用户名: 密码: 验证码:
钢管混凝土边框内藏钢板组合剪力墙抗震性能试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土在高层建筑中应用较多,钢板剪力墙在超高层建筑中应用近年发展较快。将钢管混凝土的抗震优势与钢板剪力墙的抗震优势合理结合,对提高高层建筑抗震性能十分重要。本文提出并研发了钢管混凝土边框内藏钢板组合剪力墙,并进行了试验研究、理论分析、数值模拟和设计方法研究。主要贡献如下:
     1.提出并研发了型钢混凝土边框内藏钢板组合剪力墙。进行了5个型钢混凝土边框内藏钢板组合剪力墙模型和1个普通钢筋混凝土剪力墙模型的低周反复荷载试验研究,分析了各试件的承载力、刚度及其退化过程、延性、滞回特性、耗能能力及破坏特征等;与普通钢筋混凝土剪力墙相比较,揭示了型钢混凝土边框钢板混凝土组合剪力墙的抗震机理。
     2.提出并研发了钢管混凝土边框内藏钢板组合剪力墙。进行了9个钢管混凝土边框内藏钢板组合剪力墙模型的低周反复荷载试验研究,分析了各试件的承载力、刚度及其退化过程、延性、滞回特性、耗能能力及破坏特征等,与型钢混凝土边框内藏钢板组合剪力墙相比较,揭示了钢管混凝土边框内藏钢板组合剪力墙的抗震机理。
     3.提出并研发了剪力墙内藏钢板与外包钢筋混凝土之间的新型抗剪连接技术。并通过对采用此抗剪连接技术的剪力墙模型进行低周反复荷载试验,验证了此种抗剪连接技术在保证钢板与混凝土间整体性方面的良好性能。
     4.建立了钢管混凝土边框内藏钢板组合剪力墙和型钢混凝土边框内藏钢板组合剪力墙的承载力计算模型、恢复力模型,并采用软件ABAQUS对有代表性的试件进行了有限元分析,计算结果与实测结果符合较好。根据理论分析,揭示了此种新型组合剪力墙的破坏机制。
     5.提出了钢管混凝土边框内藏钢板组合剪力墙抗震设计方法和构造措施。包括适用范围、一般规定、在结构中的布置原则和构造措施。
     根据试验研究结果,得出如下主要结论:
     1.与普通钢筋混凝土剪力墙相比,钢管混凝土边框内藏钢板剪力墙和型钢混凝土边框内藏钢板剪力墙的抗震性能更好。不仅承载力高、刚度大,而且由于钢管混凝土边框柱对剪力墙的约束更强,使钢管混凝土边框内藏钢板剪力墙承载力和刚度的退化速度减慢,表现出更好的延性和耗能能力。
     2.钢管混凝土边框内藏钢板组合剪力墙,由于剪力墙墙体内藏钢板的设置,有效延迟了剪力墙斜裂缝的出现并制约了其继续发展,提高了剪力墙的后期刚度,改善了其破坏机制。
     3.在钢板开孔率适当和配筋率相同的情况下,新型钢板混凝土连接件的性能与栓钉性能相当,但其变形能力较好,有利于剪力墙的耗能。
Concrete filled steel tube (CFST) has been used more often in high-rise buildings,at the same time the steel plate shear wall is also being applied with rapiddevelopment in recent years. The rational combination of CFST and steel plate shearwall is important for improving the anti-seismic performance of high-rise buildings.The embedded steel plate composite shear wall with CFST columns has beendeveloped in the thesis. And experimental study, theoretical analysis, numericalsimulation and design method about it were conducted. The main contributions are asfollows:
     1.An embedded steel plate shear wall with profile steel reinforced concretecolumns has been proposed. The low cyclic loading tests of5composite wallspecimens and1normal RC shear wall specimen have been carried out. The columnstyle, thickness of plate, connections and axial force ratio were considered. The loadbearing capacity, stiffness degradation, ductility, hysteretic behavior, energydissipation capacity and failure characteristics have been analyzed. The effect ofprofile steel reinforced concrete boundary columns and the embedded steel plate onimproving the entire seismic behavior of the shear wall has been revealed.
     2.A new embedded steel plate composite shear wall with CFST columns hasbeen proposed. The low cyclic loading tests of9specimens have been carried out.The column style, thickness of plate, shear span ratio, connections and axial forceratio were considered. The load bearing capacity, stiffness degradation, ductility,hysteretic behavior, energy dissipation capacity and failure characteristics have beenanalyzed. Compare with the embedded steel plate shear wall with profile steelreinforced concrete columns, the embedded steel plate composite shear wall withCFST columns shows better seismic behavior.
     3.A new shear connecting technique between the internal steel plate and theexternal concrete has been proposed and studied. It is demonstrated that the integratedseismic performance between steel plate and concrete is good by low cyclic loadingtests of specimens with the technique.
     4.The load bearing capacity calculated model and the restoring force model ofthe embedded steel plate composite shear wall with CFST columns and the embeddedsteel plate shear wall with profiled steel reinforced concrete columns have beenestablished. Simulation of several typical specimens has been conducted by the finite element analysis software ABAQUS. The computed results agree well with the testresults. According to the theoretical calculation and analysis, the failure mechanism ofthe new composite shear wall is made.
     5.Suggestions about design and construction measures of the new wall,including the general rules, scope of application and the principles of construction aregiven.
     According to results of the research, main contributions are as follows:
     1. Comparing with the normal RC shear wall,the embedded steel plate shearwall with profiled steel reinforced concrete columns and the embedded steel platecomposite shear wall with CFST columns shows excellent seismic behavior withhigher load bearing capacity, larger initial stiffness. Constrained by the strongerboundary CFST columns, the embedded steel plate composite shear wall with CFSTcolumns has better ductility and better energy dissipation capacity.
     2. Owing to the steel plate embedded in the wall, the occurrence of inclinedcracks on surface of concrete wall is delayed, and their development is alsoconstrained. Thus the late rigidity of the shear wall is well held. At the same time, thefailure mechanism of the wall is also improved.
     3. In the case of rational plate opening rate and the same reinforcement rate,the wall equipped with new connectors between the embedded steel plate and outerconcrete has nearly the same working performance, the better capacity of deformationand energy dissipation than using steel studs.
引文
[1] Nethercot D A. Composite Construction[M]. New York: Taylor&Francis,2003.
    [2]朱聘儒.钢-混凝土组合梁设计原理.北京:中国建筑工业出版社,1989.
    [3]聂建国.钢-混凝土组合梁结构-试验、理论与应用.北京:科学出版社,2005.
    [4]王连广.钢与混凝土组合结构[M].北京:科学出版社,2005.
    [5]日本建筑协会.钢骨钢筋混凝土结构计算标准及解说.冯乃谦,叶列平,等译.北京:原子能出版社,1998.
    [6]赵世春.钢混凝土组合结构计算原理[M].成都:西南交大出版社,2004.
    [7]中华人民共和国行业标准JGJ138-2001.型钢混凝土组合结构技术规程[S].北京,2002
    [8] ACI318-89. The Building Requirements of Reinforced Concrete[S].
    [9] AISC. Load and Resistance Factor Design (LRFD)[S]. Chicago, Sept.1994.Institute of SteelConstruction, Inc.
    [10] Joint Committee IABSE/CEB/FIP/ECCS Composite Structures (Model Code). London:Construction Press,1981
    [11] EC4. Design of Steel and Concrete Structures, Partl.l, General Rules and Rules forBuildings[S]. European Committee for Standardization(CEN), Brussels, Belgium,1994.
    [12]中国建设部行业标准:型钢混凝土组合结构技术规程JGJ138-2001,北京:中国建筑工业出版社,2002.
    [13]中国冶金部行业标准:钢骨混凝土结构设计规程YB9082——97,北京:冶金工业出版社,1998.
    [14]中国建设部行业标准:高层建筑混凝土结构技术规程JGJ3——2002,北京:中国建筑工业出版社,2002.
    [15]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2000,33(5):1-11.
    [16]李俊华,薛建阳,赵鸿铁.型钢高强混凝土柱抗震性能的试验研究[J].世界地展工程,2004,20(4):94-99.
    [17]陈丽华,李爱群,赵玲.型钢混凝土构件受剪承载力计算公式的比较[J].建筑结构,2005,35(1):32-34.
    [18]宋占海.型钢混凝土柱受力性能的试验研究[[J].西安建筑科技大学学报,1995,27(1):35-39.
    [19]王连广,张海霞,吴利权.钢骨高强混凝土框架结构非线性地震反应分析[J].沈阳建筑工程学院学报(自然科学版),2003,19(4):247-249.
    [20]乔彦明,钱稼茹.钢骨混凝土剪力墙抗剪性能的试验研究闭.建筑结构,1995,(8):3-7.
    [21]廖飞宇,陶忠.带不同类型边框柱的剪力墙力学性能试验[J].工业建筑,2007,37(12):31-34,118
    [22]梁兴文,马恺泽,李菲菲,等.型钢高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2011,32(6):68-75.
    [23]陈涛,肖从真,田春雨,等.高轴压比钢-混凝土组合剪力墙压弯性能试验研究[J].建筑结构学报,2011,44(6):1-7.
    [24]白亮,梁兴文,李向阳,等.型钢高性能混凝土剪力墙受剪承载力试验研究[J].建筑结构学报,2011,41(7):130-133.
    [25]李一松,李国强,崔大光.型钢混凝土中高剪力墙正截面受弯的开裂荷载和极限荷载的计算方法[J].四川建筑科学研究,2011,37(3):1-7.
    [26]魏勇,钱稼茹,赵作周等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑,2007,37(6):76-79
    [27]钱稼茹,魏勇,赵作周等.高轴压比钢骨混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2008,29(2):43-50
    [28]刘航,蓝宗建,庞向和.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑1997,27(5):32-37.
    [29] Soon H C,Bryce T,William D C.Structural steel boundary elements for ductile concretewalls[J].Journal of Structural Engineering,ASCE,2004,130(5):763-768.
    [30] Tong Xiang dong, Hajjar Jerome F, Arturo E. Cyclic behavior of steel frame structure withcomposite reinforced concrete infill walls and partially restrained connections[J]. Journal ofConstructional Steel Research,2005,61(4):531-552
    [31] D. Dan, A. Fabian, V. Stoian. Theoretical and experimental study on compositesteel-concrete shear walls vith vertical steel encased profiles[J]. Journal of Constructional SteelResearch.2011,67(5):800-813
    [32]韩林海,杨有福.现代钢管混凝土结构技术[M],北京:中国建筑工业出版社,2007
    [33]韩林海.钢管混凝土结构-理论与实践[M],北京:科学出版社,2007
    [34]蔡绍怀.现代钢管混凝土结构,北京:人民交通出版社,2003
    [35]钟善桐.高层钢-混凝土组合结构,广州:华南理工大学出版社,2003
    [36]钟善桐.钢管混凝土结构,北京:清华大学出版社,2003
    [37]钟善桐.钢管混凝土统一理论.北京:清华大学出版社,2006
    [38]钟善桐.钢管混凝土结构在我国的应用与发展[J].建筑技术,2001,32(2):80-82
    [39]汪大绥,陆道渊,黄良等.天津津塔结构设计[J].建筑结构学报,2009, S1:1-7
    [40]钱稼茹,康洪震.钢管高强混凝土组合柱抗震性能试验研究[J].建筑结构,2009,30(4):85-93
    [41]江枣,钱稼茹.钢管混凝土短柱轴心受压承载力与钢管作用研究[J].建筑结构,2010,40(8):94-98
    [42]余志武,丁发兴,林松.钢管高性能混凝土短柱受力性能研究[J].建筑结构学报,2002,23(2):41-47
    [43]贺锋,周绪红,唐昌辉.钢管高强混凝土轴压短柱承载力性能的试验研究[J].工程力学,2000,17(4):61-66
    [44]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(3):81-86
    [45]陈宝春,王来永,欧智著.钢管混凝土偏心受压应力-应变试验研究[J].工程力学,2003,20(6):154-159
    [46]胡潇,钱永久,段敬民.钢管混凝土结构抗震性能的比较研究[J].四川建筑科学研究,2009,35(1):179-183
    [47]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究.建筑结构学报,2000,21(2):2-11
    [48]陆伟东,吕西林.方钢管混凝土压弯构件受力-变形过程分析[J].世界地震工程,2002,18(1):150-154
    [49]李斌,马恺泽,刘惠东.方钢管高强混凝土柱抗震试验研究[J].工程力学,2009,26(s1):139-143
    [50]徐礼华,凡红,刘胜兵,等.方钢管混凝土柱-钢梁节点抗震性能试验研究与有限元分析[J].工程力学,2008,25(2):122-131
    [51]聂建国,秦凯.方钢管混凝土柱节点抗剪受力性能的研究[J].建筑结构学报,2007,28(4):8-17
    [52]宗周红,葛继平,杨强跃.反复荷载作用下方钢管混凝土柱与钢梁连接节点非线性有限元分析[J].建筑结构学报,2006,27(2):75-81
    [53]周学军,曲慧.方钢管混凝土框架梁柱节点在低周往复荷载作用下的抗震性能研究[J].土木工程学报,2006,39(1):38-42,49
    [54]夏汉强,刘嘉祥.矩形钢管混凝土柱带框剪力墙的应用及受力分析[J].建筑结构,2005,35(1):16-18
    [55]曹万林,王敏,张建伟,等.钢管混凝土边框剪力墙抗震试验及承载力计算[J].北京工业大学学报,2008,34(12):1291-1297
    [56]王敏,曹万林,张建伟,等.钢管混凝土边框高强混凝土组合剪力墙抗震性能试验研究[J].地震工程与工程振动.2008,28(2):90-95
    [57]王敏,曹万林,张建伟,等.不同轴压比下钢管混凝土边框组合剪力墙抗震性能研究[J].世界地震工程.2008,24(2):32-36
    [58]曹万林,王敏,王绍合,等.高轴压比下钢管混凝土边框组合剪力墙抗震性能试验研究[J].地震工程与工程振动.2008,28(1):85-90
    [59]曹万林,王敏,王绍合,等.矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究[J].工程力学.2008,25(S1):58-70
    [60]曹万林,杨亚彬,张建伟.圆钢管混凝土边框内藏桁架剪力墙抗震性能[J].东南大学学报(自然科学版).2009,39(6):1117-1192
    [61]刘威.钢管混凝土局部受压时的工作机理研究.福州大学博士论文.2005
    [62] Xianyan Zhou, Guohui Cao, Ran He, et al. Study on Long-Term Behavior and UltimateStrength of CFST Columns[C].//American Society of Civil Engineering. ICCTP2009: CriticalIssues in Transportation System Planning, Development, and Management Proceedings of theNinth International Conference of Chinese Transportation Professionals, August5–9,2009Harbin,China
    [63] DU Xi-kai, WANG Tie-cheng, HE Hongming, et al. Experimental Research and DamageModel of Square Concrete-Filled Steel Tube Subjected To Cyclic Loading[C].//American Societyof Civil Engineering. ICCTP2009: Critical Issues in Transportation System Planning,Development, and Management Proceedings of the Ninth International Conference of ChineseTransportation Professionals, August5–9,2009Harbin, China
    [64] Yan Xiao, Jianhua Shan, Qiu Zheng, et al. Experimental Studies on Concrete Filled SteelTubes under High Strain Rate Loading[J]. Journal of Materials in Civil Engineering,2009,21(10):569-577.
    [65] K. K. Choi, and Y. Xiao. Analytical Studies of Concrete-Filled Circular Steel Tubes underAxial Compression[J]. Journal of Structural Engineering,2010,136(5):565-573.
    [66] Zhijing Ou, Baochun Chen, Kai H. Hsieh, et al. Experimental and Analytical Investigation ofConcrete Filled Steel Tubular Columns[J]. Journal of Structural Engineering,2011,137(6):635-645.
    [67] Cenk Tort, Jerome F. Hajjar. Mixed Finite-Element Modeling of Rectangular Concrete-FilledSteel Tube Members and Frames under Static and Dynamic Loads[J]. Journal of StructuralEngineering,2010,136(6):654-664.
    [68] Eun-Taik Lee, B. H. Yun, H. J. Shim, et al. Torsional Behavior of Concrete-Filled CircularSteel Tube Columns[J]. Journal of Structural Engineering,2009,135(10):1250-1258.
    [69] Aaron D. Probst, Thomas H.-K. Kang, Chris Ramseyer, et al. Composite Flexural Behaviorof Full-Scale Concrete-Filled Tubes without Axial Loads[J]. Journal of Structural Engineering,2010,136(11):1401-1412.
    [70] Sheriff EI-Tawil., Gregory G. D.. Strength and Ductility of Concrete Encased CompositeColumns[J]. Journal of Structural Engineering.1999(9):1009-1018.
    [71] G,.Georgios Dennis L. Axial capacity of circular concrete-filled tube columns[J]. Journal ofConstructional Steel Research,2004,60(7):1049-1068
    [72] M. Johansson, K. Gylltoft. Structural Behavior of Slender Circular Steel-Concrete CompositeColumns under Various Means of Load Application. Steel and Composite Structures,2001,1(4):393-410
    [73] A.Elremaily, A.Azizinamini. Behaviour and Strength of Circular Concrete-Filled TubeColumns[J]. Journal of Constructional Steel Research,2002,58(12):1567-1591
    [74] Nakanishi K,Kitada T, Nakai H. Experimental Study on Ultimate Strength And Ductility ofConcrete Filled Steel Columns Under Strong Earthquake[J]. Journal of Constructional SteelResearch,1999,51:297-319
    [75] Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compression andlateral cyclic loads[J]. Journal of Structural Engineering,2004,130(4):631-640
    [76] J. Beutel,D. Thambirafiam,N. Perera. Cyclic Behaviour of Concrete Filled Steel TubularColumn to Steel Beam Connections. Engineering Structures,2002,24(1):29-38
    [77] Azizinamini A,Elremaily A. Experimental Behavior of Steel Beam to CFT ColumnConnections[J]. Journal Of Constructional Steel Research,2001,57:1099-1199.
    [78] Z.Tao, L.H.Han, Z.B.Wang. Experimental Behaviour of Stiffened Concrete-FilledThin-Walled Hollow Steel Structural(HSS) Stub Columns. Journal of Construcitonal SteelResearch,2005,61(7):962-983
    [79] Hsuan-Teh Hu, Chiung Shiann Huang, Ming Hsien Wu, Yih Min Wu. Nonlinear analysis ofaxially loaded concrete-filled tube columns with confinement effect[J]. Journal of StructuralEngineering,2003,129(10):1322-1329
    [80] Q. Q. Liang, B.Uy. Theoretical Study on the Post-Local Buckling of Steel Plates inConcrete-Filled Box Columns[J]. Computers and Structures,2000,75:479-490
    [81] Lin-Hai Han, Wei Li, You-Fu Yang. Seismic behaviour of concrete-filled steel tubular frameto RC shear wall high-rise mixed structures[J]. Journal of Constructional Steel Research,2009,65(5):1249-1260
    [82]郭彦林,董全利.钢板剪力墙的发展与研究现状[J].钢结构,2005,20(1):1-6
    [83]郭彦林,周明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,2009,26(3):1-12
    [84]聂建国,黄远,田淑明,等.高层钢板剪力墙结构底部加强层抗震性能分析[J].地震工程与工程振动.2008,28(6):163-171
    [85]陈国栋,郭彦林.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报,2004(2):19-26,38
    [86]陈国栋,郭彦林.非加劲钢板剪力墙极限承载力[J].工程力学,2003(2):49-54
    [87]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].建筑结构学报,2004(2):71-78
    [88]郭彦林,陈国栋,缪友武.加劲钢板剪力墙弹性抗剪屈曲性能研究[J].工程力学,2002(2):84-91,59
    [89]郭彦林,缪友武,董全利.全加劲两侧开缝钢板剪力墙弹性屈曲研究.建筑钢结构进展,2007(3):58-62
    [90]缪友武,董全利,郭彦林.两侧边开缝钢板剪力墙弹性屈曲分析[J].钢结构,22(9):95-98
    [91]王恒,余安东,郝际平.带缝钢板剪力墙性能研究.钢结构,2007(9):70-72,78
    [92]苏幼坡,刘英利,王绍杰.薄钢板剪力墙抗震性能试验研究.地震工程与工程振动,2002(4):81-84
    [93]徐悦.钢筋混凝土薄钢板组合剪力墙的试验研究.建筑技术,2002(5):351-352
    [94]曹春华,郝际平,王迎春,李峰.钢板剪力墙简化模型研究.2009(1):28-32
    [95]邵建华,顾强,申永康.钢板剪力墙的弹-塑性抗剪承载力分析.河海大学学报(自然科学版),2006(5):537-541
    [96] Darren Vian, M. ASCE, Michel Bruneau, M. ASCE, and Ronny Purba. Special PerforatedSteel Plate Shear Walls with Reduced Beam Section Anchor Beams. II: Analysis and DesignRecommendations [J]: Journal of Structural Engineering.2009(3):221-228
    [97] M.M. Alinia, M. Dastfan, Behaviour of Thin Steel Plate Shear Walls Regarding FrameMembers[J], Journal of Constructional Steel Research,2006(62):730-738
    [98] M.M. Alinia, M. Dastfan. Cyclic Behaviour, Deformability and Rigidity of Stiffened SteelShear Panels[J], Journal of Constructional Steel Research,2007(63):554-563
    [99] Xiaoyan Deng, Mehdi Dastfan, Robert G. Driver. Behaviour of Steel Plate Shear Walls withComposite Columns[C]. Proceedings of the2008Structures Congress. Vancouver, BC, Canada,2008:1-10
    [100] Qiuhong Zhao and Abolhassan Astaneh-Asl, M. Cyclic Behavior of Traditional andInnovative Composite Shear Walls. Journal of Structural Engineering,2004,130(2):271-284
    [101] Toko Hitaka, Chiaki Matsui, Junichi Sakai. Cyclic Tests on Steel and Concrete-FilledTube Frames with Slitwalls[J]. Earthquake Engineering and Structural Dynamics.2007(36):707–727
    [102] Lin-Hai Han, Wei Li, You-Fu Yang. Seismic Behavior of Concrete-Filled Steel TubularFrame to RC Shear Wall High-Rise Mixed Structures[J]. Journal of Constructional Steel Research.2009,65(5):1249-1260
    [103] Mohamed Elgaaly. Thin steel plate shear walls behavior and analysis. Thin-WalledStructures.1998(32):151–180
    [104] Jonah J. Shishkin, Robert G. Driver, M.ASCE, and Gilbert Y. Grondin. Analysis ofSteel Plate Shear Walls Using the Modified Strip Model[J]. Journal of Structural Engineering.2009,135(11):1357-1366
    [105] In-Rak Choi, and Hong-Gun Park, Steel Plate Shear Walls with Various Infill PlateDesigns[J]. Journal of Structural Engineering.2009,135(7):785-796
    [106] Anjan K. Bhowmick, Robert G. Driver, Gilbert Y. Grondin. Seismic analysis of steelplate shear walls considering strain rate and P-delta effects[J]. Journal of Constructional SteelResearch.2009,65:1149-1159
    [107] Cem Topkaya, MehmetAtasoy. Lateral stiffness of steel plate shear wall systems[J].Thin-Walled Structures.2009,47:827–835
    [108] Bing Qu, Michel Bruneau, Capacity Design of Intermediate Horizontal BoundaryElements of Steel Plate Shear Walls[J]. Journal of Structural Engineering,136(6):665-675.
    [109]李国强,张晓光,沈祖炎.钢板外包混凝土剪力墙板抗剪滞回性能试验研究.工业建筑1995,25(6):32-35
    [110]张素梅,吴志坚,马欣伯.预制混凝土板对组合剪力墙抗剪静力性能的影响.建筑科学与工程学报,2008,25(1):18-22
    [111]聂建国,陶慕轩,樊健生等.双钢板-混凝土组合剪力墙研究新进展[J].建筑结构,2011,41(12):52-59
    [112]范重,刘学林,黄彦军等.超高层建筑剪力墙设计与研究的最新进展[J].建筑结构,2011,41(4):33-43
    [113] ASTANEH-ASL A. Seismic Behavior and Design of Composite Steel Plate ShearWalls[R]. Berkeley: University of California,2002.
    [114] ZHAO Q H, AST ANEH-ASL A. Cyclic Behavior of Traditional and InnovativeComposite Shear Walls[J]. Journal of Structural Engineering,2004,130(2):271-284.
    [115]黄宏,陈梦成,万城勇.带肋方钢管混凝土柱偏心受压力学性能研究[J].土木工程学报,2011,44(10):26-34.
    [116]任庆新,郭俊峰,贾连光,等.圆钢管混凝土短斜柱力学性能初步分析[J].土木工程学报,2011,41(8):90,110-114.
    [117]张耀春,陈勇.圆钢管混凝土短斜柱力学性能初步分析[J].土木工程学报,2011,41(8):90,110-114.
    [118]尧国皇,陈宜言,林松.新型钢管混凝土柱-钢筋混凝土梁节点的有限元分析[J].特种结构,2010,27(6):34-38.
    [119]王静峰,韩林海,江莹.新型钢管混凝土柱-钢筋混凝土梁节点的有限元分析[J].沈阳建筑大学学报(自然科学版),2007,23(2):177-181.
    [120]陈麟,赵锐荣,周云.型钢混凝土异形柱框架角节点的承载力及其有限元分析[J].工业建筑,2011,41(10):100-105.郑永乾,韩林海,经建生.火灾下型钢混凝土梁力学性能的研究[J].工程力学,2008,25(9):90,118-125,148.
    [121]赵鸿铁,武启明,薛建阳,等.型钢混凝土异形柱框架角节点的承载力及其有限元分析[J].西安建筑科技大学学报(自然科学版),2011,43(1):1-6.
    [122]郑永乾,韩林海,经建生,等.火灾下型钢混凝土梁力学性能的研究[J].工程力学,2008,25(9):118-125,148
    [123]贾子文,周绪红.冷弯薄壁型钢-混凝土组合楼盖振动性能试验研究[J].土木工程学报,2011,44(4):90,42-51.
    [124]
    [125] YOSHIAKI Goto, M.ASCE, GHOSH Prosenjit Kumar, etc.Nonlinear Finite ElementAnalysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-FilledConcrete[J]. Journal of Structural Engineering,2010,136(11):1413-1422.
    [126] Zhong Tao, Brian Uy, Fei-Yu Liao, etc. Nonlinear Analysis of Concrete-Filled SquareStainless Steel Stub Columns under Axial Compression [J]. Journal of Constructional SteelResearch,2011,67(5):1719-1732.
    [127] Lanhui Guo, Sumei Zhang, Wha-Jung Kim, etc. Behavior of Square Hollow Steel Tubesand Steel Tubes Filled With Concrete [J]. Thin-Walled Structures,2007,45(10):961-973.
    [128] Lanhui Guo, Sumei Zhang, Wha-Jung Kim, etc. Behavior of square hollow steel tubesand steel tubes filled with concrete [J]. Thin-Walled Structures,2007,45(10):961-973.
    [129] Mohamed Dabaon, Saher El-Khoriby, Mahmoud El-Boghdadi, etc. Confinement Effectof Stiffened and Unstiffened Concrete-Filled Stainless Steel Tubular Stub Columns[J]. Journal ofConstructional Steel Research,2009,65(4):1846-1854.
    [130] Stephen P. Schneider. Axially Loaded Concrete-Filled Steel Tubes [J]. Journal OfStructural Engineering,1998,124(10):1123-1138.
    [131]曹万林,张建伟,陶军平等.内藏桁架的混凝土组合低剪力墙试验[J].东南大学学报,2007,37(2):195-200
    [132]郑同亮,曹万林,张建伟,等.内藏钢桁架混凝土组合高剪力墙抗震性能试验研究[J].世界地震工程,2006,22(2):77-83
    [133]曹万林,张建伟,张静娜等.内藏桁架混凝土组合中高剪力墙抗震性能试验研究[J].北京工业大学学报,2008,34(6):720-725
    [134] W. L. Cao, Y. Q. Zhang, Zhang J.W., M. Wang, W. H. Chang. Study on SeismicPerformance of Shear Walls with Concealed Steel Truss. The14th World Conference onEarthquake Engineering (14WCEE), Beijing,2008,05-01-0553
    [135]曹万林,张建伟,陶军平等.内藏钢桁架混凝土剪力墙与钢桁架抗震性能比较试验研究[J].北京工业大学学报,2007,33(1):31-36
    [136]张建伟,曹万林,王志惠等.高轴压比下内藏桁架的混凝土组合中高剪力墙抗震性能研究[J].工程力学,2008,25(S2):158-163
    [137]董宏英.带暗支撑双肢剪力墙抗震试验及设计理论研究.北京工业大学博士学位论文,2002
    [138]张建伟.带暗支撑剪力墙体系抗震性能及设计理论研究.北京工业大学博士学位论文,2004
    [139]王敏,曹万林,张建伟.组合剪力墙的抗震研究与发展[J].地震工程与工程振动.2007,27(5):80-87
    [140]王敏,曹万林,常卫华.型钢混凝土剪力墙研究现状及展望[C].第十届高层会议论文集,2005.12,广州.181-187
    [141]常卫华,曹万林,张建伟等.复合受力下内藏钢桁架混凝土核心筒扭转性能试验研究[J].北京工业大学学报,2008,34(7):720-725
    [142]曹万林,常卫华,张建伟等.内藏钢桁架带洞口混凝土组合核心筒抗震试验及分析[J].东南大学学报,2008,38(2):283-288
    [143]常卫华,曹万林,赵长军等.内藏钢桁架混凝土核心筒抗震试验及计算分析[J].北京工业大学学报,2008,34(4):379-386
    [144] Cao Wan-lin, Wang Min, Zeng Bin, Zhang Jian-wei. Seismic Experimental Research ofConcrete Filled Steel Tube Columns-Concrete Composite Shear Wall, The14th WorldConference on Earthquake Engineering (14WCEE),Beijing,2008,05-01-0555
    [145]曹万林,王敏,张建伟.内藏钢桁架混凝土组合剪力墙抗震性能研究.第八届中日建筑结构技术交流会论文集[C].2008.10,北京.887-896
    [146] Cao Wanlin, Wang Min, LU Zhicheng, Zhang Jianwei. Shaking Table Test and Analysisof Core-Tube Partial Suspension Structure,The14th World Conference on EarthquakeEngineering (14WCEE),Beijing,2008,05-01-0556李杰,李国强.地震工程学导论.北京:地震出版社,1992
    [147]庄茁等.基于ABAQUS的有限元分析和应用.北京:清华大学出版社,2009
    [148]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社,2006
    [149] ABAQUS, Inc.ABAQUS Analysis User's Manual[M].2010.
    [150]中华人民共和国国家标准GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [151]中华人民共和国国家标准GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2001
    [152]中华人民共和国国家标准GB50017-2003.钢结构设计规范.北京:中国计划出版社,2003
    [153]福建省工程建设地方标准DBJ13-51-2003.钢管混凝土结构技术规程.福州,2003
    [154]中国工程建设标准化协会标准CECS159-2004.矩形钢管混凝土结构技术规程.北京,2004
    [155]吕西林,干淳洁,王威.内置钢板钢筋混凝土剪力墙抗震性能研究[J].建筑结构学报,2009,30(5):89-96
    [156] ACI318-05.Building Code Requirements for Structural Concrete and Commentary.Farmington Hills(MI), American Concrete Insititute, Detroit, USA,2005
    [157] Lubliner J., J. Oliver, S. Oller, et al. A Plastic-Damage Model for Concrete[J].International Journal of Solids and Structures,1989,25:299–329.
    [158] Lee J., G. L. Fenves. Plastic-Damage Model for Cyclic Loading of ConcreteStructures[J]. Journal of Engineering Mechanics,1998,124(8):892–900.
    [159]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700