., Zhao, Y. B., CdS Quantum Dots as Fluorescence Probes for the Sensitive and Selective Detection of Highly Reactive HSe Ions in Aqueous Solution, Anal. Bioanal Chem. 2007, 388(3), 717-722.
    [10] Medintz, I., Clapp, A., Mattoussi, H., Goldman, E. R., Fisher, B., Mauro, J.M., Self-assembled Nanoscale Biosensors based on Quantum Dot FRET Donors, Nat. Mater., 2003, 2(9), 630-638.
    [11] Medintz, I. L., Uyeda, H. T., Goldman, E., Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nat. Mater., 2005, 4(6),435-446.
    [12] Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H, A Reagentless Biosensing Assembly based on Quantum Dot-donor Forster Resonance Energy Transfer, Adv. Mater., 2005, 17(20), 2450-2455.
    [13] Ron, G., Zayats, M., Willner I., Semiconductor Quantum Dots for Bioanalysis, Angew. Chem. Int. Ed. 2008, 47(40), 7602-7625.
    [14] Jamiesona,T., Bakhshia, R., Petrovaa, D., Pococka, R., Imanib, M.,Seifaliana, A. M., Biological Applications of Quantum Dots, Biomaterials 2007, 28(31), 4717-4732.
    [15] Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging, Adv. Drug Delivery Rev.2008,60(11), 1226-1240.
    [16] Li, H. C, Zhou, Q. F., Liu, W., Yan B., Zhao, Y. B., Jiang, G. B., Progress in the Toxicological Researches for Quantum Dots, Sci. China. Ser. B:Chem. 2008, 51(5), 393-400.
    [17] Schexnailder, P., Schmidt, G., Nanocomposite Polymer Hydrogels, Colloid Polym. Sci. 2009, 287(1), 1-11.
    [18] Hoare, T. R., Kohane, D.S., Hydrogels in Drug Delivery: Progress and Challenges Polymer 2008, 49(8), 1993-2007.
    [19] Chaterji, S., Kwon, I.K., Park, K., Smart Polymeric Gels: Redefining the Limits of Biomedical Devices Prog. Polym. Sci. 2007, 32, 1083-1122.
    [20] Thomas, V., Namdeo, M., Mohan, Y.M., Bajpai, S.K., Bajpai, M., Review on Polymer, Hydrogel and Microgel Metal Nanocomposites: A Facile Nanotechnological Approach, J. Macromol. Sci., Part A: Pure Appl. Chem.2008,45(1), 107-119.
    [21] Hasegawa, U., Nomura, S. M., Kaul, S. C., Hirano, T., Akiyoshi, K.,Nanogel-quantum dot hybrid nanoparticles for live cell imaging, Biochem. Biophys. Res. Commun. 2005, 331(4), 917-921.
    [22] Gong, Y., Gao, M., Wang, D., Mohwald, H., Incorporating Fluorescent CdTe Nanocrystals into a Hydrogel via Hydrogen Bonding: Toward Fluorescent Microspheres with Temperature-Responsive Properties, Chem. Mater. 2005, 17(10), 2648-2653.
    [23] Sahiner, N., In Situ Metal Particle Preparation in Cross-Linked Poly (2-acrylamido-2-methyl-l-propansulfonic acid) Hydrogel Networks,Colloid. Polym Sci. 2006, 285(3), 283-292.
    [24] Kuang, M.; Wang, D.; Bao, H.; Gao, M.; Mohwald, H.; Jiang, M.,Fabrication of Multicolor-Encoded Microspheres by Tagging Semconductor Nacrystals to Hydrogel Spheres, Adv. Mater. 2005, 17(3),267-270.
    [25] Li, J., Hong, X., Liu, Y., Li, D., Wang, Y., Li, J., Bai, Y., Li, T., Highly Photoluminescent CdTe/Poly (N-isopropylacrylamide) Temperature-Sensitive Gels, Adv. Mater. 2005, 17(2), 163-166.
    [26] Lei, Y., Tang, H., Zhou, C., Zhang. T., Feng, M., Zou, B., Incorporating Fluorescent Quantum Dots into Water-Soluble Polymer, J. Lumin. 2008,128(3), 277-281.
    [27] Gattas-Asfura, K. M., Zheng, Y., Micic, M., Snedaker, M. J., Ji, X., Sui, G.,Orbulescu, J., Andreopoulos, F. M., Pham, S. M., Wang, C, Leblanc, R.M., Immobilization of Quantum Dots in the Photo-Cross-Linked Polyethylene glycol)-Based Hydrogel, J. Phys. Chem. B., 2003, 107(38),10464-10469.
    [28] Chang, S. Y., Liu, L., Sanford, A. A., Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica Cadmium-Sulfide Nanocomposites, J. Am. Chem. Soc. 1994, 116(15), 6739-6744.
    [29] Moffitt, M., Vali, H., Eisenberg, A., Spherical Assemblies of Semiconductor Nanoparticles in Water-Soluble Block Copolymer Aggregates, Chem. Mater.1998, 10(4), 1021-1028.
    [30] Hennink, W.E., van Nostrum, C.F., Novel Crosslinking Methods to Design Hydrogels, Adv. Drug Delivery Rev. 2008, 54(1), 13-36.
    [31] Hu, Z., Lu, X., Gao, J., Wang, C, Polymer Gel Nanoparticle Networks,Adv. Mater. 2000, 12(16), 1173-1176.
    [32] Valette, L., Pascault, J. P., Magny, B., Use of Acrylic Functionalized (Meth) acrylic Cross-Linked Polymer Microparticles in Photopolymerized Acrylic Films, Macromol. Mater. Eng. 2003, 288(8), 642-657.
    [33] Morimoto, N., Endo, T., Iwasaki, Y., Akiyoshi, K., Design of Hybrid Hydrogels with Self-Assembled Nanogels as Cross-Linkers: Interaction with Proteins and Chaperone-Like Activity, Biomacromolecules 2005, 6(4),1829-1834.
    [34] Choi, S. W., Jang, J. H., Kangb, Y. G., Lee, C. J., Kima, J. H.,Characterization of Self Assembled Thiolated Beta-Cyclodextrin and Tolane Thioacetate Mixed Monolayer, Colloids Surf., A. 2005, 257-258,31-36.
    [35] Palaniappan, K., Hackney, S. A., Liu, J., Supramolecular Control of Complexation-Induced Fluorescence Change of Water-Soluble, β-Cyclodextrin-Modified CdS Quantum Dots, Chem. Commun. 2004, (23),2704 -2705.
    [36] Kretschmann, O., Choi, S. W., Miyauchi, M., Tomatsu, I., Harada A.,Ritter, H., Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers, Angew. Chem. Int. Ed. 2006, 45(26), 4361-4365.
    [37] Steffens, C., Kretschmann, O., Ritter, H., Influence of Cyclodextrin and Temperature on the Kinetics of Free Radical Polymerization of N-Adamantylacrylamide in Water, Macromol. Rapid Commun. 2007, 28(5),623-628.
    [38] Narayanan, S. S., Pal, S. K., Aggregated CdS Quantum Dots: Host of Biomolecular Ligands, J. Phys. Chem. B 2006, 110(48), 24403-24409.
    [39] Kretschmann, O., Ritter, H., Copolymerization of Fluorinated Monomers with Hydrophilic Monomers in Aqueous Solution in Presence of Cyclodextrin, Macromol. Chem. Phys. 2006, 207(11), 987-992.
    [40] Cinar, H., Kretschmann, O., Ritter, H., Synthesis of Novel Fluorinated Polymers via Cyclodextrin Complexes in Aqueous Solution,Macromolecules 2005, 38(12), 5078-5082.
    [41] Choi, S.W., Kretschmann, O., Ritter, H., Ragnoli, M., Galli, G., Novel Polymerization of Fluorinated 2-VinylcycIopropane in Aqueous Solution via Cyclodextrin Complexes, Macromol. Chem. Phys. 2003, 204(12),1475-1479.
    [42] Premachandran, R., Banerjee, S., John, V. T., McPherson, G. L., Akkara, J.A., Kaplan, D. L., The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymer-CdS Nanocomposites, Chem. Mater., 1997, 9(6),1342-1347.
    [43] Noglik, H., Pietro, W. J., Chemical Functionalization of Cadmium Sulfide Quantum-Confined Microclusters, Chem. Mater. 1994, 6(10), 1593-1595.
    [44] Saunders, A. E., Ghezelbash, A., Sood, P., Korgel, B. A., Synthesis of High Aspect Ratio Quantum-Size CdS Nanorods and Their Surface-Dependent Photoluminescence, Langmuir, 2008, 24(16),9043-9049.
    [45]Lin,Y.,Zhang,J.,Sargent,E.H.,Kumacheva,E.,Photonic Pseudo-Gap-Based Modification of Photoluminescence from CdS Nanocrystal Satellites around Polymer Microspheres in a Photonic Crystal,Appl.Phys.Lett.2002,81(17),3134-3136.
    [46]Khanna,P.K.,Singh,N.,Light Emitting CdS Quantum Dots in PMMA:Synthesis and Optical Studies,J.Lumin.2007,127(2),474-482.
    [47]Guo,M.,Jiang,M.,Non-Covalently Connected Micelles(NCCMs):the Origins and Development of a New Concept,Soft Matter,.2009,5(3),495-500.
    [1] Lehn, J. M., Supramolecular Chemistry-Concepts and Perspectives, VCH,Weinheim, 1995.
    [2] Atwood, J.L., Davies, J.E.D., MacNicol, D.M., Vogtle, F., Lehn, J. M.,Comprehensive Supramolecular Chemistry, Eds., Pergamon, Oxford, 1996,Vol. 9.
    [3] Ciferri, A., Supramolecular polymers, 2ed, CRC, Boca/Raton/London/NewYork /Singapore, 2005.
    [4] Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P.,Supramolecular Polymers, Chem. Rev. 2001,101 (12),4071-4097.
    [5] Hilger, C, Stadler, R., Cooperative Structure Formation by Directed Noncovalent Interactions in an Unpolar Polymer Matrix. 7. Differential Scanning Calorimetry and Small-angle x-ray Scattering, Macromolecules1992, 25(24), 6670-6680.
    [6] Binder, W., Zirbs, R., Supramolecular Polymers and Networks with Hydrogen Bonds in the Main-and Side-Chain, Adv. Polym. Sci. 2007, 207,1-78.
    [7] Sijbesma, R. P., Meijer, E. W. Quadruple Hydrogen Bonded Systems,Chem. Commun. 2003, (1), 5-16.
    [8] Yount, W. C., Juwarker, H., Craig, S. L., Orthogonal Control of Dissociation Dynamics Relative to Thermodynamics in a Main-Chain Reversible Polymer, J. Am. Chem. Soc. 2003, 125(50), 15302-15303.
    [9] Arnaud, A., Belleney, J., Boue, F., Bouteiller, L., Carrot, G., Wintgens,V., Aqueous Supramolecular Polymer Formed from an Amphiphilic Perylene Derivative, Angew. Chem., Int. Ed. 2004, 43(13), 1718-1721.
    [10] Hapiot, F., Tilloy, S., Monflier, E., Cyclodextrins as Supramolecular Hosts for Organometallic Complexes, Chem. Rev. 2006, 706(3), 767-781.
    [11] Villalonga, R., Cao, R., Fragoso, A., Supramolecular Chemistry of Cyclodextrins in Enzyme Technology, Chem. Rev. 2007, 107(7),3088-3116.
    [12] Kretschmann, O., Soo Whan Choi, Miyauchi, M., Tomatsu, I., Harada, A.,Ritter, H., Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers, Angew. Chem. Int. Ed. 2006, 45(26), 4361-4365.
    [13] Koopmans, C., Ritter, H., Formation of Physical Hydrogels via Host-Guest Interactions of beta-Cyclodextrin Polymers and Copolymers Bearing Adamantyl Groups, Macromolecules 2008, 41(20), 7418-7422.
    [14] van de Manakker, F., van der Pot, M., Vermonden, T., van Nostrum, C. F.,Hennink, W. E., Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes, Macromolecules, 2008,41 (5), 1766-1773.
    [15] Daoud-Mahammed, S., Couvreur, P., Gref, R., Novel Self-assembling Nanogels: Stability and Lyophilisation Studies, Int. J. Pharm., 2007, 332(1-2), 185-191.
    [16] Battistini, E., Gianolio, E., Gref, R., Couvreur, P., Fuzerova, S., Othman,M., Aime. S, Badet, B., Durand, P., High-relaxivity Magnetic Resonance Imaging (MRI) Contrast Agent Based on Supramolecular Assembly between a Gadolinium Chelate, a Modified Dextran, and Poly-beta-cyclodextrin, Chem.-Eur. J., 2008, 14(15), 4551-4561.
    [17] Daoud-Mahammed, S., Grossiord, J. L., Bergua, T., Amiel, C, Couvreur,P., Gref, R., Self-assembling Cyclodextrin based Hydrogels for the Sustained Delivery of Hydrophobic Drugs, J. Biomed. Mater. Res., Part A2008,86A(3), 736-748.
    [18] Daoud-Mahammed, S., Ringard-Lefebvre, C., Razzouq, N., Rosilio, V.,Gillet, B., Couvreur, P., Amiel, C., Gref, R., Spontaneous Association of Hydrophobized Dextran and Poly-beta-cyclodextrin into Nanoassemblies. Formation and Interaction with a Hydrophobic Drug, J. Colloid Interface Sci. 2007, 307(1), 83-93.
    [19] Guo, X. H., Abdala, A. A., May, B. L., Lincoln, S. F., Khan, S. A.,Prudhomme, R. K., Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds, Macromolecules 2005, 38(7),3037-3040.
    [20] Guo, X. H., Abdala, A. A., May, B. L., Lincoln, S. F., Khan, S. A.,Prudhomme, R. K., Rheology Control by Modulating Hydrophobic and Inclusion Associations in Modified Poly(acrylic acid) Solutions, Polymer 2006, 47(9), 2976-2983.
    [21] Li, L., Guo, X. H., Fu, L., Prudhomme, R. K., Lincoln, S. F.,Complexation Behavior of α-, β-, and γ-Cyclodextrin in Modulating and Constructing Polymer Networks, Langmuir, 2008, 24(15), 8290-8296.
    [22] Li, L., Guo, X. H., Wang, J., Liu, P., Prudhomme, R. K., May, B. L.,Lincoln, S. F., Polymer Networks Assembled by Host-Guest Inclusion between Adamantyl and β-Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution, Macromolecules 2008, 41(22), 8677-8681.
    [23] Liu, J., Alvarez, J., Ong, W., Kaifer, A. E., Network Aggregates Formed by C60 and Gold Nanoparticles Capped with γ-Cyclodextrin Hosts, Nano Letters, 2001, 1(2), 57-60.
    [24] Li, J., Hong, X., Liu, Y., Li, D., Wang, Y. W., Li, J. H., Bai, Y. B., Li,T.J., Highly Photoluminescent CdTe/Poly(N-isopropylacrylamide) Temperstutre-Sensitive Gels, Adv. Mater., 2005, 17(2), 163-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700