用户名: 密码: 验证码:
基因重组技术优化氧化葡萄糖酸杆菌催化制备二羟基丙酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二羟基丙酮是一种简单的酮糖,是重要的医药、化学合成中间体及原料,在精细化工、食品工业和化妆品工业等多种行业发挥着重要的作用。目前,通过氧化葡萄糖酸杆菌对甘油的不完全氧化反应,二羟基丙酮的工业化生产已经得以实现。但是,氧化葡萄糖酸杆菌是一种专性嗜氧细菌,在生长代谢及催化甘油生成二羟基丙酮的反应中需要大量的氧气,溶氧成为影响反应速率的限制因素。此外,高浓度的底物及产物也会抑制细胞的催化活性,降低甘油的氧化速度。因此,为了提高二羟基丙酮的生产效率,本论文通过在氧化葡萄糖酸杆菌细胞内克隆表达透明颤菌血红蛋白基因和过量表达甘油脱氢酶这两条途径,构建了高产二羟基丙酮的氧化葡萄糖酸杆菌菌株,主要内容如下:
     1.透明颤菌血红蛋白(VHb)在氧化葡萄糖酸杆菌细胞内的克隆表达
     为了实现VHb的高效表达,重点考察了不同启动子对VHb表达的影响。首先在广宿主载体pBBR1MCS-5引入了编码VHb的基因vgb,然后在VHb基因上游分别插入了不同的启动子,如tufB、bla,tac及VHb基因的同源启动子。经过CO差光光谱分析表明,在氧化葡萄糖酸杆菌延长因子—TU蛋白基因启动子(tufB)的控制下,VHb的表达量最高,菌体培养24h后,每克湿菌体含19.0mol VHb。
     2.透明颤菌血红蛋白的表达对氧化葡萄糖酸杆菌细胞生长及二羟基丙酮产量的影响
     通过提高细胞的摄氧率,VHb可以促进氧化葡萄糖酸杆菌细胞的生长及提高二羟基丙酮的产量。这种影响在低供氧条件下更加显著:在5-L发酵罐中,当用山梨醇培养基和甘油培养基培养时,VHb表达菌株(VHb+)的最终菌体密度与对照菌株(VHb-)相比分别提高了19.27%和22.96%;在静息细胞催化反应中,VHb+菌株二羟基丙酮的产量较VHb-菌株提高了21.55%,而在发酵过程中,VHb的表达使二羟基丙酮的产量提高了35.39%。结果同时表明,VHb的表达并不能提高甘油脱氢酶的表达量,但可以提高细胞的摄氧率,提高细胞催化的最大反应速度,从而促进了细胞的生长,提高了二羟基丙酮的生产效率。
     3.甘油脱氢酶在氧化葡萄糖酸杆菌细胞内过量表达对二羟丙酮产量的影响
     甘油脱氢酶的过量表达可提高二羟丙酮的产量,尤其是以膜结合乙醇脱氢酶缺失菌株(M5AM)为宿主时效果更加显著。当在野生菌株过量表达时,甘油脱氢酶的酶活提高了26%,二羟基丙酮的产量提高了20%。然而,当在M5AM菌株细胞内过量表达后,甘油脱氢酶基因的转录水平比对照菌株(M5/pBBR)提高了129倍,酶活提高了74.57%。在5-L发酵罐中,当静息细胞催化在一个稳定的pH及充足氧气的反应条件下时,甘油脱氢酶过表达菌株M5AM/GDH二羟丙酮的比生产率由M5/pBBR菌株的1.05g/gCDW/h增加到2.39g/g CDW/h,提高了128%,20g/L的静息细胞催化完成100g/L甘油仅需8h。在批次反应中,M5AM/GDH反应4个批次,活性仅降低21.7%,可在34h内完成400g/L甘油的转化,二羟丙酮的产量累计达385.32g/L,平均产率为96.33%,平均比生产率为2.27g/g CDW/h。
     增加底物的初始浓度后,M5AM/GDH菌株二羟基丙酮的比生产率随之下降。在甘油浓度为140g/L时,该菌株可在14h内完全消耗,二羟基丙酮的产率达95.58%,比生产率为1.89g/g CDW/h。当甘油的初始浓度提高到180g/L时,产物的不可逆抑制效应显现,二羟基丙酮的产率下降到87.4%,即使提高静息细胞的浓度至40g/L,产率仍然得不到提高。通过流式细胞仪检测发现,在甘油初始浓度为180g/L时,反应48h后,细胞的死亡率仅为12%,而此时的细胞在解除底物抑制后,甘油脱氢酶的活性仅剩初始活性的20%左右,说明二羟丙酮的不可逆抑制是造成细胞失活的主要原因。
     4.透明颤菌血红蛋白和甘油脱氢酶在氧化葡萄糖酸杆菌细胞内的共同表达
     通过载体构建,将甘油脱氢酶基因和VHb基因分别置于氧化葡萄糖酸杆菌组成型启动子(tufB)的下游,每个基因分别由其独立的启动子控制,达到同时表达两种蛋白的目的。其中,VHb的表达量为17.01nmol/g CWW,甘油脱氢酶活性为2.162.16U/mg蛋白,较对照菌株提高了15.51%。通过对发酵罐中溶氧浓度的检测发现,整个转化过程中,VHb和甘油脱氢酶共表达菌株M5/TVTG的摄氧量一直比M5/pBBR菌株高,与此同时,二羟丙酮的最终产量也提高了27.65%。上述结果表明,透明颤菌血红蛋白和甘油脱氢酶的共同表达,可同时促进氧化葡萄糖酸杆菌的生长及其催化甘油生成二羟基丙酮的效率,特别是在溶氧受限时,这种效果更加显著。
Dihydroxyacetone (DHA) is an important ketose sugar, which is extensively used in the cosmetic, chemical and pharmaceutical industries. Commercial synthesis of DHA has been realized via the incomplete oxidation of glycerol by G. oxydans, an obligate aerobic Gram-negative bacterium belonging to the family Acetobacteriaceae. In G. oxydans, the enzyme responsible for the oxidative reaction is a membrane-bound, PQQ-dependent glycerol dehydrogenase (GDH) which employs oxygen as the final electron acceptor without NADH involvement. So, the oxidation of glycerol to DHA is a high oxygen-consuming reaction and oxygen should be supplied enough for the production of DHA in a biocatalytic process. In addition, high concentration of substrate and product could also affect DHA production. In order to improve DHA production, Vitreoscilla Hemoglobin (VHb) was expressed to enhance the oxygen uptake of G. oxydans. Besides, the glycerol dehydrogenase was also homologously overexpressed in G. oxydans to facilitate the oxidation of glycerol to DHA.
     In order to expression of VHb in G. oxydans, the gene vgb coding for VHb was inserted to the broad host range vector pBBR1MCS-5, and then the promoters of tufB, bla, and tac were inserted into the upstream of VHb gene respectively. When the VHb gene was controlled by the constitutive promoter of tufB, the VHb-expressing strain displayed the highest VHb expression level, reaching 19.0nmol/g cell wet weight determined by analysis of CO-difference spectra.
     The expression of VHb improved the cell growth and DHA production in G. oxydans. Under low aeration conditions, the VHb+ strain displayed 19.27% and 22.96% more biomass compared to VHb- strain when cultured in sorbitol medium and glycerol medium in a 5-L fermentor. In a resting cell system, the DHA production was increased by 21.55%, from 49.65g/L to 60.35g/L, when 100g/L glycerol was supplied. In compared to the control strain, the VHb+ strain exhibited 35.39% more DHA production attributing to high oxygen uptake and more cell biomass in a fermentation process. Results also indicated that the expression of VHb could not increase the GDH expression level, and the enhancement of DHA production by VHb only resulted from the improvement of oxygen uptake rate. The Km and Vmax for glycerol of GDH were determined in whole cells of VHb+ and VHb- strains under both high and low aeration conditions. It was apparent that the presence of VHb increased the enzyme's Vmax by 39.92% to 62.46% and decreased the Km by 19.15% to 23.48%.
     When the GDH gene was overexpressed in the wild strain G. oxydans M5, the GDH activity was increased by 26% and the DHA production was improved by 20% in shake flask test. Unexpectedly, the activity of GDH was increased by 74.57% when the GDH gene was overexpressed in M5AM strain, in which the gene coding for the membrane-bound alcohol dehydrogenase (ADH) was interrupted. Overproduction of GDH in M5AM strain led to a 2.28-fold increased DHA productivity of 2.39g/g CDW/h using a batch biotransformation process in a 5-L fermentor, yielding 96.74g/L DHA from 100g/L glycerol. When 140g/L glycerol was supplied, all the glycerol could be exhausted by the recombinant strain within 14h, and a final DHA concentration of 133.81g/L was accumulated. In repeated batch biotransformations, 385.32g/L DHA over a time period of 34h was achieved, with an average productivity of 2.27g/g CDW/h. However, when the initial glycerol concentration was increased to 180g/L, the DHA reached an approximately maximum concentration of about 152.55g/L after 18 h. Prolonged incubation for another 10h had little effect on DHA yield, so did increase in concentration of resting cells from 20g/L to 40g/L. High concentration of DHA could not result in cell lysis but probably lead to irreversible damage of GDH by interacting with the amine function localized on the enzymatic enzyme site. So, the glycerol at an initial concentration of 180g/L could not be oxidated completely and only a DHA yield of 87.4% was achieved after 18h bioconversion. In a word, this newly developed recombinant strain G. oxydans M5AM/GDH with high productivity and yield exhibits potential for the industrial production of DHA.
     Both the expression of VHb and GDH gene could improve the production of DHA, so the two genes were co-expressed in G.oxydans M5, generating strain G.oxydans M5/TVTG. Analysis by CO-difference spectra showed that the expression level of VHb in M5/TVTG strain was 17.01nmol/g cell wet weight. And this recombinant strain displayed a GDH activity of 2.16U/g protein, 15.51% more than that of M5/pBBR strain. When biotransformation was performanced in a fermentor under low aeration conditions, the M5/TVTG strain exhibited a rapid oxidation of glycerol rate and 63.38g/L DHA was accumulated after 48h, 27.65% more than that of the M5/pBBR strain.
引文
[1]Gupta A, Singh VK, Qazi GN, Kumar A. Gluconobacter oxydans:its biotechnological applications. J Mol Microbiol Biotechnol.2001,3:445-456.
    [2]Batter AS, Schaffner DW. Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcocaeticus and Gluconobacter oxydans. J Appl Microbiol.2001,91:237-247.
    [3]Asai. Acetic acid bacteria:Classification and biochemical activities. University of Tokyo Press, Tokyo,1968,1-343.
    [4]Sievers M, Swings J. The family Acetobacteraceae. In Bergey's manual of systematic bacteriology 2nd Edition. Garrity GM, Brenner DJ, Krieg NR, Staley JT, Eds. Springer, New York,2005,41-95.
    [5]De Ley J, Swings J. The genus Gluconobacter. In:Kreig NR, Holt JG (eds) Bergey's manual of systematic bacteriology. The Williams and Wilkins Co., Baltimore.1984, pp267-278.
    [6]Adachi O, Fujii Y, Ano Y, Moonnmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem.2001, 65:115-125.
    [7]Deppenmeier U, Ehrenreich A. Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol.2009,16:69-80.
    [8]Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol.2005, 23:195-200.
    [9]Arcus AC, Edson NL. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem J.1956,64:385-394.
    [10]Kersters K, Wood WA, Ley DJ. Polyol dehydrogenases of Gluconobacter oxydans. J Biol Chem.1965,240:965-974.
    [11]Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257:a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem.2001,65:2755-2762.
    [12]Schweiger P, Volland S, Deppenmeier U. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol.2007,13:147-155.
    [13]Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol.1994,36:247-301.
    [14]Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter oxydans. Agr Biol Chem.1978,42:2045-2056.
    [15]Adachi O, Matsushita K, Shinagawa E, Ameyama M. Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agr Biol Chem.1980,44:301-308.
    [16]Ameyama M, Shinagawa E, Matsushita K, Adachi O. D-Glucose dehydrogenase of Gluconobacter suboxydans:Solubilization, purification and characterization. Agr Biol Chem.1981,45:851-861.
    [17]Shinagawa E, Matsushita K, Adachi O, Ameyama M. D-gluconate dehydrogenase, 2-keto-D-gluconate yielding, from Gluconobacter dioxyacetonicus:Purification and characterization. Agr Biol Chem.1984,48:1517-1522.
    [18]Shinagawa E, Matsushita K, Adachi O, Ameyama M. Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agr Biol Chem. 1981,45:1079-1085.
    [19]Shinagawa E, Matsushita K, Adachi O, Ameyama M. Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. a. Agr Biol Chem.1982,46:135-141.
    [20]Choi ES, Lee EH, Rhee SK. Purification of a membrane bound sorbitol dehydrogenase from Gluconobacter suboxydans. FEMS Microbiology Letters.1995,125:45-50.
    [21]Sugisawa T, Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem. 2002,66:57-64.
    [22]Sugisawa T, Hoshino T, Nomura S, Fujiwara A. Isolation and characterization of membrane-bound L-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agr Biol Chem.1991,55:363-370.
    [23]Ameyama M, Shinagawa E, Matsushita K, Adachi O. Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem.1985,49:1001-1010.
    [24]Holscher T, Weinert-Sepalage D, Gorisch H. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology.2007,153:499-506.
    [25]Matsushita K, Fujii Y, Ano Y, et al.5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol.2003,69:1959-1966.
    [26]Noyori R. Asymmetric catalysis:science and opportunities (Nobel lecture). Angew Chem Int Ed.2002:2008-2022.
    [27]De Nmark SE. Catalysts break symmetry. Nature.2006,443:67-70.
    [28]Schumacher K, Asche S, Heil M, et al. Microbiological oxidation of 2-methylbutanol of differing enantiomeric ratios by Gluconobacter species. Z Lebensm Unters Forsch A. 1998,207:74-76.
    [29]Leon R, Prazeres DMF, Molinari F, Cabral JMS. Microbial stereo selective oxidation of 2-methyl-1,3-propanediol to (R)-beta-hydroxyisobutyric acid in aqueous/organic biphasic systems. Biocatal Biotransform.2002,20:201-207.
    [30]Romano A, Gandolfi R, Nitti P, Rollin M, Molinari F. Acetic acid bacteria as enantioselective biocatalysts. J Mol Catal B-Enzym.2002,17:235-240.
    [31]Molinari F, Villa R, Aragozzini F, Leon R, Prazeres DMF. Enantioselective oxidation of (RS)-2-phenyl-1-propanol to (S)-2-phenyl-l-propionic acid with Gluconobacter oxydans:simplex optimization of the biotransformation. Tetrahydron Asymmetry.1999, 10:3003-3009.
    [32]Ohta H, Tetsukawa H, Noto N. Enantiotopically selective oxidation of a,ω-diols with the enzyme systems of microorganisms. J Org Chem.1982,47:2400-2404.
    [33]Su W, Zhi YC, Gao KL, Wei DZ. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans. Tetrahedron Asymmetry.15, 2004:1275-1277.
    [34]Nanduri VB, Banerjee A, Howell JM, et al. Purification of a stereospecific 2-ketoreductase from Gluconobacter oxydans. J Ind Microbiol Biotechnol.2000, 25:171-175.
    [35]Claret C, Bories A, Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr Microbiol.1992,25:149-155.
    [36]Ohrem HL, Merck E. Inhibitory effects of glycerol on Gluconobater oxydans. Biotechnol Lett.1996,18:245-250.
    [37]Hancock RD, Viola R. Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol.2002,20:299-305.
    [38]Macauley S, Mcneil B, Harvey LM. The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol.2001,21:1-25.
    [39]Boudrant J. Microbial process for ascorbic acid biosynthesis:a review. Enzyme Microb Technol.1990,12:322-329.
    [40]Asai T. Acetic acid bacteria:classification and biochemical activities. University of Tokyo Press, Tokyo
    [41]Giridhar R, Strivastava AK. Model based constant feed fed-batch L-sorbose production process for improvement in L-sorbose productivity. Chem Biochem Eng Q.2000, 14:133-140.
    [42]Saito Y, Ishii Y, Hayashi H, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G.oxydans strain. App1 Environ Microbiol.1997,63:454-460.
    [43]Shinagawa E, Matsushita K, Toyama H, Adachi O. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinine (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. J Mol Catal B.1999,6:341-350.
    [44]Zimmet P, Mccarty D. The NIDDM epidemic:global estimates and projections:a look into the crystal ball. IDF Bulletin.1995,40:8-16.
    [45]Scott LJ, Spencer CM. Miglitol, a review of its therapeutic potential in type 2 diabetes mellitus. Drugs.2000,59:521-549.
    [46]Junge B, Matzke M, and Stltefuss J. Chemistry and structure-activity relationships of glucosidase inhibitors. In Kuhlmann J, Puls W (Eds). Handb Exp Pharmacol.1996, 119:411-482.
    [47]Campbell LK, Baker DE, Campbell RK. Miglitol:assessment of its role in the treatment of patients with diabetes mellitus. Ann Pharmacother.2000,34:1291-1301.
    [48]Paulsen T. Cyclic monosaccharides having nitrogen substituted derivatives of 1-deoxynojirimycin. Adv Carbohydr Chem.1968,23:115-232.
    [49]Yang XP, Wei LJ, Lin JP, Yin B, Wei DZ. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for product of 6-(2-hydroxyethyl) amino-6-deoxy-L-Sorbose. Appl Environ Microbio.2008, 74:5250-5253.
    [50]Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In:Kelly DR(ed) Biotechnology.2000,8b:296-308.
    [51]Meybeck A. A spectroscopic study of reaction products of dihydroxyacetone with aminoacids. J Soc Cosmet Chem.1977,28:25-35.
    [52]Bobin MF, Martini MC, Cotte J. Effect of color adjuvants on the tanning effect of dihydroxyacetone, J Soc Cosmet Chem.1984,35:265-272.
    [53]Stanko RT, Ferguson TL, Newman CW, Newman RK. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J Anim Sci.1989, 67:1272-1278.
    [54]Fesq H, Brockow K, Strom K, Mempel M, Ring J, Abeck D. Dihydroxyacetone in a new formulation-a powerful therapeutic option in vitiligo. Dermatology.2001,203:241-243.
    [55]Asawanonda P, Oberlender S, Taylor C. The use of dihydroxyacetone for photoprotection in variegate porphyria. Int J Dermatol.1999,38:916-918.
    [56]Levy SB. Cosmetics that imitate a tan. Dermatol Ther.2001,14:215-219.
    [57]Niknahad H, Ghelichkhani E. Antagonism of cyanide poisoning by dihydroxyacetone. Toxicol Lett.2002,132:95-100.
    [58]Oh CH, Hong JH. Short synthesis and antiviral evaluation of C-fluoro-branched cyclopropyl nucleosides. Nucleos Nucleot Nucleic Acids.2007,26:403-411.
    [59]Stanko RT, Robertson RJ, Spina RJ, Reilly JJ, Greenawalt KD, Goss FL. Enhancement of arm exercise endurance capacity with dihydroxyacetone and pyruvate. J Appl Physiol. 1990,68:119-124.
    [60]Ivy JL. Effect of pyruvate and dihydroxyacetone on metabolism and aerobic endurance capacity. Med Sci Sports Exerc.1998,30:837-843.
    [61]Schlifke AC. Can pyruvate and dihydroxyacetone (DHA) improve athletic performance. Nutr Bytes.1999,5:1-5.
    [62]Bicker M, Endres S, Ott L, Vogel H. Catalytical conversion of carbohydrates in subcritical water:a new chemical process for lactic acid production. J Mol Catal A Chem.2005,239:151-7.
    [63]Kimura H, Tsuto K, Wakissaka T, et al. Selective oxidation of glycerol on a platinum bismuth catalyst. Appl Catal A:General.1993,96:217-228.
    [64]Kimura H. Selective oxidation of glycerol on platinum bismuth catalyst by using a fixed bed reactor. Appl Catal A:General.1993,105:147-158.
    [65]Demirel S, Lehnert K, Lucas M. Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Appl Catal.2007,70:637-643.
    [66]Porta F, Prati L. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:An Insight into reaction selectivity. J Catal.2004,224:397-403.
    [67]Rosaria C, Giovanni P, Cristina DP. One-pot electrocatalytic oxidation of glycerol to DNA. Tetrahedron Lett.2007,47:6993-6995.
    [68]谢艳丽,赵振东,百洋.含铂多金属催化剂的合成及其对甘油选择性催化氧化作用的研究.海南师范大学学报(自然科学版).2007,20:251-253
    [69]Neijssel OM, Hueting S, Crabbendam KL, Tempest DW. Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Arch Microbiol.1975,104:83-87.
    [70]Kato N, Shimao HKM, Sakazawa C. Dihydroxyacetone production from methanol by a dihydroxyacetone kinase deficient mutant of Hansenula polymorpha. Appl Microbiol Biotechnol.1986,23:180-186.
    [71]Liu Z, Hu Z, Zheng H, Shen Y. Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem Eng J.2007,38:285-291.
    [72]Streekstra H, Teixeira De Mattos MJ, Neijssel OM, Tempestz DW. Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol.1987,147:268-275.
    [73]Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol.2002,60:233-42.
    [74]Claret C, Salmon JM, Romieu C, Bories A. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol.1994, 41:359-365.
    [75]Lapenaite I, Kurtinaitiene B, Razumiene J, Laurinavicius V, Marcinkeviciene L, Bachmatova I, Meskys R, Ramanavicius A. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp.33. Anal Chim Acta. 2005,549:140-150.
    [76]Adachi O, Ano Y, Toyama H, and Matsushita K. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Biosci Biotechnol Biochem. 2006,70:2579-2582.
    [77]Adachi O, Ano Y, Toyama H, and Matsushita K. Purification and properties of NADP-dependent shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production. Biosci Biotechnol Biochem.2006, 70:2786-2789.
    [78]Shinjon M, Tomiyama N, Miyazaki T and Hoshino T. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem.2002, 66:2314-2322.
    [79]Yamada S, Nabe K, Izuo N. Fermentation production of dihydroxyacetone by Acetobacter suboxydans ATCC621. J Ferment Techol.1979,57:215-220.
    [80]Gatgens C, Degner U, Meyer SB, Herrmann U. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl Microbipl Biotechnol.2007,76:553-559.
    [81]Bories A, Claret C, Soueaille P. Kinetic study and optimization of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans. Process Biochem.1991, 26:243-248.
    [82]Hekmat D, Bauer R, Fricke J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng. 2003,26:109-116.
    [83]Bauer R, Katsikis N, Varga S, Hekmat D. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng.2005,5:37-43.
    [84]Albin A, Bader J, Gerlach EM, Stahl U. Improving fermentation and biomass formation of Gluconobacter oxydans. J Biotechnol.2007,131:S160-161.
    [85]Wei S, Song Q, Wei D. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol.2007b,37:113-21.
    [86]Adlercreutz P, Holst O, Mattiasson B. Gluconobacter oxydans immobilized in calcium alginate; characterization, improvement of oxygen supply, and the use of artificial electron acceptors. Eur Congr Biotechnol.1985,22(1):469-74.
    [87]Adlercreutz P, Holst O, Mattiasson B. Characterization of Gluconobacter oxydans immobilized in calcium alginate. Appl Microbiol Biotechnol.1985,22(1):1-7.
    [88]Nabe K, Izuo N, Yamada S, Chibata I. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl Environ Microbiol.1979, 38(6):1056-1060.
    [89]Tkac J, Navratil M, Sturdik E, Gemeiner P. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobiliezed Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb Technol.2001,28:383-388.
    [90]Wei S, Song Q, Wei D. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol.2007a, 37:67-76.
    [91]Adlercreutz P, Mattiasson B. Oxygen supply to immobilized cells:use of p-benzoquinone as an oxygen substitute. Appl Microbiol Biotechnol.1984,20:296-302.
    [92]Raska J, Skopal F, Komers K, Machek J. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect Czechoslov Chem Commun.2007,72:1269-83.
    [93]Blazejak S, Sobcjak E. Bioconversion of glycerol into dihydroxyacetone using Acetobacter xylinum. Acta Aliment Pol.1988,14:207-216.
    [94]Underkofler LA, Fulmer El. The production of dihydroxyacetone by the action of Acetobacter suboxydans upon glycerol. J Am Chem Soc.1937,89:301-302
    [95]Yamada S, Nabe K, Izuo N. Enzymatic production of dihydroxyacetone by Acetobacter suboxydans ATCC621. J Ferment Techol.1979,57:221-226.
    [96]Claret C, Bories A, Soucaille P. Inhibitory effect of dihydroxyacetone on Gluconobacter oxydans:kinetic aspects and expression by mathematical equations. J Ind Microbiol Biotechnol.1993,11:105-112.
    [97]Calmes D, Deal R. Glycerol transport by Nocardia asteroids. Can J Microbiol.1972, 18:1703-1708.
    [98]Richey D, Lin E. Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J Bacteriol.1972,112:784-790.
    [99]Saheb S. Permeation du glycerol et sporulation chez Bacillus subtilis. Can J Microbiol 1972,18:1307-1313.
    [100]Bobin MF, Martini MC, Cotte J. Effect of color adjuvants on the tanning effect of dihydroxyacetone. J Soc Cosmet Chem.1984,35:265-272.
    [101]Makhotkina TA, Pomortseva NV, Lomova IE, Nikolaev PI. Glycerol transformations into dihydroxyacetone by polyacrylamide gel immobilized cell of Gluconobacter oxydans. Prikl Biokhim Mikrobiol.1981,17:102-106.
    [102]Flickinger MC, Perlman D. Application of oxygen-enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl Environ Microb.1977,33:706-12.
    [103]Hoist O, Enfors SO, Mattiasson B. Oxygenation of immobilized cells using hydrogenperoxide:a model study of Gluconobacter oxydans converting glycerol to dihydroxyacetone. Eur J Appl Microbiol Biotechnol.1982,14:64-68.
    [104]Hoist O, Lundback H, Mattiasson B. Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl Microbiol Biotechnol.1985,22:383-388.
    [105]Adlercreutz P, Mattiasson B. Oxygen supply to immobilized cells:Oxygen production by immobilized Chlorella pyrenoidosa. Enzyme Microbial Techno.1982a,14:332-336.
    [106]Adlercreutz P, Mattiasson B. Oxygen supply to immobilized cells:oxygen supply by haemoglobin or emulsions of perfluorochemicals. Appl Microbiol Biotechnol.1982b, 16:165-170.
    [107]Damiano DS. Novel use of a perfluorocarbon for supplying oxygen to aerobic submerged cultures. Biotechnol Letters.1985,7:82-86.
    [108]Hamamoto K, Tokashik M, Ichikawa Y, Murakami H. High cell density culture of a hybridoma using perfluorocarbon to supply oxygen. Agric Bio Chem.1987, 51:3415-3416.
    [109]Chibata I, Yamada S, Wada M, Izuo N, Yamaguchi T. Cultivation of aerobic microorganisms. US Patent 3850753, Nov.1974.
    [110]Leonhardt A, Szwajcer E, Mosbach K. The potential use of silicon compounds as oxygen carriers for free and immobilized cells containing L-amino acid oxidase. Appl Microbiol Biotechnol.1985,21:162-166.
    [111]Leung R, Poncelet R, Neufeld RJ. Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. J Chem Tech Biotechnol.1997, 68:37-46.
    [112]Svitel J, Sturdik E. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J Ferment Technol.1994,78:351-355.
    [113]Lowe KC, King AT, Mulligan BJ. Perfluorochemicals and cell culture. Biotechnol.1989, 7:1037-1042.
    [114]Chandler D, Davey MR, Lowe KC, Mulligan BJ. Effects of emulsified perfluorochemicals on growth and ultrastructure of microbial cells in culture. Biotechnol Letters.1987,9:195-200.
    [115]Ferioli V, Vezzalini F, Rustichelli C, Gamberini G. High-performance liquid chromatography of dihydroxyacetone as its bis-2,4-dinitrophenylhydrazone derivative. Chromatographia.1995,41:61-65.
    [116]Merfort M, Herrmann U, Ha SW, Elfari M, Bringer MS, Gorisch H, Sahm H. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-d-gluconic acid accumulation. Biotechnol J.2006a,1:556-563.
    [117]Schleyer U, Bringer MS, Sahm H. An easy cloning and expression vector system for Gluconobacter oxydans. Int J Food Microbiol.2008,125(1):91-95.
    [118]Shinjoh M, Hoshino T. Development of a stable shuttle vector and a conjugative transfer system for Gluconobacter oxydans. J Ferment Bioeng.1995,79:95-99.
    [119]Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. High yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol.2006b,73:443-451.
    [120]Strohl WR, Schmidt TM, Lawry NH. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filifornis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int J Syst Bacteriol.1986,4:302-313.
    [121]Wakabayashi S, Matsubara H, Webster DA. Primary Sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature.1986,322:481-483.
    [122]Yu HM, Shen ZY. Progress in research of Vitrreoscilla hemoglobin and Vitreoscilla hemoglobin gene. Acta Microbial Sinica.1999,39:478-482.
    [123]Tyree B, Wbster DA. Electron-accepting proteins of cytochrome o purified from Vitreoscilla. J Biol Chem.1978,253:6988-6991.
    [124]Toshi M, Mand ES, Dikshit KL. Hemoglobin biosynthesis in Vitreoscilla stercoraria DW:cloning, expression, and characterization of a new homolog of a bacterial globin gene. Appl Environ Microbiol.1998,64(6):2220-2228.
    [125]Chol MG, Webster DA, Caughey WS. Oxygenated intermediate and carbonyl species of cytochrome o (Vitreoscilla). Characterization by infrared spectroscopy. J Biol Chem. 1982,257:865-869.
    [126]Ramandeep, Hwang KW, Webster DA, et al. Vitreoscilla hemoglobin:Intracellular localization and binding to membranes. J Biol Chem.2001,276:24781-24789.
    [127]Khosla C, Curtis JE, DeModena J, et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen limited Escherichia coli. Biotechnology.1990, 8:849-853.
    [128]Kallio PT, Kim DJ, Tsai PS, et al. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem.1994,219:201-208.
    [129]Khosla C, Bailey JE. Evidence for partial export of VHb into the periplasmic space in E.coli. J Mol Biol,1989.210:79-89.
    [130]Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. Expression of intracellular hemoglobin improves protein synthesis in oxygen limited Escherichia coli. Biotechnology (NY).1990,8:849-859.
    [131]Tsai PS, M Nageli, JE Bailey. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic E.coli metabolism through elevated concentration and specific activity of cychrome o. Biotechnol Bioeng.1996,49:151-160.
    [132]吴奕,杨胜利.透明颇菌血红蛋白基因调控与功能的研究.生物工程学报.1997,13:1-6.
    [133]Dikshit KL, Webster DA. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene.1988,70:377-386.
    [134]Khosla C, Bailey JE. The Vitreoscilla hemoglobin gene:molecular cloning, nuclestide sequence and genetic expression in E.coli. Mol Gen Genet.1988,214:158-161.
    [135]Tsai PS, Rao G, Bailey JE. Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin:new insights from NAD(P)H fluorescence and culture redox potential. Biotechnol Bioeng.1995,47:347-354.
    [136]Sharrocks AD, Green J, Guest JR. FNR activates and represses transcription in vitro. Proceedings of the Royal Society of London B. Biol Sci.1991,245:219-226.
    [137]Khosravi M, Webster DA, Stark BC. Presence of the bacterial hemoglobin gene improves a-amylase production of a recombinant Escherichia coli strain. Plasmid.1990, 24:190-194.
    [138]Zhang L, Li YJ, Wang ZN, Xia Y, Chen WS, Tang KX. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv.2007,25:123-136.
    [139]Wei XX, Chen GQ. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol.2008,436:269-283.
    [140]Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983,166:557-580.
    [141]Boyer HW, and Dussoix DR. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol.1969,14:459-472.
    [142]Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol.1986,189:113-130.
    [143]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, and Peterson KM. Four new derivatives of the broad-hostrange cloning vector pBBR1MCS carrying different antibiotic resistance cassettes. Gene.1995,166:175-176.
    [144]Yu HM, Shi Y, Zhang YP, Yang SL, Shen ZY. Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly (β-hydroxybutyrate) and fermentative parameters. FEMS Microbiol Lett.2002,214:223-227.
    [145]Figurski DH, and Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci. 1979,76:1648-1652.
    [146]Holscher T and Gorisch H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol.2006,21:7668-7676.
    [147]Karklinya VA, Veveris AJ, Zhigure DR. Dihydroxyacetone measurement in the culture liquids of Acetobacter suboxydans. Prikl Biokhim Mikrobiol.1982,18:262-5.
    [148]于慧敏,史悦,沈忠耀,杨胜利.CO差光谱法分析重组大肠杆菌中的透明颤菌血红蛋白.清华大学学报(自然科学叛).2002,42:615-618.
    [149]Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H. Biotransformation of glucose to 5-keto-d-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol.2004,64:86-90.
    [150]Khosla C, Bailey JE. Characterization of the oxygen-dependent promoter of the Vitgreoscilla hemoglobin gene in Escherichia coli. J Bacteriol.1989,171:5995-6004.
    [151]Chen HX, Chu J, Zhang SL, Zhuang YP, Qian JC, Wang YH, Hu XQ. Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol.2007,74:1205-1212.
    [152]Liu, Q, Zhang, J, Wei, XX, Ouyang, SP, Wu, Q, Chen, GQ. Microbial production of L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol.2008,77:1297-1304.
    [153]Sugisawa T and Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem. 2002,66:57-64.
    [154]Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248-254.
    [155]Urgun-Demirtas M, Pagilla KR, Stark B. Enhanced kinetics of genetically engineered Burkholderia cepacia:role of vgb in the hypoxic cometabolism of 2-CBA. Biotechnol Bioeng.2004,87:110-118.
    [156]Bhave SL, Chattoo BB. Expression of Vitreoscilla hemoglobin improves growth and levels of extracelluar enzyme in Yarrowia lipolytica. Biotechnol Bioeng.2003, 84:658-666.
    [157]Patel SM, Stark BC, Hwang KW, et al. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol Prog.2000,16:26-30.
    [158]张嗣良,储炬.多尺度微生物过程优化.北京,化学工业出版社,2003,93-95.
    [159]Wei L J. Study on the two membrane-bound dehydrogenases of Gluconobacter oxydans, alcohol dehydrogenase and acetaldehyde dehydrogenase, which involved in the oxidation of 1,2-propanediol to D-(-) lactic acid.2008, PhD thesis, East China University of Science and Technology, Shanghai.
    [160]Perron CY, Vieira J and Messing J. Improved M13 phage cloning vectors and host strains:nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 1985, 33:103-119.
    [161]Hewitt CJ, McFarlane CM, Nienow AW, Boon LA. The use of flow cytometry to study the impact of fluid mechanical stress on Escherichia coli W3110 during continuous cultivation in an agitated bioreactor. Biotechnology and Bioengineering.1998, 59:612-620.
    [162]Matsushita K, Arents JC, Bader R, et al. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology,1997,143:3149-3156.
    [163]Kim D, Hwang DS, Kang DG, Kim JWH, Cha HJ. Enhancement of Mussel Adhesive Protein Production in Escherichia coli by Co-expression of Bacterial Hemoglobin. Biotechnol Prog.2008,24:663-666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700