用户名: 密码: 验证码:
PA6/MWNTs复合纳米纤维纱连续静电纺丝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)自1991年被发现以来,虽然只有短短20年,但由于其具有良好的电磁性能、力学性能和传热性能,在很多领域都得到了广泛应用。如:利用碳纳米管的高强度、优良的韧性和弹性模量,将其作为复合材料的增强体;利用其较好的宽频宽带吸收特性,用来制备吸波和屏蔽材料;利用其具有弹性高、密度低、强度高、隐身性优越、红外吸收性好、疏水性强等优点,与普通纤维混纺制成防弹衣等。
     静电纺丝是制备纳米纤维最基本、最方便的方法之一,随着静电纺丝技术的发展,研究人员开始致力于将碳纳米管与静电纺丝技术相结合,试图制备出具有优良性能的纳米复合材料。当人们发现碳纳米管可在静电纺纤维中较好地沿着纤维轴向定向排列时,就更加热衷于利用静电纺丝技术制备聚合物/CNTs纳米复合纤维。目前,研究人员已经将PAN、PVA、PEO、PMMA、PA6、PBT、PLA和丝素等多种聚合物与单壁碳纳米管(SWNTs)或多壁碳纳米管(MWNTs)进行复合静电纺丝,但是所有产品基本都是纤维呈随机排列的非织造布,美国的Frangk Ko教授用静电纺丝的方法得到了PAN/SWNTs纱,少量以滚筒法和双电极法等制备的纤维束长度仅为数米或者数十厘米,没有实现类似于化学纤维纺丝的连续卷绕成筒。
     为了实现高聚物/MWNTs复合纳米纤维纱的连续静电纺丝,本文将静电纺丝结合纤维在活性浴液中集束、一步法热拉伸定型、连续卷绕等技术,成功地实现了连续纺制PA6/MWNTs复合纳米纤维纱。并在此基础上,系统地探讨并优化了纺丝工艺参数,使连续纺制PA6/MWNTs复合纳米纤维纱技术具有更好的稳定性和可控性,真正实现了高聚物/MWNTs的连续静电纺丝。
     本文在实现连续纺制PA6/MWNTs复合纳米纤维纱的基础上,还研究了纺丝工艺参数对纤维及纱线结构与性能的影响机理。同时,还探索了两种后加工技术(干热拉伸和湿热拉伸),改善了纱线的结构和性能。最后,本文还研究了PA6/MWNTs纳米纤维中MWNTs的分布及排列情况,以及纱线的导电性能。
     研究表明在纺丝电压为18-20KV、纺丝高度为6cm、纺丝溶液中MWNTs质量百分数为0~3%、PA6质量百分数为25%、卷绕速度为1.80m/min ~12.6 m/min、0.5wt%的平平加O溶液作为收集浴液时,能实现PA6/MWNTs纳米纤维纱的稳定、连续静电纺丝。
     纺丝电压、纺丝高度、MWNTs的含量、卷绕速度等都对PA6/MWNTs复合纳米纤维纱的结构与性能有很大的影响。随着纺丝电压的增大,PA6/MWNTs纳米纤维纱的直径、纤维结晶度、断裂强力增加;随着纺丝高度的增加,纤维的定向排列程度提高,结晶度增大,纤维直径先增大后减小,纱线直径逐渐减小,纱线的断裂强度和初始模量增加,断裂伸长率呈先增加后减小的变化;场强相同时,在高电压和高纺丝高度下,纤维的平行排列程度高,纱线的断裂强力、断裂伸长率、初始模量和断裂强度较大;纺丝溶液中MWNTs的质量百分数在0.4%-0.80%(纤维中MWNTs的质量百分数为1.57%-3.1%)时,随着MWNTs含量的增加,纱线的断裂强度和模量逐渐增加,伸长减小,当MWNTs质量百分数超过0.80%时,纱线的断裂强度随着MWNTs含量的增加反而减小;纺丝卷绕速度对纱线的力学性能的影响以9.00m/min为临界点,在1.80~9.00m/min之间,纱线的断裂强度和模量随速度的增加而增加,当速度超过9.00m/min时,纱线断裂强度反而有所下降。
     在纱线的后加工过程中,干热拉伸的最大倍数可以达到1.6,湿热拉伸的最大倍数可以达到1.7。二者都能提高纱线的断裂强度和初始模量,拉伸倍数越高,纱线断裂强度和初始模量越大。干热拉伸后的纳米纤维纱断裂强度和初始模量分别可以达到初纺纱的2.47和2.35倍,湿热拉伸后的纳米纤维纱断裂强度和初始模量分别可以达到初纺纱的2.64和4.20倍。在改善PA6/MWNTs复合纳米纤维纱的力学性能方面,湿热拉伸的效果优于干热拉伸。MWNTs在PA6/MWNTs纳米纤维中呈现良好的排列,当MWNTs含量较高时会出现团聚现象,纱线的电导率随着MWNTs含量的增加而增加,所纺制的PA6/MWNTs纳米纤维纱比纯PA6纤维电导率提高了6个数量级。
     通过本课题的研究在国内外首次实现了PA6/MWNTs纳米纤维纱的连续纺制,打破了静电纺纤维制品只能呈现无规则取向的局限,为连续静电纺制高聚物/MWNTs连续纳米纤维纱奠定了理论和实践基础。同时通过干热拉伸和湿热拉伸等二次加工技术,改善了纱线的力学性能,为提高静电纺复合纳米纤维纱力学性能提供了一条新的途径。通过研究MWNTs在静电纺高聚物/MWNTs纳米纤维中的排列及其对纱线电导率的影响,为制备导电纳米纤维也提供了一种全新的方法。
Carbon nanotube (CNTs), which possesses excellent electromagnetic and mechanical properties as well as famous thermo conductive property, has attracted tremendous attention from its discovery in 1991. It has been used as a kind of reinforcement for its outstanding strength, excellent toughness and modulus of elasticity. It also can be used to prepare absorbing and shielding materials for its famous broadband absorbing character. Besides that, some researchers blended it with common fibers to produce bullet-proof vests for its high flexibility, low density, famous thermo conductive property, outstanding mechanical property, well infrared absorption and hydrophobic properties.
     Electrospinning is one of the most basic and convenient method to produce nanofibers, with the development of this technology, researchers began to focus on CNTs combined with electrospinning technology, try to prepare nanocomposite with excellent performance, especially when they found that CNTs can array along with the axis of the nanofiber. Presently, researchers have prepared PAN, PVA, PEO, PMMA, PA6, PBT and PLA with MWNTs or SWNTs nanofibers by electrospinning, however, most of the products by electrospinning are porous nonwovens with randomly oriented nanofiber. Prof. Frangk Ko obtained PAN/SWNTs nanofiber filaments by electrospinning, some researchers used rotate drum or double electrodes as the negative electrode obtained nanofiber filaments, whereas the length is only about several meters or even centimeters, it cannot successively rotated up like synthetic fiber spinning.
     In order to obtain Polymer/MWNTs nanofiber filament, we combine electrospinning method with bundling in the bath, heat setting by one-step stretch and successive rotation etc. technology, finally we successful gained consecutive PA6/MWNTs nanofiber filament. After that, we systematically discussed and optimized the parameters of the spinning process and make this method more stable and controllable.
     In this paper, we studied the impact mechanism of the parameters of the spinning process on the structure and properties of nanofiber filament and discovered two kinds of post-processing technology(wet post-draw and dry post-draw) to optimize the structure and properties of the filament. In the end, we discussed the microstructure and the arrangement of MWNTs in the nanofibers both with the conductivities of the filaments.
     The results show that when the spinning voltage was 18-20KV, the spinning distance was 6cm, the contents of MWNTs and PA6 were 0-3% and 25% respectively, the rotating speed was 1.80m/min ~12.6 m/min and use 0.5wt% peregal O aqueous solution as collection bath, the spinning process would be stable and successive.
     There are strong affections on the structure and properties of PA6/MWNTs nanofiber filaments by the concentrations of MWNTs, the spinning voltage, spinning distance and rotating speed. The diameters, degree of crystalline and breaking stress of the PA6/MWNTs nanofiber filaments improved according with the increase of the spinning voltage, the alignment property of the filaments and the degree of crystalline improved, the diameters of the fibers increased firstly and then decreased while the diameters of the filaments decreased, the breaking stress and initial module enhanced while the breaking strain increased firstly and the decreased according with the increase of the spinning distance. The alignment and mechanical properties of the nanofiber filament are much better in the higher spinning voltage and spinning distance when the strength of the electrical field is homology. The results also show that when the concentrations of MWNTs varied between 0.4wt%-0.8 wt%(1.57wt%-3.1wt% in the nanofiber), the increase of MWNTs content enhances the initial modules and breaking stress but reduces the breaking strain, while the breaking stress decreases when the MWNTs concentration exceeds 0.8 wt %. The initial modules and breaking stress increased as the the spinning speed raised at the range of 1.8-9.0m/min, but declined when the speed exceeded 9.0m/min.
     The mechanical properties of the as-spun filaments can be improved by either dry or wet post-drawing, the maximum dry and wet post-drawn ratios are 1.6 and 1.7 respectively. The mechanical property of the filament improved much more with the increase of the post-drawn ratios and the enhancement effect on the filaments by wet post-drawing is better than that dry post-drawing. The breaking stress and initial modules of the nanofiber filaments can reach 2.47 and 2.35 times respectively compared to the as-spun yarns after dry post-drawing, while 2.64 and 4.20 times increased after wet post-drawing.
     MWNTs can array properly in the PA6/MWNTs nanofibers but united together when the contents of it overtop its limit. The conductivity of the filaments improved according with the contents of MWNTs increased. In this study, we successfully improved the conductivity of PA6/MWNTs nanofiber filaments by 6 orders compared to the pure PA6 nanofiber filaments.
     The study of this paper firstly make consecutive PA6/MWNTs nanofiber filaments come true at home and abroad which break the restriction that electrospinning composite materials can only present as nonwovens with randomly oriented nanofibers, it established the theoretical and practical basis for preparing MWNTs/polymer nanofiber filaments by electrospinning. In the same time, we improved the mechanical property of the filament by dry or wet post-drawn and other post processing methods which provide a new way to enhance the mechanical property of nanocomposite fibers by electrospinning. Apart from that, We discussed the microstructure and the arrangement of MWNTs in the nanofibers both with the conductivities of the filaments, it also offered a unique technical to produce conductive nanofiber.
引文
[1]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003。
    [2]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社, 2002.
    [3]韩强,姚小虎,碳纳米管的原子模拟和连续体描述[M].北京:科学出版社,2007。
    [4]Thomas W,Ebbesen T W.Self-preservation of rough-wall turbulent boundary layers [J]. Phys.Today,1996,49(6):26-31.
    [5] Treacy M M J,Ebbesen W,Gibson J M,Exceptionally high Young’s modulus observed for individual carbon nanotubes[J],Nature,1996,381:678-680.
    [6] Wong W E,Sheehan P E,Lieber C M.nanobean mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J],Science 1997,277:1971-1975.
    [7]孙康宁,李爱民等,碳纳米管复合材料[M],机械工业出版社,2009.12.
    [8]Ajayan P M,Stephan O,Collex C,et a1.Aligned carbon nanotube arrays formed by cutting a polymer resin- nanotube composite[J] .Science,1994,265( 5176) :1212.
    [9]孟庆杰,张兴祥,碳纳米管及碳纳米管纤维的性能与应用[J],材料导报,2007(21):8-87.
    [10]A Peigney,Ch Laurent,E Flahaut,et al.Carbon nanotubes in novel ceramic matrix nanocomposites[J],Ceramics International,2000,26:677-683.
    [11]张昊,蔡佩芝,赵东林等,碳纳米管增强环氧树脂基复合材料的制备及其力学性能[J],北京化工大学学报:自然科学版,2011,38(1):62-67.
    [12]包建文.碳纳米管增强聚合物基复合材料进展[J],中国材料进展,2009,28(6):19-27.
    [13]王洪磊,周新贵,于海蛟等.碳纳米管增强复合材料的研究进展[J],材料导报,2008,5(22):146-149.
    [14] Ebbesen T W,Lezec H J,Hiura H,Bennett J W Ghaemi H F,Thio T Electrical conductivity of individual carbon nanotubes.Nature,1996,382(6586):54-56.
    [15] Saito R,Fujita M, Dersselhuas G,et al.Electronic structure and growth mechanism of carbon nanotubes[J],Materials Science and Engineering,1993,B19 :185-191.
    [16] Huang Y H,Okada M,Tanaka K,et al.Estimation of superconducting transition temperature in metallic carbon nanotubes Phys.Rev,B,1996.53(9) :5129-5132.
    [17]王生浩,文峰,李志等.碳纳米管吸波材料的研究现状与展望[J],材料导报,2006,(20):99-102.
    [18]何强,卢咏来,陈琪等,碳纳米管/Al2O3/硅橡胶导热复合材料结构和性能的研究[J],特种橡胶制品,2009,30(2):1-6.
    [19]徐化明,李聃,梁吉.PMMA/定向碳纳米管复合材料导电与导热性能的研究[J],无机化学学报,2005,21(9):1353-1356.
    [20]孙艳妮.碳纳米管/聚烯烃复合材料的制备及性能研究[D],青岛:青岛科技大学,2006.
    [21]张雄伟,储伟,庄惠祥等.多壁碳纳米管的改性及其储氢性能研究[J],高等学校化学学报,2005,26(3):493-496.
    [22] Chen P,Wu X,Lin J,et al.High H2 uptake by aikali-doped carbon nanotubes under ambient pressure and moderate temperatures[J],Science,1999(285) :91-93.
    [23] Dillon A C,jones K M,Bekkedahl T A, et al.Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997(386):377-379.
    [24]郭丽华,王海燕,李井申等.单壁碳纳米管的制备及其在储氢方面的应用[J],牡丹江师范学院学报(自然科学版),2011(1):34-36.
    [25]郭丽霞,庄正宁,李海华等,不同预处理对多壁碳纳米管储氢性能的影响[J],河北科技大学学报,2011,32(1):60-63.
    [26]韦进全,张先锋,王昆林.碳纳米管宏观体[M],北京:清华大学出版社,2006.
    [27]芦长椿.纳米纤维技术新进展[J],纺织导报,2008(5):60-64.。
    [28] OndareuhuT.Joachim C.Drawing a single nanofibre over hundreds of microns[J]. Europhys Lett,1998,42(2):215-220.
    [29] Feng L。IA S。Li H,et a1.Super-hydrophobie surface of aligned polyacrylonitrile nanofiben§[J].Angew Chem Int Ed,2002,41(7):122l-1223.
    [30] Ma P X,Zhang R.Synthetic nalno·scale fibrous extmcellular matrix[J].J Biomed Mater Res,1999,46(1):60-72.
    [31] Chiou N R,James L L,Epstein A J.Self-assembed polyaniline nanofibera/ nanotubes[J].Chem Mater,2007,19(15):3589-3591.
    [32] FeIlg X M,Yang G,Xu Q,Hou W H。et a1.Self-assembly ofpolyaniline/au composites:From nanotubes to nanofibem[J].Macromol Rapid Commun,2006,27(1):31-36.
    [33] U D.Xia Y N.Eleetrespinning of nanofibem:Reinvenfing the wheel[J].Adv Mater,2004,16(14):1151-1170.
    [34]Zeleny J,Instability of electrified liquid surface[J].physical review, 1917,10(1):1-6.
    [35]李岩,黄争鸣.聚合物的静电纺丝[J],高分子通报,2006,5:12-19.
    [36] Money V Jose,Bran W.Steinet,Vinoy Thomas et a1.Morphology and mechanical properties of Nylon6/MWNT nanofibers[J].Polymer,2007,48:1096-l104。
    [37] Eun Ju Ra,Kay Hyeok An,Ki Kang Kim et a1.Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper[J].Chemical Physics Letters,2005,413:188-193.
    [38]Jason J.Ge,Haoqing Hou,Qing Li et a1. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:electrospun composite nanofiber sheets[J].Journal ofAmerican Chemical Society,2004,126:15754-15761.
    [39] Haoqing Hou,Jason J.Ge,Jun Zeng et a1.Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes [J].Chem.Mater,2005,17:967-973.
    [40] Min Kyoon Shin,Yu Jin Kim,Sun I.Kim et a1.Enhanced conductivity of aligned PANi / PEO / MWNT nanofibers by electrospinning[J].Sensors and Actuators B:Chemical,2008,134:122-126.
    [41] Satyajeet S.ojha,Derrick R.Stevens,Kelly Stano et a1.Characterization of Electrical and Mechanical Properties for Coaxial Nanofibers with Poly(ethylene oxide)(PEO) Core and Multiwalled Carbon Nanotube/PEO Sheath[J]. Macromolecules, 2008, 41: 2509-2513.
    [42]Jun Hee Sung,Hyun Suk Kim,Hyoung-Joon Jin et a1.Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate)composites[J]. Macromolecules,2004,37:9899-9902.
    [43] Molnar K, Kost'akova E, Meszaros L. Electrospinning of PVA/carbon nanotube composite nanofibers: the effect of processing parameters[J]. Materials Science Forum (589):221-226
    [44] G.Mathew,J.P.Hong,J.M.Rhee.eta1.reparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes[J]. Polymer Testing.2005,24(6):712-717.
    [45]Seth D.McCulle,Kelly L.Stano,Derrick R.Stevens et al.Development, optimization, and characterization of electrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes[J].Journal of Applied Polymer Science.2007,105(3):1668-1678.
    [46] Jonathan Ayutsede,Milind Gandhi,Sachiko Sukigara et a1.Carbon nanotube reinforced bombyx mori silk nanofibers by the electrospinning process[J]. Biomacro - molecules, 2006.7:208-214.
    [47]Frank ko,Yury Gogotsi et al.Electrospinning of continuous carbon nanotube-filled nanofibers yarns[J].Advanced materials,2003,14:1161-1165.
    [48]项晓飞,静电纺PA6/MWNTs复合纤维纱的纺制及其结构与性能[D],苏州:苏州大学,2009.
    [49] R. Andrews, D. Jacques, A. M. Rao et al. Nanotube composite carbon fibers[J]. APPLIED PHYSICS LETTERS.1999,75(9):1329-1331.
    [50] T D Fornes,J W Baur, Y Sabba,et al,Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes[J],Polymer, 2006,47:1704-1714.
    [51]郭振福,袁光耀.碳纳米管增强PA6纤维的研究[J],河北北方学院学报,2006,22(5):27-29.
    [52]吴鹏飞,李宏伟,高绪珊等.改性多壁碳纳米管/PA6纤维的制备及力学性能[J],合成纤维工业,2006,29(5):7-10.
    [53]沈锂鸣,高绪珊,童俨.多壁碳纳米管增强PET纤维的初步研究[J].合成纤维,2007,36(10):23-26.
    [54]李宏伟,高绪珊,童俨含碳纳米管的新型抗静电纤维的制备和性能[J],材料研学报,2003,17(4):444-447。
    [55]卢伟哲,李志,狄泽超等.碳纳米管/pp纤维抗静电性能研究[J].合成纤维2002,30(6):19-21。
    [56]潘玮,张慧勤,陈燕.碳纳米管/聚丙烯腈导电纤维的结构与性能[J],合成纤维,2006(10):1-3.
    [57]Geoffrey M,Spinks,Su Ryon Shin,Gordon G,Wallace,et al.Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion[J].Sensors An actuators,2006,115:678-684.
    [58]董艳,张清华,李静等.聚丙烯腈/多壁碳纳米管共混纤维的研制[J],合成纤维,2008,37(4):1-4.
    [59] Han Gi Chae,T V Sreekumar,Tetsuya Uchida,et al.A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber[J], Polymer, 2005,46:10925-10935.
    [60]张舰,张德刚,张幼维等,多壁碳纳米管/聚丙烯腈复合纤维的动静态力学性能研究[J],材料导报,2011,2:33-35.
    [61]姜晓,吴炜誉,唐诗俊等.胶原蛋白/PVA/碳纳米管复合纤维的结构与性能[J],合成纤维工业,2009(5):9-12.
    [62] Vijoya Sa, Konstantin G. Kornev. A method for wet spinning of alginate fibers with a high concentration of single-walled carbon nanotubes[J]. Carbon. 2011(49): 1859-1868.
    [63]项晓飞,静电纺PA6/MWNTs复合纤维纱的纺制及其结构与性能[D],苏州:苏州大学,2009.
    [64] Shilun Ruan,Ping Gao,T.X.Yu.Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubers[J].Polymer,2006,47:1604-1611.
    [65]曾海涛,董炎明,周花等.凝胶纺壳聚糖分散碳纳米管/聚丙烯腈纤维的研究[J].厦门大学学报(自然科学版),2009,48(4):564-569.
    [66]王依民,王新鹏,碳纳米管对超高分子质量聚乙烯纤维结构与性能的影响[J].金山油化纤.2005,24(1):1-7.
    [67] Chang Seoul, Yong-Tae Kim, Chi-Kyung Bae. Electrospinning of Poly(vinylidene fluoride)/Dimethylformamide Solutions with Carbon Nanotubes[J]. Journal of Polymer Science: Part B: Polymer Physics, Vol. 41, 1572–1577 (2003).
    [68] G.-M. Kim , G.H. Michler ,P.Po tschke. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning [J]. Polymer 46 (2005) 7346–7351.
    [69]J.S.Jeong,J.S.Moon,S.Y.Jeon et al,Mechanical properties of electrospun PVA/MWNTs composite nanofibers[J].Thin Solid Films,2006,10:1-6.
    [70] Moncy V Jose,Brian W Steinert,Vinoy Thomas,et al.Morphology and mechanical properties of Nylon6/MWNT nanofibers[J].Polymer,2007.48(4):1096-1104.
    [71] Shu Huang, Wu Aik Yee, Wuiwui Chauhari Tjiu et al. Electrospinning ofPolyvinylidene Difluoride with Carbon Nanotubes:Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures[J]. Langmuir 2008, 24, 13621-13626.
    [72] Santosh Aryal , Chul Ki Kim , Kwan-Woo Kim , Myung Seob Khil , Hak Yong Kim. Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning[J]. Materials Science and Engineering C 28 (2008) 75–79.
    [73] Dusan Kimmer, Petr Slobodian, David Petras, Martin Zatloukal, Robert Olejnik, Petr Saha.Polyurethane/Multiwalled Carbon Nanotube Nanowebs Prepared by an Electrospinning Process[J].Journal of Applied Polymer Science, Vol.111, 2711– 2714(2009) .
    [74]Meng Z.X,Zheng W,Li L,et al. Fabrication and characterization of three- dimensional nanofiber membrance of PCL-MWCNTs by electrospinning[J]. Materials Science and Engineering.2010(30):1014-1021.
    [75]vinash Baji,Yiu-Wing Mai,Shing-Chung Wong et al. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers[J]. Composites Science and Technology,2010(70):1401–1409.
    [76]张凯莉,戴晋明,侯文生等,静电纺PVA/PEO/多壁碳纳米管超细纤维的制备与性能[J].合成纤维,2011,40(3):25-28.
    [77] Sangeetha Ramaswamy,Laura I.Clarke b,Russell E.Gorga.Morphological, mechanical,and electrical properties as a function of thermal bonding in electrospun nanocomposites[J]. Polymer, 2011(52):3183-3189.
    [78] M.R. Ayatollahi , S. Shadlou , M.M. Shokrieh et al. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites[J]. Polymer Testing, 2011(30) :548–556.
    [79] Minsung Kang & Hyoung-Joon Jin. Electrically conducting electrospun silk Membranes fabricated by adsorption of carbon nanotubes[J]. Colloid Polym Sci (2007) 285:1163–1167.
    [80]Minsung Kang, Peng Chen, Hyoung-Joon Jin. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning[J]. Current Applied Physics2009(9):S95–S97.
    [81]Meghana V. Kakade, Steven Givens, Kenncorwin Gardner et al. Electric fieldinduced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers[J]. American chemical society, 2007, 129: 2777-2782.
    [82]吴大诚,杜仲良,高绪珊等.纳米纤维[M].北京:化学工业出版社,2003。
    [83]Bibekananda Sundaray, V. Subramanian, T. S. Natarajan et al. Electrospinning of continuous aligned polymer fibers[J]. Applied physics letters, 2004, 84: 1222-1224.
    [84]Javed Rafique, Jie Yu, Jiliang Yu et al. Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector[J]. Applied physics letters, 2007, 91: 063126.
    [85]Dan Li, Yuliang Wang , Younan Xia. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters, 2003, 3: 1167-1171.
    [86]Junbo Gao, Aiping Yu, Mikhail E. Itkis et al. Large-Scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly[J]. American chemical society, 2004, 126: 16698-16699.
    [87]Dan Li, Thurston Herricks, and Younan Xia. Magnetic nanofibers of nickel ferrite prepared by electrospinning[J]. Applied physics letters, 2003, 83: 4586-4588.
    [88]R. Dersch, Taiqi Liu, A. K. Schaper et al. Electrospun nanofibers: internal structure and intrinsic orientation[J]. Journal of polymer science: part A: polymer chemistry, 2003, 41, 545-553.
    [89]E.P.S. Tan, S.Y. Ng, C.T. Lim. Tensile testing of a single ultrafine polymeric fiber[J]. Biomaterials, 2005, 26: 1453-1456.
    [90]Sian F. Fennessey, Richard J. Farris. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004, 45: 4217-4225.
    [91]Jayesh Doshi, Darrell H. Reneker. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics, 1995, 35: 151-160.
    [92]Byung-Moo Mina, Gene Leea, So Hyun Kim et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004, 25: 1289-1297.
    [93]Myung-Seob Khil, Dong-Il Cha, Hak-Yong Kim et al. Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing[J]. Appl Biomater, 2003, 67B: 675-679.
    [94]E. Zussman, A. Theron, A. L. Yarin. Formation of nanofiber crossbars in electrospinning[J]. Applied physics letters, 2003, 82: 973-975.
    [95]Dan Li, Yuliang Wang , Younan Xia. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters, 2003, 3: 1167-1171.
    [96]C.Y. Xu, R. Inai, M. Kotaki et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J]. Biomaterials, 2004, 25: 877-886.
    [97]Bon Kang Gu, Min Kyoon Shin, Ki Won Sohn et al. Direct fabrication of twisted nanofibers by electrospinning[J]. Applied physics letters, 2007, 90: 263902.
    [98]J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42: 8163-8170.
    [99]Lisa S.Carnell,Emilie J.Siochi,Nancy M.Holloway etal.Aligned mats from Electrospun Single Fibers[J].Macromolecules.2008,41:5345-5349.
    [100]Daoheng Sun, Chieh Chang, Sha Li et al. Near-Field Electrospinning[J]. Nano letters, 2006, 6: 839-842.
    [101] Sing Yian Chewa, Ruifa Mi, Ahmet Hoke et al. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation[J]. Biomaterials,2008, 29: 653-661.
    [102]Teo,W.E;Kotaki,M.;Mo,X.M et al.Nanotechnology.2005,16,918-924.
    [103]Jie Yu,Yejun Qiu,Xiaoxiong Zha etal.Production of aligned helical polymer nanofibers by electrospinning[J]. European Polymer Journal.2008,44:2823-2844.
    [104]Yuya Ishii,Heisuke Sakai,Hideyuki Murata.A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers[J].Materical Letters.2008,62:3370-3372.
    [105]Eugene Smita, Ulrich Buttnerb, Ronald D. Sanderson. Continuous yarns from electrospun fibers[J]. Polymer, 2005, 46: 2419-2423.
    [106]Wee-Eong Teo, Renuga Gopal et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007, 48: 3400-3405.
    [107]Myung-Seob Khil, Shanta Raj Bhattarai et al. Novel fabricated matrix via electrospinning for tissue engineering[J]. Journal of Biomedical Materials Research, 2004,72(1): 117-124.
    [108]Liu Hong-bo, Wan Qian-hua, Pan Zhi-juan. Electrospinning of polyamide 6/66 copolymer nano-scale fiber yarns and their structure and mechanical properties. The 6th China International Conference and The 2nd International Textile Forum. 2007, Sep.13-14:352-357.
    [109]Zhijuan Pan, Hongbo Liu, Qianhua Wan. Morphology and mechanical property of electrospun PA6/66 copolymer filament constructed of nanofibers[J]. Journal of Fiber Bioengineering and Informatics. 2008,1(1):47-54.
    [110]Frank ko, Yury Gogotsi et al. Electrospinning of continuous carbon nanotube-filled nanofibers yarns[J]. Advanced materials, 2003, 14: 1161-1165.
    [111] Mohamed Basel Bazbouz, George K Stylios. Novel mechanism for spinning continuous twisted composite nanofiber yarns[J]. European Polymer Journal, 2007, DOI: 10.1016.
    [112]Huan Pan, Luming Li et al. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer, 2006, 47: 4901-4904.
    [113]李宏伟,吴德海,徐才录,碳纳米管[M],机械工业出版社,2003.
    [114]孙康宁,李爱民,碳纳米管复合材料[M],机械工业出版社,2009.
    [115]J.S. Jeong, S.Y. Jeon, T.Y. Lee, et al. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning [J]. Diamond and related materials, 2006, 15: 1839-1843
    [116]Zujin Shi, Yongfu Lian, Fuhui Liao et al. Purification of single-wall carbon nanotubes [J]. Solid State Communications 1999, 112; 35-37
    [117]刘红波,潘志娟,王建明.静电法纺制尼龙6/66纳米纤维纱[J].苏州大学学报(工科版)2007, 27(2): 36-39.
    [118]刘红波.静电法纺制PA6/66纳米纤维纱及其结构和性能[D].苏州:苏州大学,2008.
    [119] Liu H B,Wan Q H,Pan Z J.Electrospinning of polyamide 6/66 copolymer nano-scale fiber yarns and their structure and mechanical properties.The 6th China International Silk Conference and The 2nd International Textile Forum Invitation,China,Suzhou,2007,Sep.13-14:352-357.
    [120]Fong H,Chun I,Reneker D H.Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40:4585–4592.
    [121]Fong H,Liu W,Wang C S,et a1.Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonile nano-composite[J].Polymer,2002,43:775–780.
    [122]Eugene Smita,Ulrich Buttnerb,Ronald D,Sanderson.Continuous yarns from electrospun fibers[J].Polymer,2005,46:2419-2423.
    [123]杜巧云,葛虹.表面活性剂基础及应用[M].北京:中国石化出版社.1996.
    [124] S.A. Theron, E. Zussman, A.L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 2004, 45: 2017-2030
    [125] T.D.Fornes, D.R.Paul. Crystallization behavior of nylon6 nanocomposites [J]. Polymer, 2003, 44: 3945-3961。
    [126]刘红波.静电法纺制PA6/66纳米纤维纱及其结构和性能[D].苏州:苏州大学,2008.
    [127]黄玉伟,刘文涛,何素芹等.PA66/胺基化碳纳米管复合材料薄膜的制备及表征[J].塑料工业,2010,38(6):61-64.
    [128]Tilo Schimanski,Joachim Loos,Ton Peijs,Ben Alcock,Piet J. Lemstra. On the Overdrawing of Melt-Spun Isotactic Polypropylene Tapes[J].Applied Polymer Science, 2007, 103:2920–2931.
    [129]陈方泉,高健,陈惠芳等,二次拉伸对干湿法PAN原丝结构性能的影响[J],合成纤维工业,2003(6):4-7.
    [130]Xinhua Zong,Shaofeng Ran,Dufei Fang,Benjamin S. Hsiao,Benjamin Chu. Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments [J].Polymer , 2003,44: 4959–4967.
    [131]Davidson J.A., Jung H.-T., Hudson S.D., Percec S..Investigation of molecular orientation in melt-spun high acrylonitrile fibers[J].Polymer , 2000,41: 3357–3364.
    [132]于伟东,纺织材料学[M],中国纺织出版社,2006年5月出版。
    [133]李健,高绪珊,童俨.含碳纳米管导电PET纤维的研究[J].合成纤维工业.2004,27(4):16-18.
    [134]P.Xue, K.H.Park, X.M.Tao ,et al. Electrically conductive yarns based on PVA/carbon nanotubes[J]. Composite Structures 78 (2007) :271–277.
    [135] J S.Jeong,S.Y.Jcon,T Y Lee,et a1.Fabrication of MW N~I’S~ylon conductive composite nanofibers by electrospin—ning[J] Diamond& Related Materials 2006(15):1839一l843.
    [136]郭宝华,范劲松,李金美等. PA6/CNTs复合材料的电性能研究[J].工程塑料应用.2008.36(7):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700