用户名: 密码: 验证码:
非共价修饰功能化树枝形聚合物光物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树枝形聚合物是一类具有精确三维结构的树状大分子,在树枝形聚合物的核心或外围、或者支化单元上修饰光或电活性的官能团可以实现分子的功能化。树枝形聚合物的这种特殊结构可以用来模拟光合作用中的光捕获体系,如何改进光捕获树枝形聚合物的性能是目前相关研究工作的热点之一;树枝形聚合物还被广泛应用于离子传感器和金属纳米复合材料等领域,了解树枝形聚合物基团间相互作用以及金属离子与树枝形聚合物的结合过程,对扩展树枝形聚合物作为传感器或纳米材料模板的研究具有重要意义。
     本论文工作设计合成了0代到3代外围修饰了萘基团的聚酰胺-胺树枝形聚合物;研究了葫芦[7]脲与树枝形聚合物外围萘基团的自组装以及这种非共价修饰对光捕获树枝形聚合物性能的改进;通过稳态光物理方法研究了萘修饰的聚酰胺-胺树枝形聚合物分子内基团间相互作用以及树枝形聚合物与金属离子间的相互作用,得到了一系列有意义的研究结果,具体如下:
     1.化合物的合成:用发散合成法(Divergent approach)合成了0?3代以十二烷基二胺为核心、外围萘修饰的PAMAM树枝形聚合物(GnNap, n = 0?3);将GnNap骨架的胺基质子化得到一系列水溶性树枝形聚合物(GnNapH, n = 0?3);合成了主体分子葫芦[7]脲(CB[7])。所有化合物均通过了结构和纯度鉴定。
     2.非共价修饰对光捕获树枝形聚合物GnNapH (n = 0?3)性能的提高:葫芦[7]脲(CB[7])在缓冲溶液中与GnNapH外围萘基团自组装,得到结构完整的外围准轮烷修饰树枝形聚合物超分子GnNapH?xCB[7](n = 0?3,对应x = 4, 8, 16, 32),该组装是可逆过程。CB[7]与GnNapH外围萘包结复合物的形成抑制了体系的非辐射跃迁,大大提高了树枝形聚合物荧光量子产率,0?3代GnNapH荧光量子产率分别为0.12,0.097,0.065和0.062,而0?3代GnNapH?xCB[7]荧光量子产率分别增加至0.18,0.19,0.19和0.20。将能量受体9-蒽甲酸引入树枝形聚合物体系中,稳态光物理研究表明,CB[7]对外围的非共价修饰消除了官能团间相互作用导致的能量耗散,2代和3代光捕获体系GnNapH?xCB[7]中萘向蒽的能量传递效率比相应GnNapH体系分别提高了70%和100%。
     3.树枝形聚合物GnNap (n = 0?3)质子化过程的研究:稳态光物理研究表明,甲醇溶液中树枝形聚合物GnNap外围萘与骨架胺基发生光致电子转移,形成最大发射峰在450 nm的激基复合物,萘的荧光被猝灭;当GnNap骨架被质子化,分子内光致电子转移过程和萘与骨架胺基间激基复合物的形成被抑制,萘单体荧光发射大大增强;质子化后树枝形聚合物骨架趋于伸展构象,外围萘基团间相互作用增强而部分形成发射峰在400 nm的激基缔合物。
     4.树枝形聚合物GnNap (n = 0, 3)与金属离子相互作用研究:树枝形聚合物GnNap能有效络合多种金属离子,其中Hg2+与树枝形聚合物的结合具有特殊规律,荧光滴定结果表明,Hg2+先与最外围二级胺基以1:2的配比结合,抑制了萘和仲胺的光致电子转移使GnNap荧光增强,当外围二级胺与Hg2+完全结合后,Hg2+继续与GnNap骨架内部的三级胺以1:1配比结合并导致荧光猝灭。Fe2+,Co2+,Ni2+,Cu2+,Zn2+与树枝形聚合物有明显络合作用并对其光物理性质产生影响;树枝形聚合物与碱金属和碱土金属离子、Cd2+和Mn2+离子等没有明显作用。
Dendrimers are well-defined and successively branched macromolecules with the possibility of modifying functional units in predetermined sites of their treelike structure. The unique structure of the dendrimer makes it a mimic of natural photosynthetic systems, which are surrounded by plentiful antenna chromophores. Improving light-harvesting dendrimers is an important research field of the artificial photosynthetic research. In addition, dendrimers are widely applied in the studies of ion senors and metallic nanocomposites. Understanding the relationship between photophysical properties and dendrimer structures and revealing the metal complexation processes with dendrimers are essential for those research fields.
     In this dissertation, light-harvesting poly(amidoamine) dendrimers with naphthyl decorated at periphery, generation 0?3, were synthesized. These light-harvesting dendrimers have been noncovalently modified by cucurbit[7]uril (CB[7]) through peripheral pesudorotaxane formation resulting in enhancement of energy utilization. The interactions among components of dendrimers and the metal complexation were investigated by steady-state spectroscopy.
     1. Synthesis of the target compounds. Naphthyl terminal-decorated poly(amidoamine) dendrimers, generation 0?3 (GnNap, n = 0?3), were synthesized divergently using diaminododecane as the core. Corresponding water-soluble light-harvesting dendrimers (GnNapH, n = 0?3) were obtained after the protonation of GnNap. Host molecule for noncovalent modification, cucurbit[7]uril (CB[7]), was also synthesized. Structures of all compounds were characterized.
     2. Enhancement of energy utilization in light-harvesting dendrimers by noncovalent modification. Fluorescence studies reveal that strong interactions among peripheral chromophores occur in these dendrimers according to the intensive excimer emission and the low fluorescence quantum yields (Φf = 0.12, 0.097, 0.065 and 0.062 for G0–3NapH, respectively). Through assembly of dendrimers with cucurbit[7]uril (CB[7]), the well-defined pseudorotaxane assemblies GnNapH?xCB[7] (x = 4, 8, 16, 32 for n = 0–3, respectively) form and the energy dissipation is entirely suppressed resulting in a dramatic increase of the fluorescence quantum yield of dendrimers (Φf = 0.18, 0.19, 0.19 and 0.20 for 0–3 generations, respectively). The noncovalent modification is a reversible process and CB[7] can be unthreaded from the dendrimer periphery by adding 1-amimoadamantane (AD) which can form a more stable complex with CB[7]. Furthermore, 9-anthracenecarboxylic acid (AN), an energy acceptor, was introduced into the dendritic system to investigate the harvested energy utilization. Steady-state fluorescence investigations demonstrate that the energy transfer efficiencies from naphthyl to AN in G3NapH?32CB[7]–AN and G2NapH?16CB[7]–AN are enhanced 100% and 70% compared with those without CB[7] complexation.
     3. Protonation investigation of GnNap. Steady-state photophysical studies indicate that the fluorescence of naphthyl is quenched by the amine units of dendrimers GnNap via the intramolecular electron transfer, and a naphthyl-amine exciplex is formed with a structureless emission around 450 nm. The protonation of GnNap by addition of excess trifluoroacetic acid makes the fluorescence intensity of dendrimers increase dramatically due to suppression of the photoinduced electron transfer process and the exciplex formation, a weak naphthyl excimer emission with maximum at ca. 400 nm can be observed indicative of close-packed periphery and stretched conformation of protonated dendrimers.
     4. Investigation on the complexation of GnNap (n = 0, 3) with metal ions. GnNap show a special bingding behavior toward Hg2+. First, Hg2+ and peripheral secondary amine groups form a complex with an 1:2 binding mode resulting in an increase of the fluorescence of GnNap. After full complexation of peripheral secondary amine is reached, Hg2+ coordinates with tertiary amine units within dendrimer backbone in an 1:1 binding model and consequently quenched the emission of GnNap. Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ can complex with GnNap and evidently affect the photophysical properties of dendrimers. Cd2+, Mn2+, alkali metal and alkaline-earth metal ions have no obvious effect on the photophysical properties of GnNap in methanol indicative of no obvious interactions between GnNap and those ions.
引文
1. Flory, P. J., "Molecular size distribution in three dimensional polymers. I. Gelation." J. Am. Chem. Soc. 1941, 63, 3083. Flory, P. J., "Molecular size distribution in three dimensional polymers. II. Trifunctional branching units." J. Am. Chem. Soc. 1941, 63, 3091. Flory, P. J., "Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units." J. Am. Chem. Soc. 1941, 63, 3096.
    2. Buhleier, E.; Wehner, W.; Voegtle, F., ""Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies " Synthesis 1978, 155.
    3. Denkewalter, R. G.; Kole, J.; Lukasavage, W. J. Macromolecular Highly Branched Homogeneous Compound. U. S. Pat. 4410688, 1983.
    4. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M. E.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., "A New Class of Polymers: Starburst-Dendritic Macromolecules." Polym. J. 1985, 17 (1), 117.
    5. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., "Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol." J. Org. Chem. 1985, 50 (11), 2003.
    6. Hawker, C. J.; Fréchet, J. M. J., "Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules." J. Am. Chem. Soc. 1990, 112 (21), 7638.
    7. Hawker, C. J.; Fréchet, J. M. J., "A New Convergent Approach to Monodisperse Dendritic Macromolecules." J. Chem. Soc., Chem. Commun. 1990, (15), 1010.
    8. Miller, T. M.; Neenan, T. X., "Convergent Synthesis of Monodisperse Dendrimers Based Upon 1,3,5-Trisubstituted Benzenes." Chem. Mater. 1990, 2 (4), 346.
    9. Moore, J. S.; Xu, Z. F., "Synthesis of Rigid Dendritic Macromolecules - Enlarging the Repeat Unit Size as a Function of Generation Permits Growth to Continue." Macromolecules 1991, 24 (21), 5893.
    10. Morgenroth, F.; Müllen, K., "Dendritic and hyperbranched polyphenylenes via a simple Diels-Alder route." Tetrahedron 1997, 53 (45), 15349. Morgenroth, F.; Kubel,C.; Müllen, K., "Nanosized polyphenylene dendrimers based upon pentaphenylbenzene units." J. Mater. Chem. 1997, 7 (7), 1207.
    11. Halim, M.; Pillow, J. N. G.; Samuel, I. D. W.; Burn, P. L., "Conjugated dendrimers for light-emitting diodes: Effect of generation." Adv. Mater. 1999, 11 (5), 371.
    12. Tam, J. P., "Synthetic Peptide Vaccine Design - Synthesis and Properties of a High-Density Multiple Antigenic Peptide System." Proc. Natl. Acad. Sci. USA 1988, 85 (15), 5409.
    13. Hudson, R. H. E.; Damha, M. J., "Nucleic-Acid Dendrimers - Novel Biopolymer Structures." J. Am. Chem. Soc. 1993, 115 (6), 2119.
    14. Rebrov, E. A.; Muzafarov, A. M.; Papkov, V. S.; Zhdanov, A. A., "Space-Network Polyorganosiloxanes." Doklady Akademii Nauk. Sssr. 1989, 309 (2), 376.
    15. Vandermade, A. W.; Vanleeuwen, P. W. N. M., "Silane Dendrimers." J. Chem. Soc., Chem. Commun. 1992, (19), 1400.
    16. Launay, N.; Caminade, A. M.; Lahana, R.; Majoral, J. P., "A General Synthetic Strategy for Neutral Phosphorus-Containing Dendrimers." Angew. Chem. Int., Edit. 1994, 33 (15-16), 1589.
    17. Campagna, S.; Denti, G.; Serroni, S.; Juris, A.; Venturi, M.; Ricevuto, V.; Balzani, V., "Dendrimers of Nanometer-Size Based on Metal-Complexes - Luminescent and Redox-Active Polynuclear Metal-Complexes Containing up to 22 Metal Centers." Chem. Eur. J. 1995, 1 (4), 211.
    18. Franz, A.; Bauer, W.; Hirsch, A., "Complete self-assembly of discrete supramolecular dendrimers." Angew. Chem., Int. Ed. 2005, 44 (10), 1564.
    19. Kim, S. Y.; Ko, Y. H.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Kim, K., "Toward high-generation rotaxane dendrimers that incorporate a ring component on every branch: Noncovalent synthesis of a dendritic [10]pseudorotaxane with 13 molecular components." Chem-Asian J. 2007, 2 (6), 747.
    20. Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M., "New methodologies in the construction of dendritic materials." Chem. Soc. Rev. 2009, 38 (2), 352.
    21. Bosman, A. W.; Janssen, H. M.; Meijer, E. W., "About dendrimers: Structure,physical properties, and applications." Chem. Rev. 1999, 99 (7), 1665.
    22. Lo, S. C.; Burn, P. L., "Development of dendrimers: Macromolecules for use in organic light-emitting diodes and solar cells." Chem. Rev. 2007, 107 (4), 1097.
    23. Tekade, R. K.; Kumar, P. V.; Jain, N. K., "Dendrimers in Oncology: An Expanding Horizon." Chem. Rev. 2009, 109 (1), 49.
    24. Tomalia, D. A.; Fréchet, J. M. J., "Discovery of dendrimers and dendritic polymers: A brief historical perspective." J Polym. Sci. Po.l Chem. 2002, 40 (16), 2719.
    25. Grayson, S. M.; Fréchet, J. M. J., "Convergent dendrons and dendrimers: from synthesis to applications." Chem. Rev. 2001, 101 (12), 3819.
    26. Debrabandervandenberg, E. M. M.; Meijer, E. W., "Poly(Propylene Imine) Dendrimers - Large-Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations." Angew. Chem., Int. Edit. 1993, 32 (9), 1308.
    27. Wooley, K. L.; Hawker, C. J.; Fréchet, J. M. J., "Hyperbranched Macromolecules Via a Novel Double-Stage Convergent Growth Approach." J. Am. Chem. Soc. 1991, 113 (11), 4252. Ihre, H.; Hult, A.; Fréchet, J. M. J.; Gitsov, I., "Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid." Macromolecules 1998, 31 (13), 4061.
    28. Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S., "Double Exponential Dendrimer Growth." J. Am. Chem. Soc. 1995, 117 (8), 2159.
    29. Spindler, R.; Fréchet, J. M. J., "2-Step Approach Towards the Accelerated Synthesis of Dendritic Macromolecules." J. Chem. Soc., Perk. Trans. 1 1993, (8), 913.
    30. Zeng, F. W.; Zimmerman, S. C., "Rapid synthesis of dendrimers by an orthogonal coupling strategy." J. Am. Chem. Soc. 1996, 118 (22), 5326.
    31. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., "Click chemistry: Diverse chemical function from a few good reactions." Angew. Chem., Int. Ed. 2001, 40 (11), 2004.
    32. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V., "Efficiency and fidelity in aclick-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes." Angew. Chem., Int. Ed. 2004, 43 (30), 3928.
    33. Joralemon, M. J.; O'Reilly, R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L., "Dendrimers clicked together divergently." Macromolecules 2005, 38 (13), 5436.
    34. Killops, K. L.; Campos, L. M.; Hawker, C. J., "Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "Click" chemistry." J. Am. Chem. Soc. 2008, 130 (15), 5062.
    35. Adronov, A.; Fréchet, J. M. J., "Light-harvesting dendrimers." Chem. Commun. 2000, (18), 1701.
    36. Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V., "Decanuclear Homometallic and Heterometallic Polypyridine Complexes - Syntheses, Absorption-Spectra, Luminescence, Electrochemical Oxidation, and Intercomponent Energy-Transfer." J. Am. Chem. Soc. 1992, 114 (8), 2944.
    37. Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M., "Designing dendrimers based on transition metal complexes. Light-harvesting properties and predetermined redox patterns." Acc. Chem. Res. 1998, 31 (1), 26.
    38. Xu, Z. F.; Moore, J. S., "Stiff Dendritic Macromolecules .4. Design and Synthesis of a Convergent and Directional Molecular Antenna." Acta Polym. 1994, 45 (2), 83. Xu, Z. F.; Moore, J. S., "Stiff Dendritic Macromolecules .3. Rapid Construction of Large-Size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter." Angew. Chem. Int. Edit. 1993, 32 (9), 1354.
    39. Devadoss, C.; Bharathi, P.; Moore, J. S., "Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient." J. Am. Chem. Soc. 1996, 118 (40), 9635.
    40. BarHaim, A.; Klafter, J.; Kopelman, R., "Dendrimers as controlled artificial energy antennae." J. Am. Chem. Soc. 1997, 119 (26), 6197.
    41. Jiang, D. L.; Aida, T., "Photoisomerization in dendrimers by harvesting of low-energy photons." Nature 1997, 388 (6641), 454.
    42. Jiang, D. L.; Aida, T., "Morphology-dependent photochemical events in aryl etherdendrimer porphyrins: Cooperation of dendron subunits for singlet energy transduction." J. Am. Chem. Soc. 1998, 120 (42), 10895.
    43. Kawa, M.; Fréchet, J. M. J., "Self-assembled lanthanide-cored dendrimer complexes: Enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects." Chem. Mater. 1998, 10 (1), 286. Kawa, M.; Fréchet, J. M. J., "Enhanced luminescence of lanthanide within lanthanide-cored dendrimer complexes." Thin Solid Films 1998, 331 (1-2), 259.
    44. Adronov, A.; Gilat, S. L.; Fréchet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R., "Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers." J. Am. Chem. Soc. 2000, 122 (6), 1175.
    45. Gronheid, R.; Hofkens, J.; Kohn, F.; Weil, T.; Reuther, E.; Müllen, K.; De Schryver, F. C., "Intramolecular Forster energy transfer in a dendritic system at the single molecule level." J. Am. Chem. Soc. 2002, 124 (11), 2418. Cotlet, M.; Gronheid, R.; Habuchi, S.; Stefan, A.; Barbafina, A.; Müllen, K.; Hofkens, J.; De Schryver, F. C., "Intramolecular directional Forster resonance energy transfer at the single-molecule level in a dendritic system." J. Am. Chem. Soc. 2003, 125 (44), 13609.
    46. Choi, M. S.; Aida, T.; Yamazaki, T.; Yamazaki, I., "A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: Molecular design of an efficient energy funnel for visible photons." Angew. Chem., Int. Ed. 2001, 40 (17), 3194. Choi, M. S.; Aida, T.; Yamazaki, T.; Yamazaki, I., "Dendritic multiporphyrin arrays as light-harvesting antennae: Effects of generation number and morphology on intramolecular energy transfer." Chem. Eur. J. 2002, 8 (12), 2668.
    47. Hara, M.; Samori, S.; Cai, X. C.; Tojo, S.; Arai, T.; Momotake, A.; Hayakawa, J.; Uda, M.; Kawai, K.; Endo, M.; Fujitsuka, M.; Majima, T., "Effects of benzyl ether type dendrons as hole-harvesting antennas, and shielding for the neutralization of stilbene core radical cations with chloride ion during two-photon ionization of stilbene dendrimers having stilbene core and benzyl ether type dendrons." J. Am. Chem. Soc. 2004, 126 (43), 14217.
    48. Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.; Bardeen, C. J.; Thayumanavan, S., "Energy and electron transfer in bifunctional non-conjugateddendrimers." J. Am. Chem. Soc. 2005, 127 (1), 373.
    49. Schenning, A. P. H. J.; Peeters, E.; Meijer, E. W., "Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers." J. Am. Chem. Soc. 2000, 122 (18), 4489.
    50. Hahn, U.; Gorka, M.; V?gtle, F.; Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V., "Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types." Angew. Chem., Int. Ed. 2002, 41 (19), 3595.
    51. Chen, J. P.; Li, S. Y.; Zhang, L.; Liu, B. N.; Han, Y. B.; Yang, G. Q.; Li, Y., "Light-harvesting and photoisomerization in benzophenone and norbornadiene-labeled poly(aryl ether) dendrimers via intramolecular triplet energy transfer." J. Am. Chem. Soc. 2005, 127 (7), 2165.
    52. Chen, J. P.; Li, S. Y.; Zhang, L.; Li, Y. Y.; Chen, J.; Yang, G. Q.; Li, Y., "Direct observation of the intramolecular triplet-triplet energy transfer in poly(aryl ether) dendrimers." J. Phys. Chem. B 2006, 110 (9), 4047.
    53. Maus, M.; Mitra, S.; Lor, M.; Hofkens, J.; Weil, T.; Herrmann, A.; Müllen, K.; De Schryver, F. C., "Intramolecular energy hopping in polyphenylene dendrimers with an increasing number of peryleneimide chromophores." J. Phys. Chem. A 2001, 105 (16), 3961.
    54. Lor, M.; De, R.; Jordens, S.; De Belder, G.; Schweitzer, G.; Cotlet, M.; Hofkens, J.; Weil, T.; Herrmann, A.; Müllen, K.; Van Der Auweraer, M.; De Schryver, F. C., "Generation-dependent energy dissipation in rigid dendrimers studied by femtosecond to nanosecond time-resolved fluorescence spectroscopy." J. Phys. Chem. A 2002, 106 (10), 2083.
    55. De Schryver, F. C.; Vosch, T.; Cotlet, M.; Van der Auweraer, M.; Müllen, K.; Hofkens, J., "Energy dissipation in multichromophoric single dendrimers." Acc. Chem. Res. 2005, 38 (7), 514.
    56. Masuo, S.; Vosch, T.; Cotlet, M.; Tinnefeld, P.; Habuchi, S.; Bell, T. D. M.; Oesterling, I.; Beljonne, D.; Champagne, B.; Müllen, K.; Sauer, M.; Hofkens, J.; De Schryver, F. C., "Multichromophoric dendrimers as single-photon sources: Asingle-molecule study." J. Phys. Chem. B 2004, 108 (43), 16686. De Belder, G.; Jordens, S.; Lor, M.; Schweitzer, G.; De, R.; Weil, T.; Herrmann, A.; Wiesler, U. K.; Müllen, K.; De Schryver, F. C., "Femtosecond fluorescence upconversion study of rigid dendrimers containing peryleneimide chromophores at the rim." J. Photochem. Photobiol., A 2001, 145 (1-2), 61.
    57. Larsen, J.; Bruggemann, B.; Polivka, T.; Sundstrom, V.; Akesson, E.; Sly, J.; Crossley, M. J., "Energy transfer within Zn-porphyrin dendrimers: Study of the singlet-singlet annihilation kinetics." J. Phys. Chem. A 2005, 109 (47), 10654.
    58. Larsen, J.; Bruggemann, B.; Khoury, T.; Sly, J.; Crossley, M. J.; Sundstrom, V.; Akesson, E., "Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers." J. Phys. Chem. A 2007, 111 (42), 10589.
    59. Larsen, J.; Bruggemann, B.; Sly, J.; Crossley, M. J.; Sundstrom, V.; Akesson, E., "Solvent induced control of energy transfer within Zn(II)-porphyrin dendrimers." Chem. Phys. Lett. 2006, 433 (1-3), 159.
    60. Weil, T.; Reuther, E.; Müllen, K., "Shape-persistent, fluorescent polyphenylene dyads and a triad for efficient vectorial transduction of excitation energy." Angew. Chem., Int. Ed. 2002, 41 (11), 1900.
    61. Serin, J. M.; Brousmiche, D. W.; Fréchet, J. M. J., "Cascade energy transfer in a conformationally mobile multichromophoric dendrimer." Chem. Commun. 2002, (22), 2605.
    62. Lee, J. W.; Kim, K., "Rotaxane dendrimers." Top. Curr. Chem. 2003, 228, 111.
    63. Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Brown, C. L.; Credi, A.; Fréchet, J. M. J.; Leon, J. W.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.; Venturi, M., "Self-assembly of [n]rotaxanes bearing dendritic stoppers." J. Am. Chem. Soc. 1996, 118 (48), 12012.
    64. Hubner, G. M.; Nachtsheim, G.; Li, Q. Y.; Seel, C.; V?gtle, F., "The spatial demand of dendrimers: Deslipping of rotaxanes." Angew. Chem., Int. Ed. 2000, 39 (7), 1269.
    65. Wallimann, P.; Seiler, P.; Diederich, F., "Dendrophanes: Novel steroid-recognizing dendritic receptors." Helv. Chim. Acta 1996, 79 (3), 779. Mattei,P.; Diederich, F., "Catalytic cyclophanes .11. A flavo-thiazolio-cyclophane as a biomimetic catalyst for the preparative-scale electro-oxidation of aromatic aldehydes to methyl esters." Helv. Chim. Acta 1997, 80 (5), 1555. Kenda, B.; Diederich, F., "Supramolecular aggregates of dendritic cyclophanes (dendrophanes) threaded on molecular rods with steroid termini." Angew. Chem., Int. Ed. 1998, 37 (22), 3154.
    66. Newkome, G. R.; Godinez, L. A.; Moorefield, C. N., "Molecular recognition using beta-cyclodextrin-modified dendrimers: novel building blocks for convergent self-assembly." Chem. Commun. 1998, (17), 1821.
    67. Yamaguchi, N.; Hamilton, L. M.; Gibson, H. W., "Dendritic pseudorotaxanes." Angew. Chem., Int. Ed. 1998, 37 (23), 3275. Gibson, H. W.; Yamaguchi, N.; Hamilton, L.; Jones, J. W., "Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecule and complementary monotopic host dendrons." J. Am. Chem. Soc. 2002, 124 (17), 4653.
    68. Reuter, C.; Pawlitzki, G.; Worsdorfer, U.; Plevoets, M.; Mohry, A.; Kubota, T.; Okamoto, Y.; V?gtle, F., "Chiral dendrophanes, dendro[2]rotaxanes, and dendro[2]catenanes: Synthesis and chiroptical phenomena." Eur. J. Org. Chem. 2000, (17), 3059.
    69. Castro, R.; Cuadrado, I.; Alonso, B.; Casado, C. M.; Moran, M.; Kaifer, A. E., "Multisite inclusion complexation of redox active dendrimer guests." J. Am. Chem. Soc. 1997, 119 (24), 5760.
    70. Gonzalez, B.; Casado, C. M.; Alonso, B.; Cuadrado, I.; Moran, M.; Wang, Y.; Kaifer, A. E., "Synthesis, electrochemistry and cyclodextrin binding of novel cobaltocenium-functionalized dendrimers." Chem. Commun. 1998, (23), 2569.
    71. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., "Well-defined assemblies of adamantyl-terminated poly(propylene imine) dendrimers and beta-cyclodextrin in water." J Chem Soc Perk. T 2 2000, (9), 1914.
    72. Michels, J. J.; Huskens, J.; Reinhoudt, D. N., "Dendrimer-cyclodextrin assemblies as stabilizers for gold and platinum nanoparticles." J Chem Soc Perk. T 2 2002, (1), 102.
    73. van Bommel, K. J. C.; Metsealaar, G. A.; Verboom, W.; Reinhoudt, D. N.,"Water-soluble adamantane-terminated dendrimers possessing a rhenium core." J. Org. Chem. 2001, 66 (16), 5405.
    74. Lee, J. W.; Ko, Y. H.; Park, S. H.; Yamaguchi, K.; Kim, K., "Novel pseudorotaxane-terminated dendrimers: Supramolecular modification of dendrimer periphery." Angew. Chem., Int. Ed. 2001, 40 (4), 746.
    75. Jones, J. W.; Bryant, W. S.; Bosman, A. W.; Janssen, R. A. J.; Meijer, E. W.; Gibson, H. W., "Crowned dendrimers: pH-responsive pseudorotaxane formation." J. Org. Chem. 2003, 68 (6), 2385.
    76. Amabilino, D. B.; Ashton, P. R.; Belohradsky, M.; Raymo, F. M.; Stoddart, J. F., "The Self-Assembly of Branched [N]Rotaxanes-the First Step Towards Dendritic Rotaxanes." J. Chem. Soc., Chem. Commun. 1995, (7), 751.
    77. Osswald, F.; Vogel, E.; Safarowsky, O.; Schwanke, F.; V?gtle, F., "Rotaxane assemblies with dendritic architecture." Adv. Synth. Catal. 2001, 343 (3), 303.
    78. Elizarov, A. M.; Chiu, S. H.; Glink, P. T.; Stoddart, J. F., "Dendrimer with rotaxane-like mechanical branching." Org. Lett. 2002, 4 (5), 679.
    79. Chechik, V.; Zhao, M. Q.; Crooks, R. M., "Self-assembled inverted micelles prepared from a dendrimer template: Phase transfer of encapsulated guests." J. Am. Chem. Soc. 1999, 121 (20), 4910.
    80. Sakamoto, M.; Ueno, A.; Mihara, H., "Construction of alpha-helical peptide dendrimers conjugated with multi-metalloporphyrins: photoinduced electron transfer on dendrimer architecture." Chem. Commun. 2000, (18), 1741.
    81. Sun, H.; Kaifer, A. E., "Unsymmetric dendrimers containing a single ureidopyrimidine unit: Generation-dependent dimerization via hydrogen bonding." Org. Lett. 2005, 7 (18), 3845.
    82. Dirksen, A.; Hahn, U.; Schwanke, F.; Nieger, M.; Reek, J. N. H.; V?gtle, F.; De Cola, L., "Multiple recognition of barbiturate guests by Hamilton-receptor-functionalized dendrimers." Chem. Eur. J. 2004, 10 (8), 2036.
    83. Saudan, C.; Balzani, V.; Gorka, M.; Lee, S. K.; Maestri, M.; Vicinelli, V.; V?gtle, F., "Dendrimers as ligands. formation of a 2 : 1 luminescent complex between a dendrimer with a 1,4,8,11-tetraazacyclotetradecane (Cyclam) core and Zn2+." J. Am.Chem. Soc. 2003, 125 (15), 4424.
    84. Baars, M. W. P. L.; Karlsson, A. J.; Sorokin, V.; de Waal, B. F. W.; Meijer, E. W., "Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionality." Angew. Chem., Int. Ed. 2000, 39 (23), 4262.
    85. Jansen, J. F. G. A.; Debrabandervandenberg, E. M. M.; Meijer, E. W., "Encapsulation of Guest Molecules into a Dendritic Box." Science 1994, 266 (5188), 1226.
    86. Pittelkow, M.; Nielsen, C. B.; Broeren, A. C.; van Dongen, J. L. J.; van Genderen, M. H. P.; Meijer, E. W.; Christensen, J. B., "Molecular recognition: Comparative study of a tunable host-guest system by using a fluorescent model system and collision-induced dissociation mass spectrometry on dendrimers." Chem. Eur. J. 2005, 11 (17), 5126.
    87. Broeren, M. A. C.; de Waal, B. F. M.; van Genderen, M. H. P.; Sanders, H. M. H. F.; Fytas, G.; Meijer, E. W., "Multicomponent host-guest chemistry of carboxylic acid and phosphonic acid based guests with dendritic hosts: An NMR study." J. Am. Chem. Soc. 2005, 127 (29), 10334.
    88. de Groot, D.; de Waal, B. F. M.; Reek, J. N. H.; Schenning, A. P. H. J.; Kramer, P. C. J.; Meijer, E. W.; van Leeuwen, P. W. N. M., "Noncovalently functionalized dendrimers as recyclable catalysts." J. Am. Chem. Soc. 2001, 123 (35), 8453.
    89. Precup-Blaga, F. S.; Garcia-Martinez, J. C.; Schenning, A. P. H. J.; Meijer, E. W., "Highly emissive supramolecular oligo(p-phenylene vinylene) dendrimers." J. Am. Chem. Soc. 2003, 125 (42), 12953.
    90. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., "Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis." Acc. Chem. Res. 2001, 34 (3), 181.
    91. Zhao, M. Q.; Sun, L.; Crooks, R. M., "Preparation of Cu nanoclusters within dendrimer templates." J. Am. Chem. Soc. 1998, 120 (19), 4877. Zhao, M. Q.; Crooks, R. M., "Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles." Angew. Chem., Int. Ed. 1999, 38 (3), 364. Chechik, V.; Crooks, R. M., "Dendrimer-encapsulated Pd nanoparticles asfluorous phase-soluble catalysts." J. Am. Chem. Soc. 2000, 122 (6), 1243. Knecht, M. R.; Weir, M. G.; Frenkel, A. I.; Crooks, R. M., "Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations." Chem. Mater. 2008, 20 (3), 1019. Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., "Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing < 150 atoms." Chem. Mater. 2006, 18 (21), 5039.
    92. Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; V?gtle, F., "Dendrimers as fluorescent sensors with signal amplification." Chem. Commun. 2000, (10), 853.
    93. V?gtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V., "Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery." J. Am. Chem. Soc. 2000, 122 (42), 10398.
    94. Pina, F.; Maestri, M.; Balzani, V.; V?gtle, F., "Ground and excited-state electronoic interactions in poly(propylene amine) dendrimers functionalized with naphthy units: Effect of protonation and metal complexation." Chemphyschem 2004, 5 (4), 473.
    95. Branchi, B.; Ceroni, P.; Bergamini, G.; Balzani, V.; Maestri, M.; van Heyst, J.; Lee, S. K.; Luppertz, F.; V?gtle, F., "A cyclam core dendrimer containing dansyl and oligoethylene glycol chains in the branches: Protonation and metal coordination." Chem. Eur. J. 2006, 12 (35), 8926.
    96. Higuchi, M.; Shiki, S.; Yamamoto, K., "Novel phenylazomethine dendrimers: Synthesis and structural properties." Org. Lett. 2000, 2 (20), 3079. Higuchi, M.; Tsuruta, M.; Chiba, H.; Shiki, S.; Yamamoto, K., "Control of stepwise radial complexation in dendritic polyphenylazomethines." J. Am. Chem. Soc. 2003, 125 (33), 9988.
    97. Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H., "Stepwise radial complexation of imine groups in phenylazomethine dendrimers." Nature 2002, 415 (6871), 509.
    98. Imaoka, T.; Horiguchi, H.; Yamamoto, K., "Metal assembly in novel dendrimers with porphyrin cores." J. Am. Chem. Soc. 2003, 125 (2), 340.
    99. Satoh, N.; Nakashima, T.; Yamamoto, K., "Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell." J. Am. Chem. Soc. 2005, 127 (37), 13030.
    100. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y., "Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures." J. Am. Chem. Soc. 2004, 126 (46), 15180.
    101. Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L., "The cucurbit[n]uril family." Angew. Chem., Int. Ed. 2005, 44 (31), 4844.
    102. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K., "Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry." Acc. Chem. Res. 2003, 36 (8), 621. Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J., "Functionalized cucurbiturils and their applications." Chem. Soc. Rev. 2007, 36 (2), 267.
    103. Mock, W. L., "Cucurbituril." Supramolecular Chemistry Ii - Host Design and Molecular Recognition 1995, 175, 1.
    104. Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K., "New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8)." J. Am. Chem. Soc. 2000, 122 (3), 540.
    105. Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B., "Controlling factors in the synthesis of cucurbituril and its homologues." J. Org. Chem. 2001, 66 (24), 8094.
    106. Liu, S. M.; Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij, P. Y.; Isaacs, L., "The cucurbit[n]uril family: Prime components for self-sorting systems." J. Am. Chem. Soc. 2005, 127 (45), 15959.
    107. Ghaddar, T. H.; Whitesell, J. K.; Fox, M. A., "Excimer formation in a naphthalene-labeled dendrimer." J. Phys. Chem. B 2001, 105 (37), 8729.
    108. Momiji, I.; Yoza, C.; Matsui, K., "Fluorescence spectra of9-anthracenecarboxylic acid in heterogeneous environments." J. Phys. Chem. B 2000,
    104 (7), 1552. Giaimuccio, J. M.; Rowley, J. G.; Meyer, G. J.; Wang, D.; Galoppini, E., "Heavy atom effects on anthracene-rigid-rod excited states anchored to metal oxide nanoparticles." Chem. Phys. 2007, 339 (1-3), 146. Puntoriero, F.; Ceroni, P.; Balzani, V.; Bergamini, G.; V?gtle, F., "Photoswitchable dendritic hosts: A dendrimer with peripheral azobenzene groups." J. Am. Chem. Soc. 2007, 129 (35), 10714.
    109. Koper, G. J. M.; vanGenderen, M. H. P.; ElissenRoman, C.; Baars, M. W. P. L.; Meijer, E. W.; Borkovec, M., "Protonation mechanism of poly(propylene imine) dendrimers and some associated oligo amines." J. Am. Chem. Soc. 1997, 119 (28), 6512.
    110. Cakara, D.; Kleimann, J.; Borkovec, M., "Microscopic protonation equilibria of poly(amidoamine) dendrimers from macroscopic titrations." Macromolecules 2003, 36 (11), 4201.
    111. Kleinman, M. H.; Flory, J. H.; Tomalia, D. A.; Turro, N. J., "Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol." J. Phys. Chem. B 2000, 104 (48), 11472.
    112. Kulczynska, A.; Frost, T.; Margerum, L. D., "Effect of PAMAM dendrimer size and pH on the electrostatic binding of metal complexes using cyclic voltammetry." Macromolecules 2006, 39 (21), 7372.
    113. Maiti, P. K.; Cagin, T.; Lin, S. T.; Goddard, W. A., "Effect of solvent and pH on the structure of PAMAM dendrimers." Macromolecules 2005, 38 (3), 979.
    114. Maiti, P. K.; Goddard, W. A., "Solvent quality changes the structure of G8 PAMAM dendrimer, a disagreement with some experimental interpretations." J. Phys. Chem. B 2006, 110 (51), 25628.
    115. Saudan, C.; Balzani, V.; Ceroni, P.; Gorka, M.; Maestri, M.; Vicinelli, V.; V?gtle, F., "Dendrimers with a cyclam core. Absorption spectra, multiple luminescence, and effect of protonation." Tetrahedron 2003, 59 (22), 3845.
    116. Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Alves, S.; Astruc, D., "Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations." Angew. Chem., Int. Ed. 2007, 46 (6), 872.
    117. Diallo, M. S.; Christie, S.; Swaminathan, P.; Johnson, J. H.; Goddard, W. A., "Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups." Environ. Sci. Technol. 2005, 39 (5), 1366. Diallo, M. S.; Arasho, W.; Johnson, J. H.; Goddard, W. A., "Dendritic Chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions." Environ. Sci. Technol. 2008, 42 (5), 1572.
    118.邵学俊;董平安;魏益海,无机化学.第二版.;武汉大学出版社:武汉, 2003;下册.
    119. Chandross, E. A.; Thomas, H. T., "Intramolecular exciplex formation in naphthylalkylamines." Chem. Phys. Lett. 1971, 9 (5), 393. Mei, M. H.; Yan, J. J.; Wu, S. K., "The pH effect on the fluorescence of linear poly-amino-compounds and the recognition of nucleoside phosphates." Acta Phys-Chim. Sinica 2002, 18 (8), 686. Brimage, D. R. G.; Davidson, R. S., "Effect of Intramolecular Exciplex Formation Upon Photoreactivity of Naphthylalkylamines and Anthrylalkylamines." J. Chem. Soc., Chem. Commun. 1971, (21), 1385.
    120. Nolan, E. M.; Lippard, S. J., "A "Turn-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media." J. Am. Chem. Soc. 2003, 125 (47), 14270.
    121. Rurack, K., "Flipping the light switch 'ON' - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions." Spectrochim. Acta, Pt. A: Mol. Biomol. Spectrosc. 2001, 57 (11), 2161. Zong, G. Q.; Lu, G. X., "An Anthracene-Based Chemosensor for Multiple Logic Operations at the Molecular Level." J. Phys. Chem. C 2009, 113 (6), 2541.
    122. Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X. Y.; Baker, J. R.; Balogh, L. P., "Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection." Nano. Lett. 2005, 5 (11), 2123.
    123. Bergamini, G.; Ceroni, P.; Maestri, M.; Lee, S. K.; van Heyst, J.; V?gtle, F., "Cyclam cored luminescent dendrimers as ligands for Co(II), Ni(II) and Cu(II) ions."Inorg. Chim. Acta 2007, 360 (3), 1043.
    124. Lachkar, M.; Guilard, R.; Atmani, A.; De Cian, A.; Fischer, J.; Weiss, R., "Synthesis of new binucleating cylindrical macrotricyclic ligands where two cyclam rings are in a face-to-face conformation. Characterization of their dicopper(II) and dinickel(II) complexes." Inorg. Chem. 1998, 37 (7), 1575. Gu, T.; Whitesell, J. K.; Fox, M. A., "Intramolecular charge transfer in 1 : 1 Cu(II)/pyrenylcyclam dendrimer complexes." J. Phys. Chem. B 2006, 110 (50), 25149.
    125. Jorgensen, C. K., "Spectroscopy of Transition-Group Complexes." Adv. Chem. Phys. 1963, 5, 33.
    126. Cotton, F. A.; Wilkinson, G., Advanced Inorganic Chemistry. Wiley: New York, 1980.
    127. Stootman, F. H.; Fisher, D. M.; Rodger, A.; Aldrich-Wright, J. R., "Improved curve fitting procedures to determine equilibrium binding constants." The Analyst 2006, 131, 1145.
    128. Eaton, D. F., "Reference Materials for Fluorescence Measurement." Pure Appl. Chem. 1988, 60 (7), 1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700