用户名: 密码: 验证码:
考虑输电设备可靠性的电网风险分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的风险评估是近年来研究的热点问题之一。而目前国内外对于电网风险分析中大多是以统计数据为基础来确定风险指标的,对于不同设备所处的各不相同的健康状况、运行工况、外部环境等特有的因素缺乏针对性考虑。在电网实际运行中,电网设备的故障概率各有不同而且会随着电网设备的运行方式、历史运行工况和外部因素而变化。因此,将设备自身健康状况评估与系统风险相结合,在设备、系统、外部环境等多种因素之间建立相互关系,研究量化设备健康状态和电网风险评估的方法,对于促进智能电网的调度决策、设备检修等向智能化、全面化发展具有深刻的重要意义。在此前提下,本文主要作出了如下的工作和创新:
     (1)利用证据理论融合对变压器的健康状态进行评估。在现有的变压器层次分析评估体系下,本文采用证据理论方法对指标信息进行了融合,给出了变压器的在线综合状态评估结果。并在此基础上,将评估结果等效为电网风险评估所需的元件故障率等可靠性数据,为考虑电网设备的风险评估提供了支持。
     (2)基于实时监测信息对断路器健康状态进行评估。在计算断路器累计剩余电寿命的基础上,综合机械状态等信息,提出了针对高压断路器的在线综合健康状态评估方法,并将评估结果转化为电网风险评估中所需的可靠性数据。研制了针对高压断路器的实时监测装置,该装置通过实时监测数据,对断路器的剩余电寿命进行计算和评估,同时也辅以机械状态等方面的监测数据,为断路器的综合评估提供了切实可行的方案。
     (3)基于支持向量描述方法的电网设备状态分类和故障诊断。利用支持向量描述方法,提出基于样本数据训练的电网设备状态分类方法;该方法解决了训练样本缺乏或不够所带来的问题,并且具有较强的扩展性,能较为便捷的对各类电网设备进行状态分类和诊断等分类工作,同时通过仿真实例也证实了该方法具有较好的准确率。
     (4)综合考虑了电网设备在线健康状态的输电网风险评估体系。与以往基于历史统计数据的电网风险评估不同,由于考虑了设备在线健康状态对电网风险的影响,使得电网风险指标更能体现真实的电网状况,也能反映出不同设备在不同运行方式下对电网的影响程度,指出电网的薄弱环节;另一方面,也可以验证由于良好的设备状态检修,对提高电网可靠性所产生的影响。基于本文提出的风险评估体系,即可以用于电网的规划和设计,也能为电网的运行、检修等提供良好的决策支持。
     (5)提出了一种基于三维信息的电网设备监测方案并进行了开发实践。针对电网设备状态信息的监测,提出了一种基于面向对象的三维信息模型;为更全面、详实和直观的对电网设备进行监测提供了一种全新的思路,并在此基础上以变压器的三维信息建模为例,进行了开发实践。
Nowadays, risk assessment for electric power system becomes an important issue. However, most risk analysis methods for electric power grid are based on historical statistics, and those methods are lack of considerating equipments'health status, operation situation and environment. In an operating power system, different equipment has its own failure probability and the probability changes with the equipment status. Therefore, finding the relationship between system risk and equipments'reliability, and then building a new power system risk assessment framework based on equipments'condition are very important for condition maintenance(CM), dispatching decision-making and etc. Achieving those targets, some works and innovations have been made as follows:
     (1) Transformer health status is evaluated based on evidential reasoning (ER) approach. An evidential reasoning (ER) approach to the transformer condition assessment is presented. And Analytic Hierarchy Process (AHP) is also used to analyse the transformer's attributes. Then, the transformer assessment results are converted to reliability data for power system risk assessment. Thus, the system risk can be better evaluated with the consideration of transformers'on-line condition.
     (2) High Voltage Breaker health status is evaluated based on real-time monitoring information. Electrical endurance of high voltage circuit breaker is calculated in this paper. Considering the machinery status, an on-line health condition evaluation approach to high voltage circuit breaker is presented. The evaluation results are converted to reliability date, and used to support the power system risk assessment. A real-time monitoring system for High Voltage Breaker is proposed in this paper. This monitoring system can be used to evaluate the high voltage circuit breaker's electrical endurance, and machinery conditions are also monitored. With these monitoring data, high voltage circuit breaker health status evaluation can be achieved in practice.
     (3) Support vector data description is used for equipments'status classification and fault giagnosis. A new machine learning approach called'Support Vector Data Description (SVDD)' which is based on sample data training is employed for electric equipment classification. The SVDD approach can classify equipment status easily with strong extendibility, high accuracy rate and less training sample data. Several simulation processes are presented to confirm the advantages of the SVDD.
     (4) A new framework for power transmission risk assessment is proposed, which considers not only historical failure statistics of transmission systems but also operation failure risks of system components. Different from traditional risk assessment, under the new framework, both up-to-date component failure risks and traditional system risk indices can be processed with the proposed outage model. Thus, the system risk can reflect the real situation better than the traditional way. The influence degrees to system risk, which made by different equipments and different system operation modes, can be indicated in this new framework. Thus, the weak links of power system can be pointed out. Meanwhile, the advantages for developing the power system reliability, which caused by equipment condition maintenance can be embodied. This new risk assessment framework can be used in power grid planning, and also can provide good supports for operation and maintenance.
     (5) A three dimension information monitoring scheme for electric equipments is proposed and practised. A3D information model based on object-oriented technique is designed for the equipment monitoring. With this model, electric power equipment monitoring can be achieved in a new way, which is much comprehensive, real and direct than the traditional way. Based on the proposed method,3D information transformer model is built.
引文
[1]白晓民,张伯明.大型互联电网在线运行可靠性评估、预警和决策支持系统[M].北京:清华大学出版社,2010.
    [2]许晓慧等.智能电网导论[M].北京:中国电力出版社,2009.
    [3]EPRI Report. The Cost of Power Disturbances to Industrial & Digital Economy Companies[R]. Prepared by PRIMEN,2001, June 29.
    [4]W.Y. Li. Risk Assessment of Power Systems-Models, Methods, and Applications[M]. IEEE Press Series on Power Engineering:John Wiley & Sons INC,2005.
    [5]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [6]孙昕,丁明,黄福林.大型电力系统可靠性评价体系(Ⅰ)指标定义[J].合肥工业大学学报(自然科学版),1998,21(增刊):18-22.
    [7]丁明,孙昕,胡昭明.大型电力系统可靠性评价体系(Ⅱ)算法[J].合肥工业大学学报(自然科学版),1998,21(6):1-6.
    [8]赵渊,周家启,周念成等.大电力系统可靠性评估的解析计算模型[J].中国电机工程学报,2006,26(5):19-25.
    [9]R.F. Ghajar, R. Billinton. Economis Costs of Power Interruptions:a Consistent Model and Methodology[J]. Electrical Power and Energy Systems,2006,28: 29-35.
    [10]R. Karki, P. Hu, R. Billinton. Reliability Evaluation Considering Wind and Hydro Power Coordination[J]. IEEE Transactions on Power Systems,2010,25(2): 685-693.
    [11]R. Billinton, R.N. Allan. Reliability Evaluation of Power Systems (Second Edition)[M]. New York:Plenum Publishing Corporation,1996.
    [12]鲍晓慧,侯慧.电力系统可靠性评估述评[J].武汉大学学报(工学版),2009,41(4):96-101.
    [13]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990.
    [14]罗毅,贺国庆,郭铁能.基于改进蚁群算法的“N-1”安全输电网优化规划[J].电力系统及其自动化学报,2008,20(3):99-104.
    [15]张俊芳,吴军基,康明才.“N-1”安全输电网优化规划[J].继电器,2000,28(9):25-27.
    [16]I.de.J Silva, M.J. Rider, R. Romero, et al. Transmission network expansion planning with security constraints[J]. IEE Proceedings of Generation, Transmission and Distribution,2005,152(6):828-836.
    [17]张俊芳,吴军基,康明才.“N-1”安全输电网优化规划[J].继电器,2000,28(9):25-27.
    [18]赵尤新,刘龙瑞.电力系统N-1无功安全快速校正[J].电工电能新技术,1993,4:28-31.
    [19]P. Zhang, S.T. Lee. Probabilistic load flow computation using the method of combined cumulants and gram-charlier expansion[J]. IEEE Trans on Power Systems,2004,19(1):676-682.
    [20]EPRI. Transmission planning under open access[S]. Part I and Part Ⅱ,2002, CA: Palo Alto.
    [21]S.T. Lee. A new vision for transmission operation and planning under an open power market[C]. Proceedings of Joint CIGRE and IEEE Conference,2003, Canada:Montreal.
    [22]张沛.基于概率的可靠性评估方法[J].电力系统自动化,2005,29(4):92-96.
    [23]赵渊,谢开贵.电网可靠性指标概率密度分布的解析计算模型[J].中国电机工程学报,2011,31(4):31-38.
    [24]赵渊,谢开贵.电网概率风险评估中元件可靠性参数的不确定性分析[J].电力系统自动化,2011,35(4):6-11.
    [25]庞博.考虑概率可靠性标准的输电网规划模型与实证研究[D].北京:华北电力大学硕士学位论文,2011.
    [26]R. Billinton, L. Salvaderi, J. D. McCalley, et al. Reliability issues in today's electric power utility environment. IEEE Transactions on Power Systems,1997, 12(4):1708-1714
    [27]IEEE RTS Task Force of APM Subcommittee. IEEE Reliability Test System-1979[J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(6):2047-2054.
    [28]R. Billinton, S. Kumar, N. Chowdhury, et al. A Reliability Test System For Educational Purposes-Basic Data[J]. IEEE Transactions on Power Systems, 1989,4(3):1238-1244.
    [29]R. Billinton, S. Kumar, N. Chowdhury, et al. A Reliability Test System For Educational Purposes-Basic Results[J]. IEEE Transactions on Power Systems, 1990,5(1):319-325.
    [30]R.N. Allan, R. Billinton, I. Sjarief, et al. A Reliability Test System For Educational Purposes-Basic Distribution System Data And Results[J]. IEEE Transactions on Power Systems,1991,6(2):813-820.
    [31]N. Chowdhury, R. Billinton. A Reliability Test System For Educational Purposes Spinning Reserve Studies in Isolated and Interconnected Systems[J]. IEEE Transactions on Power Systems,1991,6(4):1578-1583.
    [32]R. Billinton, D. G. Huang, Test Systems for Reliability and Adequacy Assessment of Electric Power Systems [C]. Power and Energy Society General Meeting, MN, USA, July,2010.
    [33]IEEE RTS Task Force of APM Subcommittee. IEEE Reliability Test System-1996. IEEE Transactions on Power Systems,1999,14(3):1010-1020.
    [34]王超.电力系统可靠性评估中的几个重要问题研究[D].杭州:浙江大学,2007.
    [35]陈为化.基于风险的电力系统静态安全分析与预防控制[D].杭州:浙江大学,2007.
    [36]李生虎.电力系统可靠性评估的算法研究及软件设计[D].合肥:合肥工业大学,2000.
    [37]宋晓通.基于蒙特卡罗方法的电力系统可靠性评估[D].济南:山东大学,2008.
    [38]冯永青,张伯明,吴文传等.基于可信性理论的电力系统运行风险评估-(一)运行风险的提出与发展[J].电力系统自动化,2006,30(1):17-23.
    [39]冯永青,张伯明,吴文传等.基于可信性理论的电力系统运行风险评估-(二)理论基础[J].电力系统自动化,2006,30(2):11-21.
    [40]冯永青,张伯明,吴文传等.基于可信性理论的电力系统运行风险评估-(三)应用与工程实践[J].电力系统自动化,2006,30(3):11-16.
    [41]宁辽逸,吴文传,张伯明.电力系统运行风险评估中元件时变停运模型分析[J].电力系统自动化,2009,33(16):7-12.
    [42]宁辽逸,吴文传,张伯明等.电力系统在线运行风险评估与决策[J].电力科学与技术学报,2009,24(2):28-34.
    [43]何君霞.电力设备状态监测技术的应用和思考[J].电气技术,2011,4:91-95.
    [44]李家伟,陈积懋.无损检测手册[M].北京:机械出版社,2002.
    [45]M. Uesaka, T. Nakanishi, K. Miya, et al. Micro eddy current testing by micro magnetic array sensor[J]. IEEE Transactions on magnetics,1995,31(1):870-876.
    [46]严璋,朱德恒.高电压绝缘技术[M].北京:中国电力出版社,2007.
    [47]A. Nakajima, N. Kashiwagi, T. Murata. Development of a hot-line diagnostic method for XLPE cables and the measurement results [J]. IEEE Transactions on Power Delivery,1989,4(2):857-862.
    [48]Z.H. Fan, T. Takahashi, J. Suzuki, H. Miyata. Relation between Electroluminescence and degradation in XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation 2001,8(1):91-96.
    [49]罗俊华,邱毓昌等.基于局部放电电频谱分析的XLPE电力电缆在线监测技术[J].电工电能新技术,2002,21(1):38-40,61.
    [50]江秀臣,蔡军等.110kV及以上电压等级交联电缆在线监测技术.电力自动化设备,25(8):13-17.
    [51]张海燕.火电厂厂用电监控系统及纳入DCS应用的研究[D].北京:华北电力大学,2003.
    [52]于雷,吴国轶.发电厂电气监控系统[J].应用能源技术,2006,9:30-33.
    [53]张裕生.高压开关设备监测和试验[M].北京:中国电力出版社,2004.
    [54]刘全志,师明义,秦红三等.高压断路器在线状态检测与诊断技术[J].高电压技术,2001,27(5):29-31.
    [55]W. H. Tang, Q. H. Wu, Z. J. Richardson. Equivalent Heat Circuit Based Power Transformer Thermal Model[J]. IEE Pros-Electr. Powr,2002,149(2):87-92.
    [56]K. Spurgeon, W.H. Tang, Q.H. Wu, Z.J. Richardson, et al. Dissolved gas analysis using evidential reasoning [J]. IEE Proceedings-Science, Measurement and Technology,2005,152(3):110-117.
    [57]H. Chang, F. Ru, J.Y. Xue. Generalized stochastic Petri nets based models for performance analysis of communication networks of IEC61850 system[J].重庆大学学报(英文版),2006,5(4):205-211.
    [58]J. Rodrigues, L. Soldani, G. Wong. First substation with IEC61850 commissioned in the Americas[C]. Transmission & Distribution Conference and Exposition, 2006:1-5.
    [59]G.S. Kim, H.H. Lee. A study on IEC 61850 based communication for intelligent electronic devices[C]. Science and Technology, KORUS 2005 Proceedings,9th Russian-Korean International Symposium,2005:765-770.
    [60]L. Andersson, C. Brunner, F. Engler. Substation automation based on IEC 61850 with new process-close technologies[C]. Power Tech Conference Proceedings, 2003,2:23-26.
    [61]王俊生,吴林平,王振曦等.高压直流控制保护系统IEC61850建模.电力系统自动化,2009,33(1):4144.
    [62]C.R. Ozansoy, A. Zayegh, A. Kalam. The real time publisher/subscriber communication model for distributed substation systems[J]. IEEE Trans on Power Delivery,2007,22(3):1411-1423.
    [63]朱永利,黄敏,邸剑.基于广域网的电力远动系统的研究[J].中国电机工程学报,2005,25(7):119-124.
    [64]张金江,郭创新,曹一家等.变电站设备状态监测系统及其IEC模型协调[J].电力系统自动化,2009,33(20):67-72.
    [65]王德文,朱永利,王艳.基于IEC 61850的输变电设备状态监测集成平台[J].电力系统自动化,2010,34(13):43-47.
    [66]国家电网生[2008]269号文件:《关于印发国家电网公司设备状态检修管理规定(试行)》和关于《规范开展状态检修工作意见》的通知,国家电网公司设备状态检修规章制度和技术标准汇编.北京:中国电力出版社,2008:1-14.
    [67]J.D. Mcdonald. Substation automation:IED integration and availability of information[J]. IEEE Power and Energy Magazine,2003,1(2):22-31.
    [68]J.J. Zhang, C.X. Guo, L.Z. Xu, Y.J. Cao. The design of an Object-Oriented Embedded Platform for Substation Data Integration[C]. IEEE Power and Energy Society General Meeting,2008, Pittsburgh, PA, USA:1-6.
    [69]唐跃中.数字化电网若干关键技术研究[D].杭州:浙江大学,2010
    [70]易永辉.基于IEC 61850标准的变电站自动化若干关键技术研究[J].杭州.浙江大学,2008.
    [71]高翔.数字化变电站若干关键技术研究[D].杭州:浙江大学,2008.
    [72]朱承治.输变电设备优化检修(OM)的关键技术研究[D].杭州:浙江大学,2008.
    [73]张金萍,刘国贤,袁泉等.变电设备健康状态评估系统的设计与实现[J].现代电力,2004,21(4),45-49.
    [74]熊浩,孙才新,张昀等.电力变压器运行状态的灰色层次评估模型[J].电力系统自动化,2007,31(7):55-60.
    [75]Q/GDW-169-2008,油浸式变压器(电抗器)状态评价导则[S].国家电网公司,2008.
    [76]W.H. Tang, K. Spurgeon, Q.H. Wu, et al. An Evidential Reasoning Approach to Transformer Condition Assessment[J]. IEEE Transactions on Power Delivery, 2004,19(4):1696-1702.
    [77]廖瑞金,王谦,骆思佳等.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化,2008,32(3):70-75.
    [78]T.L. Saaty. The Analytic Hierarchy Process[M]. New York:McGraw Hill,1980.
    [79]左军.层次分析法中判断矩阵的间接给出法[J].系统工程,1988,6(6):56-63.
    [80]李晓辉,张来,李小宇等.基于层次分析法的现状电网评估方法研究[J].电力系统保护与控制,2009,36(14):57-61.
    [81]李晓辉,徐晶,李达等.基于层次分析的配电网可靠性评估指标体系[J].电力系统及其自动化学报,2009,21(3):69-74.
    [82]朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报,2005,25(10):159-165.
    [83]王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141.
    [84]郭创新,彭明伟,刘毅.多数据源信息融合的电网故障诊断新方法[J].中国电机工程学报,2009,29(31):1-7.
    [85]彭明伟,刘毅,郭创新,朱承治,秦杰.故障录波信息和D-S证据理论用于电网故障诊断[J].高电压技术,2009,35(9):2176-2180.
    [86]W.H. Tang, K. Spurgeon, Q.H. Wu, et al. Relative condition ranking of transformers using evidence theory[J].2004 International Conference on Power System Technology, Singapore,2004:1679-1683.
    [87]S.M. Islam, T. Wu, G. Ledwich. A novel fuzzy logic approach to transformer fault diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7, (2):177-186.
    [88]C.E. Lin, J.M. Ling, C.L. Huang. An expert system for transformer fault diagnosis using dissolved gas analysis[J]. IEEE Transactions on Power Delivery, January 1993,8(1):231-238.
    [89]刘君,游家训,梁薇.基于加权K近邻算法的变压器故障诊断[J].电气自动化,2010,32(5):59-61,80.
    [90]回敬,律方成.将具有可信度的BP神经网络应用于变压器故障诊断[J].电力 科学与工程,26(2):9-13.
    [91]W.H. Tang, A. Shintemirov, Q.H. Wu. Transformer dissolved gas analysis using least square support vector machine and bootstrap. Chinese Control Conference, July 26-31st, Hunan:Zhangjiajie, China, pp.482-486,2007.
    [92]陈健,万国成,孙冠男等.GIS平台电网规划辅助决策系统开发与应用[J].电力系统及其自动化学报,2010,22(6):99-103.
    [93]J. Yan, K.P. Zhou, C.H. Deng, et al. A GIS based service-oriented power grid intelligent planning system[C]. Power and Energy Engineering Conference (APPEEC), Wuhan, China,2011:1-4.
    [94]闫丽梅,赵国成,陈娟等.基于GIS的大庆油田电力系统连锁过负荷故障分析系统[J].电力系统保护与控制,2010,38(23):76-81.
    [95]Z.Z. Shao, L.Y. Cheng, Y.X. Hu. Research and implementation of function code for equipment in distribution network GIS[C]. Electronics, Communications and Control (ICECC), Zhejiang, China,2011:979-981.
    [96]范磊.电力GIS设备故障诊断方案[J].机电信息,2011,297(15):25-27.
    [97]李晓骏,邱家驹.基于三维GIS技术的输电线路地理信息系统的设计与实现[J].电力系统及其自动化学报,2003,15(1):5-9.
    [98]Siyka Zlatanovaa, Alias Abdul Rahmanb, Wenzhong Shi. Topological Models and Frameworks for 3D Spatial Objects. Computers & Geosciences, May,2004,30 (4):419-428.
    [99]W.Z Shi, B.S Yang, Q.Q Li. An Object-oriented Data Model for Complex Objects in Three-Dimensional Geographical Information System [J]. International Journal of Geographical Information Science,2003,17 (5):411-430.
    [100]R. Germ, G.V. Maren, E. Verbree, et al. A multi-view VR interface for 3D GIS[J]. Comput ers & Graphics,1999(23):497-506.
    [101]田宜平,张戈,刘兴无等.三维可视地理信息系统在禹州电厂的应用[J].电力系统自动化,2005,29(5):88-92.
    [102]R.X. Yuan, Y. Xiang. The research on 3D GIS for power transmission grid based on VR technology[C]. Power System Technology Conference, Wuhan, China,2006:1-4.
    [103]K.H. Wu, X.H. Wang. The integration of GIS and real-time monitoring system for power grid[C]. International Conference on Electrical and Control Engineering, Wuhan, China,2010:1-4.
    [104]C. Monteiro. I.J. Ramirez-Rosado, et al. GIS spatial analysis applied to electric line routing optimization. IEEE Transactions on Power Delivery,20(2): 934-942.
    [105]单业才.城市电网三维可视化规划方法及应用研究[J].华中科技大学博士学位论文,2009.
    [106]郭磊,郭创新,曹一家等.基于面向对象技术的变压器三维图形建模[J].电力系统自动化,2010,34(20):60-65.
    [1]W.H. Tang, K. Spurgeon, Q.H. Wu, et al. An Evidential Reasoning Approach to Transformer Condition Assessment[J]. IEEE Transactions on Power Delivery, 2004,19(4):1696-1702.
    [2]W. H. Tang, Q. H. Wu, Z. J. Richardson. Equivalent Heat Circuit Based Power Transformer Thermal Model[J]. IEE Pros-Electr. Powr,2002,149(2):87-92.
    [3]W. H. Tang, Q. H. Wu, Z. J. Richardson. A Simplified Transformer Thermal Model Based on Thermal-Electric Analogy [J]. IEEE Transactions on Power Delivery,2004,19(3):1112-1119.
    [4]Z.R. Radakovic, M.S. Sorgic. Basics of Detailed Thermal-Hydraulic Model for Thermal Design of Oil Power Transformers [J]. IEEE Transactions on Power Delivery,2010,25(2):790-802.
    [5]K. Spurgeon, W.H. Tang, Q.H. Wu, Z.J. Richardson, et al. Dissolved gas analysis using evidential reasoning[J]. IEE Proceedings-Science, Measurement and Technology,2005,152(3):110-117.
    [6]刘君,游家训,梁薇.基于加权K近邻算法的变压器故障诊断[J].电气自动化,2010,32(5):59-61,80.
    [7]回敬,律方成.将具有可信度的BP神经网络应用于变压器故障诊断[J].电力科学与工程,26(2):9-13.
    [8]W.H. Tang, A. Shintemirov, Q.H. Wu. Transformer Dissolved Gas Analysis Using Least Square Support Vector Machine and Bootstrap[C]. Proceedings of the 26th Chinese Control Conference, Zhangjiajie, Hunan, China,2007, July 26-31: 482-486.
    [9]潘巍巍.电力变压器故障诊断与定位的研究[D].杭州:浙江大学,2004.
    [10]熊浩,孙才新,张昀等.电力变压器运行状态的灰色层次评估模型[J].电力系统自动化,2007,31(7):55-60.
    [11]廖瑞金,王谦,骆思佳等.基于模糊综合评判的电力变压器运行状态评估模 型[J].电力系统自动化,2008,32(3):70-75.
    [12]Q/GDW-169-2008.油浸式变压器(电抗器)状态评价导则[S].国家电网公司,2008.
    [13]A. Shintemirov, W.H. Tang, Q.H. Wu. Transformer winding condition assessment using frequency response analysis and evidential reasoning[J]. IET Electric Power Applications,2010,4(3):198-212.
    [14]朱承治.输变电设备优化检修(OM)的关键技术研究[D].杭州:浙江大学,2008.
    [15]张裕生.高压开关设备监测和试验[M].北京:中国电力出版社,2004.
    [16]刘旭波.高压电器状态维修策略研究[D].济南:山东大学,2005.
    [17]王阳,朴在林,王雪梅等.断路器电寿命在线监测的几种计算方法[J].沈阳农业大学学报,2005,36(1):250-252.
    [18]刘全志,师明义,秦红三等.高压断路器在线状态检测与诊断技术[J].高电压技术,2001,27(5):29-31.
    [19]张金萍,刘国贤,袁泉等.变电设备健康状态评估系统的设计与实现[J].现代电力,2004,21(4):45-49.
    [20]谢红玲,律方成.基于信息融合的变压器状态评估方法研究[J].华北电力大学学报,2006,33(2):8-11.
    [21]吴立增.变压器状态评估方法的研究[D].北京:华北电力大学,2005.
    [22]J.B. Yang, D.L. Xu. Nonlinear information aggregation via evidential reasoning in multi-attribute decision analysis under uncertainty[J]. IEEE Trans. Syst., Man Cybernet., PartA, Syst. Humans,2002,32(3):376-393.
    [23]J.B. Yang, M.G. Singh. An evidential reasoning approach for multiple attribute decision making with uncertainty[J]. IEEE Trans. Syst. Man Cybernet.,1994, 24(1):1-18.
    [24]J.B. Yang, D.L. Xu. On the evidential reasoning algorithm for multiple attribute decision making under uncertainty[J]. IEEE Trans. Syst. Man Cybernet., Part A, Syst. Humans,2002,32(3):289-304.
    [25]祝亚静.基于粗糙集理论与证据理论相结合的电网故障诊断[D].北京:华北电力大学,2008.
    [26]龚本刚.基于证据理论的不完全信息多属性决策方法研究[D].合肥:中国科 学技术大学,2007.
    [27]G. Shafer. A mathematical theory of evidence[M]. Princeton:Princeton University Press,1976.
    [28]杜文吉,谢维信.基于证据理论的模式识别算法[J].西安电子科技大学学报,1999,8:533-536.
    [29]张金玉,张优云,谢友柏.基于证据理论的综合诊断理论及其应用[J].机械科学与技术,2000,3:183-186.
    [30]Q/GDB 169-173—2008.国家电网公司输变电设备状态评价导则[S].国家电网公司,2008.
    [31]华中电管局.LW6系列SF6断路器检修工艺[S].1993.
    [32]胡文平,尹项根,张哲.基于MATLAB高压断路器触头电寿命仿真研究[J].电力系统及其自动化学报,2003,15(6):9-12.
    [33]郭贤珊,王章启.高压断路器触头电寿命预测的研究[J].高电压技术,1999,25(3):43-44.
    [34]狄美华,李震彪,吴细秀.开关电器触头电寿命诊断方法综述高压电器[J].2004,40(3):201-204.
    [35]A. Pons, A. Sabot, G. Babusci. Circuit-Breaker Common Experience and Practice of two Utilies[J]. IEEE Transactions on Power Delivery,1993,8(1):168-174.
    [36]王鹏,张军,余泳.一种新型断路器电寿命在线监测系统[J].电力系统自动化,2009,33(17):109-111,105.
    [37]孙福杰,王章启.高压断路器触头电寿命诊断技术[J].电网技术,1999,23(3):59-61.
    [38]S.H. Ma, J.Y. Xu, J.M. Wang. A method for intellectualized detection and fault diagnosis of vacuum circuit breakers[C]. IEEE 19th Int. Symp. On Discharges and Electrical Insulation in Vacuum, Xi'an, China, IEEE,2000.
    [39]李建基译.少油断路器的电气寿命[J].高压电器,1974,6:35-46.
    [40]高文胜等.基于绝缘诊断的期望寿命预测[J].高压电技术,1997(1)
    [41]方可行.断路器故障余监测[M].北京:中国电力出版社,2003.
    [42]黄盛洁等.电气设备绝缘在线监测和状态维修[M].北京:中国水利电力出版社,2004.
    [1]W.H. Tang, A. Shintemirov, Q.H. Wu. Transformer Dissolved Gas Analysis Using Least Square Support Vector Machine and Bootstrap. Chinese Control Conference, July 26-31st, Hunan:Zhangjiajie, China, pp.482-486,2007.
    [2]M.J. Heathcote, The J&P Transformer Book, first published by Johnson & Phillips Ltd, twelfth edition,1998.
    [3]孙才新,陈伟根,李俭等.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2002.
    [4]操敦奎.变压器油中气体分析诊断与故障检查[M].北京:中国电力出版社,2005.
    [5]潘巍巍.电力变压器故障诊断与定位的研究[D].杭州:浙江大学,2004.
    [6]回敬,律方成.将具有可信度的BP神经网络应用于变压器故障诊断[J].电力科学与工程,2010,26(2):9-13.
    [7]梁永春,李彦明.改进型组合RBF神经网络的变压器故障诊断[J].高电压技术,2005,31(9):31-33.
    [8]刘君,游家训,梁薇等.基于加权K近邻算法的变压器故障诊断[J].电力系统及其自动,2010,32(5):59-61,80.
    [9]李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913.
    [10]唐明珠,王岳斌,阳春华.一种改进的支持向量数据描述故障诊断方法[J].2011,26(7):867-972.
    [11]Y. Zhang, X.D. Liu, F.D. Xie, et al. Fault classifier of rotating machinery based on weighted support vector data description[J]. Expert Systems with Applications, 2009,36(3):7928-7932.
    [12]张建明,葛志强,谢磊.基于支持向量数据描述的非高斯过程故障重构与诊断[J].化工学报,2009,60(1):168-171.
    [13]朱孝开,杨德贵基于推广能力测度的多类SVDD模式识别方法[J].电子学报,2009,37(3):464-469.
    [14]杨敏,张焕国,傅建明等.基于支持向量数据描述的异常检测方法[J].计算机工程,2005,31(3):39-42.
    [15]罗隽,潘志松,胡谷雨.基于SVDD的网络安全审计模型研究[J].智能系统学报,2007,21(4):69-73.
    [16]李凌均,韩捷,郝伟等.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429.
    [17]Vladimir N Vapnik. Nature of Statistical Learning Theory[M]. New York: Springer Verlag,2000.
    [18]David M J Tax. Support Vector Data Description[J]. Machine Learning,2004,54: 45-66.
    [19]D.M.J. Tax, R.P.W. Duin. Data description in subspaces[C]. International Conference on Pattern Recognition, Barcelona,2000,672-675.
    [1]W.Y. Li. Risk Assessment of Power Systems-Models, Methods, and Applications[M]. IEEE Press Series on Power Engineering:John Wiley & Sons INC,2005.
    [2]陈为化.基于风险的电力系统静态安全分析与预防控制[D].浙江:浙江大学,2007.
    [3]唐跃中.数字化电网若干关键技术研究[D].浙江:浙江大学,2010.
    [4]黄晓莉,许海铭.国家电力数据通信网络建设方案[J].电力系统自动化,2003,27(20):82-87.
    [5]Inmon.数据仓库(Building the data warehouse) [M].北京:机械工业出版社,2000.
    [6]路广,张伯明,孙宏斌.数据仓库与数据挖掘技术在电力系统中的应用[J].电网技术,2001,25(8):54-57.
    [7]王为国,代伟,万磊等.调度自动化系统数据共享模式的探讨[J].电力系统自动化,2005,29(4):88-91.
    [8]R. Billinton, R.N. Allan. Reliability Evaluation of Engineering Systems: Concepts and Techniques (second edition) [M]. New York and London:Plenum Press,1992.
    [9]R. Billinton, W.Y. Li. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods[M]. New York and London:Plenum Press,1994.
    [10]R. Billinton, R.N. Allan. Reliability Evaluation of Power Systems (second edition)[M]. New York and London:Plenum Press,1996.
    [11]李生虎.电力系统可靠性评估的算法研究及软件设计[D].合肥:合肥工业大学,2000.
    [12]宋晓通.基于蒙特卡罗方法的电力系统可靠性评估[D].济南:山东大学,2008.
    [13]王超.电力系统可靠性评估中的几个重要问题研究[D].杭州:浙江大学,2007.
    [14]别朝红,王锡凡.蒙特卡罗法在评估电力系统可靠胜中的应用[J].电力系统自动化,1997,21(6):68-75.
    [15]肖伙,郭永基,席勇健等.一种评估大规模电力系统可靠性的新算法[J].清华大学学报,1999,39(1):12-15.
    [16]R.Y. Rubinstein. Simulation and Monte Carlo Method[M]. New York:Wiley, 1981.
    [17]张瑜.基于MCMC方法的大型电力系统风险评估[D].北京:华北电力大学,2009.
    [18]IEEE RTS Task Force of APM Subcommittee. IEEE Reliability Test System-1979[J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(6):2047-2054.
    [1]李晓骏,邱家驹.基于三维GIS技术的输电线路地理信息系统的设计与实现 [J].电力系统及其自动化学报,2003,15(1):5-9.
    [2]任培祥,朱中耀,李鑫等.三维全景智能电网支撑平台的关键技术研究与应用[J].电力勘测设计,2009,4:51-56.
    [3]谢成,胡炎,邰能灵等.基于可扩展对象库的变电站三维仿真平台[J].电力系统自动化,2009,33(6):90-93.
    [4]侯俊,李蔚清,林昌年.变电站三维交互场景仿真关键技术研究[J]..电网技术,2005,29(9):70-75.
    [5]宜平,张戈,刘兴无等.三维可视地理信息系统在禹州电厂的应用[J].电力系统自动化,29(5):88-92.
    [6]T.J. Overbye. Power System Visualization[J]. Automation of Electric Power Systems,2005,29 (16):60-65.
    [7]S. Zlatanovaa, A.A. Rahmanb, W.Z. Shi. Topological Models and Frameworks for 3D Spatial Objects[J]. Computers & Geosciences, May,2004,30 (4):419-428.
    [8]W.Z. Shi, B.S. Yang, Q.Q. Li. An Object-oriented Data Model for Complex Objects in Three-Dimensional Geographical Information System [J]. International Journal of Geographical Information Science,2003,17 (5):411-430.
    [9]史文中,吴立新,李清泉等.三维空间信息系统模型与算法[M].北京:电子工业出版社,2007.
    [10]杨必胜.数字城市的三维建模与可视化技术研究[D].武汉:武汉大学,2002.
    [11]赵菁,孙晖.基于CIM的集控站仿真培训建模支持系统[J].电力系统及其自动化学报,17(3):69-72,77.
    [12]唐跃中,阮前途,曹晋彰等.电网企业综合数据平台的开发[J].电网技术,2009,33(17):37-43.
    [13]郭创新,单业才,曹一家等.基于多智能体技术的电力企业开放信息集成体系结构研究[J].中国电机工程学报,2005,25(4):64-70.
    [14]王林青,顾建炜,曹一家等.基于CIM/CIS的电力实时信息平台设计与实现[J].电力系统及其自动化学报,2008,20(1):46-51.
    [15]唐跃中,曹晋彰,郭创新等.电网企业基于面向服务架构的应用集成研究与实现[J].电力系统自动化,2008,32(14):50-54.
    [16]陈晟.GIS空间数据库基础技术研究[D].长沙:国防科学技术大学,1998.
    [17]王斌.数字城市基础空间数据库的建立、应用和发布[D].上海:同济大学,2003.
    [18]R. Smith, K. Towler. Utilizing Geographic Information System data to plan for electrical system expansion and improve system operations [C]. IEEE Rural Electric Power Conference,2008, Aprl:A4-A4-6.
    [19]T. Mohar, K. Bakie, J. Curk. Advanced planning procedure and operation of distribution network supported by SCAD A and GIS[C]. IEEE Power Engineering Society Winter Meeting,2000,4:2780-2785.
    [20]单业才,朱传柏,郭创新等.城市电网空间三维可视化信息平台技术构架[J].电网技术,2007,31(3):29-34.
    [21]郭创新,金成生,王林青等.基于CIM的广域测量系统的信息模型[J].电力系统及其自动化学报,2007,19(1):34-38,48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700