用户名: 密码: 验证码:
西昆仑山黄土与亚洲内陆干旱化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲内陆干旱化被认为是晚新生代以来全球气候恶化的一个重要标志。研究表明,干旱化过程所产生的粉尘被季风和西风环流带到沙漠外围,沉降在黄土高原、北太平洋乃至格陵兰地区,通过“阳伞效应”、“冰核效应”和“铁肥料效应”等一系列物理化学过程对中亚干旱区乃至全球气候产生巨大的影响,是全球海陆气耦合变化中关键的连接纽带。我国西北内陆地区尤其是塔克拉玛干沙漠是亚洲粉尘最重要的源区之一,目前我们对这一地区的演化历史及其对东亚环境的影响了解还相当粗略,对于亚洲内陆干旱化的驱动机制的理解也有待深入。
     西昆仑山北坡发育有中国极端干旱区厚度最大的黄土,紧邻我国重要粉尘源地——塔克拉玛干沙漠,是沙漠发生尘暴将粉尘扬起并沉降在昆仑山北坡堆积而成,直接记录内陆地区干旱演化历史。我们于2006~2007年在西昆仑山北坡开展钻探工作,钻穿黄土地层,获取了深达671m的黄土岩芯,为揭示塔克拉玛干沙漠和中亚干旱区的形成演化以及其与青藏高原隆升和全球变化的关系提供了难得的宝贵材料。本论文通过对前207m黄土岩芯进行的地层学、古地磁与岩石磁学和古气候记录研究,得出了以下主要结论:
     (1)前207m的西昆仑山黄土岩芯时代约为0.95Ma,根据沉积速率推算,671m的黄土岩芯底界年代可达上新世,是中亚地区已知的时代最老、厚度最大的风成黄土地层。
     (2)西昆仑山黄土的磁化率和碳酸钙古气候意义与黄土高原黄土有着明显的不同。岩石磁学分析表明,西昆仑山黄土的主要载磁矿物为磁铁矿和磁赤铁矿,同时还含有少量的针铁矿、赤铁矿。该地区磁化率的变化主要受源区粗颗粒的软磁性矿物含量的影响,成壤作用形成的细颗粒磁性矿物对磁化率的贡献极小,这一结论也得到了表土样品岩石磁学实验的支持,而磁化率在0.5Ma左右急剧升高,也主要与该时期干旱化加剧导致的源区扩大有关。此外,西昆仑山黄土碳酸钙含量随着降水量的增加呈逐渐增多的趋势,也与黄土高原地区碳酸钙含量随降水量的增加而减少有着本质的区别。对于西昆仑山黄土碳酸钙含量的这种变化,我们初步推测可能主要与极端干旱地区特殊的地表过程有关。
     (3)各气候代用指标的综合分析表明,近1Ma以来中国西北内陆极端干旱区气候总体上呈持续变干的趋势,其干旱化过程主要经历了五个演化阶段:0.95-0.87 Ma(207~191m),相对湿润阶段;0.87-0.52Ma(191~111m),干旱化发展阶段;0.52-0.33Ma(111~67m),干旱化强烈发展阶段;0.33-0.13Ma(67~30m),现代干旱环境格局的调整过渡阶段;0.13-0Ma(30~0m),现代干旱化格局的形成阶段。并存在有四次重大的干旱化事件。其中,0.87Ma左右的干旱化事件可能是全球气候变化以及构造活动双重作用的结果;推测0.52Ma和0.13Ma左右的干旱化事件主要受控于青藏高原的隆升;0.35Ma左右的干旱化事件的触发机制目前不是十分明确,还需要更多的证据支持。
The aridification of Asian inland is generally regarded as one of the most important mark of global climatic deterioration since the Late Cenozoic. Many previous researches showed dust due to drying and desertification of Asian inland was carried away by the monsoon and westerlies to desert adjacent areas (such as the Loess Plateau, northern Pacific Ocean and Arctic region), and had an important impact on global substance circulation and climate change by its sun umbrella, ice core and iron fertilization effects, becoming a key link of land-sea-air coupling change. The inland of Northwest China, especially the Taklimakan Desert, is one of the most important source areas of Asia dust. So far, our understanding about the drying process of this region and its environmental impact on East Asia is still quite rough, and the driving mechanism of Asian interior aridity has yet to be thoroughly understood.
     Loess on the west Kunlun Mountains is so far the thickest loess found in the extreme arid region of China inland, which is a roughly synchronous accompanied product of desert process. During 2006-2007, a 671-meter-long loess deposit core had been retrieved from the northern slope of the West Kunlun Mountains, which provides a good opportunity to study the formation and evolution of drying climate of Central Asia and its possible links with the Tibetan Plateau uplift and global cooling. Based on the detailed analysis about magnetostratigraphy and several climatic proxies for the upper 207m loess deposit core, the following conclusions and new findings are revealed:
     (1) Detailed plaeomagnetic dating of the upper 207m loess deposit core has been performed and the B/M boundary is found to be located at 170 m of the core, assigning an age of 3-4 Ma for the whole 671m loess deposit, which is the oldest aeolian sediments in the central Asia.
     (2) The paleoclimatic implication of susceptibility and carbonates content is significantly different between the loess on west Kunlun Mountains and Loess Plateau. Our results suggest that magnetic properties of the Kunlun Mountains loess are dominated by low coercivity ferrimagnetic minerals, i.e. magnetite and maghemite. Hard magnetic minerals, including goethite and hematite, are also found but make a minor contribution.Rock magnetic and grain size studies suggest that magnetic susceptibility of loess from the northern slope of West Kunlun Mountains are not controlled by changes in the concentration of ultrafine pedogenic magnetite/maghemite, but instead controlled by changes in the concentration of aeolian multidomian magnetite/maghemite, which can be further confirmed by the perfect correlation between grain size and magnetic susceptibility of the surface sediments. In addition, the carbonates content increasing with the precipitation for the west Kunlun Mountains loess was also different from loess on Loess Plateau, which was possibly induced by the special surface processes in the extreme arid region of Asian inland.
     (3) According to the characteristics of multiple climatic proxy records, the drying process of Central Asia since-1Ma can be roughly divided into 5 stages: 0.95-0.87 Ma(207-191m), relative wetting period; 0.87-0.52Ma(191-lllm), development of aridity period; 0.52-0.33Ma(111-67m), significant arid intensification period; 0.33-0.13Ma(67-30m), modulating and transition period; 0.13-0 Ma(30-0m), modern dry climate period. Further research shows that the development of aridity in Asian inland since-1Ma were mainly caused by the tectonic uplift and/or global cooling:the drying event at 0.52 Ma and 0.13 Ma were controlled by the Tibetan Plateau Uplift; the drying event at 0.87 Ma were caused by combined action between the Tibetan Plateau uplift and the increase of the global ice volume.
引文
[1]An Z S, John E Kutzbach, Warren Prell, et al. Evolution of Asian monsoons and Phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature,2001,411:62-66
    [2]An Z S, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese Loess Plateau. Catena,1991,18:125-132
    [3]Berger A, Li X S, Loutre M F. Modelling Northern Hemisphere Ice Volume Over The Last 3 Ma. Quat.Sci. Rev,1999,18:1-11
    [4]Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology,1994,22:463-467
    [5]Beget J E, Stone D B, Hawkins D B. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the Late Quaternary. Geology,1990,18 (1):40-43
    [6]Bloemendal J C, and X Liu. Rock magnetism and geochemistry of two plio-pleistocene Chinese loess-paleosol sequences:Implications for quantitative palaeoprecipitation reconstruction. Palaeogeogr. Palaeoclimatol.Palaeoecol.,2005,226:149-166
    [7]Bory A J, Biscaye P E, Svensson A, et al. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth and Planetary Science Letters, 2002,196:123-134
    [8]Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Creteceous and Cenozoic. Journal of Geophysical Research,1995,100:6093-6095
    [9]Charreau J, Chen Y, Gilder S, et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (Northwest China):Implications for Late Cenozoic up lift of the Tianshan mountains. Earth and Planetary Science Letters,2005,230 (1-2):177-192
    [10]Chen F H, Bloemandel J, Feng Z D. East Asian Monsoon Variation during Oxygen Isotope Stage 5:Evidence from the Northwestern Margin of the Chinese Loess Plateau. Quaternary Science Review,1999,18:1127-1135
    [11]Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate record from Chinese loess:evidence for rapid climatic changes over the last 75 kyr B P. Palaeogeography Palaeoclimatologe Palaeoecolige,1997,130:323-335
    [12]Chlachula J, Evans M E, Rutter N. A magnetic investigation of a late Quaternary loess/palaeosol record in Siberia. Geophysical Journal International,1998,132:128-132
    [13]Chung Sun-Lin, Lo Ching-Hua, Lee Tung-Yi, et al. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature,1998,394:769-773
    [14]Coale K H. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature,1996,383:495-501
    [15]Coleman M, Hodges K. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension. Nature,1995,374:49-52
    [16]Coxall H K, Wilson P A, Palike H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature,2005,433:53-57
    [17]Dankers P. Relationship between median destmctive field and remanent coercive force for dispersed natural magnetite, titanomagnetite and hematite. Geophys J Res,1981,64: 447-461
    [18]DeMenocal P B, Rind D. Sensitivity of Asian and African climate to variation in seasonal
    insolation, glacial ice cover, sea surface temperature, and Asian orography. J. Geol. Res., 1993,98:7265-7287
    [19]Deng C L, Zhu R X, Verosub K L, et al. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res.,2004, 109, B01103, doi:10.1029/2003JB002532
    [20]Deng C, Vidic N J, Verosub K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J Geophys Res, 2005,110, B03103, doi:10.1029/2004JB003451
    [21]Dercourt J, Ricou LE, Vrielinck B (Eds.). Atlas Tethys Palaeoenvironmental Maps. Gauthier-Villars, Paris,1993,307
    [22]Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ180 record. Paleoceanography,2002,10.17 (3):1029-10.1049
    [23]Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters,2005,237:45-55
    [24]Ding Z L, Liu T S, Rutter N W, et al. Ice-Volume Forcing of East Asian Winter Monsoon Variations in the Past 800,000 Years, Quaternary Research,1995,44(2):149-158
    [25]Ding Z L, Ranov V, Yang S L, et al. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters,2002,200:387-400
    [26]Ding Z L, Rutter N W, Han J T, et al. A coupled environmental system formed at about 2.5 Ma over eastern Asia. Palaeography, Palaeoclimatology, Palaeoecolgy,1992,94:223-242
    [27]Ding Z L, Rutter Nat, Liu Tungsheng. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications. Quaternary International,1997, 40:53-60
    [28]Ding Z L, Sun J M, Rutter N W, et al. Changes in sand contend of loess deposits along a north-south transect of the Chinese Loess Plateau and the implications for desert variations. Quaternary Research,1999,52 (1):56-62
    [29]Ding Z L, Sun J M, Yang S L, et al., Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters, 1998,25(8):1225-1228
    [30]Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a-7.0Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimacology, Palaeoecology,1999,152:49-60
    [31]Ding Z L, Yu Z W, Ruter N W, et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews,1994,13:39-70
    [32]Duce R A, Unni C K, Ray B J, et al. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science,1980,209:1522-1524
    [33]Evans M E, Heller F. Environmental Magnetism:Principles and Applications of Enviromagnetics. New York:Acdemic Press,2003,1-322
    [34]Evans M E, Wang Y, Rutter N, et al. Preliminary magnetostratigraphy of the red clay underlying the loess sequence at Baoji, China. Geophysical Research Letters,1991,18 (8): 1409-1412
    [35]Fang X M, Dai X R, Li J J. Abruptness and instability of Asian Monsoon --- an example from soil genesis during the last interglacial. Sciences in China(B),1996,26(2):154-160
    [36]Fang X M, Lii L Q, Joseph A Mason, et al. Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau. Quaternary International,2003,106/107: 79-88
    [37]Fang X M, Lii L Q, Yang S L, et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Science in China, Series D,2002,45: 289-299
    [38]Fang X M, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60,000 years:magnetic susceptibility and pedogenic evidence from the Chinese western Loess Plateau. Earth Planet. Sci. Lett.,1999,168:219-232
    [39]Fennessy M J, Kinter J L, Kirtman B, et al. The effects of orography on middle latitude northern hemisphere dry climates. J. Climate.,1992,5:1181-1201
    [40]Flohn H. Contribution to a meteoralogy of the Tibetan Highlands. Colorado State University, Fort Collins. Colo Atmosph Sci Paper Nr,1968, No.190
    [41]Flohn H. Studien zur allgemeinen der atmosphaere III, Bet. Dtsch. Wetterdienstes,1950,18, 34-50
    [42]Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. Journal of Geophysical Research,1999,104B:645-659
    [43]Fluteau F, Ramstein G, Besse J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res, 1999,104:11995-12018
    [44]Folk R L. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin,1974, Texas 78703,182
    [45]Gardner R L. Origin of the Mormon Mesa caliche, Clark County, Nevada. Geological Society of America Bulletin,1972,83:143-156
    [46]Gile, L H, Peterson, F F, Grossman, R B. The Desert Project soil monograph:Washington, D.C., U.S. Soil Conservation Service,1979,984p
    [47]Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature,2002,416:159-163
    [48]Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of the Past,2009, 5:21-31
    [49]Hahn D G, Manabe S. The role of mountains in the south Asian monsoon circulation. Jourmal of the Atmospheric Sciences,1975,32:151-54
    [50]Hao Q, Oldfield F, Bloemendal J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the last 22 Ma. Geology,2008,36 (9): 727-730
    [51]Harrison T M, Copeland P, Kidd W S F,et al. Raising Tibet. Science,1992,255:1663-1670
    [52]Harzhauser M, Piller W E, Steininger F F. Circum-Mediterranean Oligo-Miocene biogeographic evolution-the gastropods'point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol,2002,183:103-133
    [53]Heller F, T S Liu. Magnetostratigraphical dating of loess deposits in China. Nature,1982,300: 431-433
    [54]Heller F, Liu T S. Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society,1984,77:125-141
    [55]Heller F, Liu T S. Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters,1986,13 (11):1169-1172
    [56]Henin S, Le Borgne E. Inter Congn Soil Sci[M],1954
    [57]Hovan S A, Rea D K, Pisias N G, et al. A direct link between the China loess and marine 18O records:ae-olian flux to the north Pacific. Nature,1989,340:296-298
    [58]Jansen E. Miocene to recent paleoclimate evolution at high norther latitudes: Interhemispheric linkages ICPV program and abstract, New York,1995,20
    [59]Kennett J P and Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature,1976,260:513-515
    [60]King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials:Some results from lake sediments, Earth Planet. Sci. Lett.,1982,59:404-419
    [61]Kirschvink J L. The least-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc,1980,62:699-718
    [62]Kletetschka G, Banerjee S K. Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophys Res Lett,1995,22:1341-1343
    [63]Kukla G. Loess stratigraphy in central China. Quat. Sci. Rev,1987,6:191-219
    [64]Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility. Geology,1988,16:811-814
    [65]Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West:Numerical experiments. Journal of Geophysical Research,1989,94 (D15):18393-18407
    [66]Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. Geology,1993,101:177-190
    [67]Langereis C G, Dekkers M J, de Lange G J, et al. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int,1997,129,75-94
    [68]Li J J et al. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou:Lanzhou University Press,1995,38-39
    [69]Lin B H, liu R M, An Z S. Preliminary research on stable isotopic compositions of Chinese loess. In:Loess, Environment and Global change(Ed, Liu Tung sheng), Science Press, Beijing, China,1991,124-131
    [70]Liu Q S, Banerjee S K, Jackson M, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess-paleosol sequences. Journal of Geophysical Research,2004,109:B03101, doi:10.10s29/2003JB002747
    [71]Liu Q S, Deng C L, Torrent J, et al. Review of recent development in mineral magnetism of the Chinese loess. Quat Sci Rev,2007,26:368-385
    [72]Liu Q S, Jackson M J, Banerjee S K, et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research,2004,109 (B12), B12107, doi:10.1029/2004JB003249
    [73]Liu X D, Yin Z Y. Sensitiveity of East Asia monsoon climate to the uplift of the Tibetan Plateau. Palaeogeiopgraphy, Palaeoclimatology, Palaeoecology,2002,183:223-245
    [74]Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: evidence for pedogenesis. Quaternary International,1999b,62:93-102
    [75]Liu X M, Liu T S, Hesse P, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci. China (Ser. D),2008,51, 284-291
    [76]Liu X M, Liu T S, Xu T C, et al. The Chinese loess in Xifeng:I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province. Geophys. J.R. Astr. Soc,1988, (92):345-348.
    [77]Liu X M, Rolph T, An Z S, et al. Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,199:153-166
    [78]Lu H Y, Wang X Y, An Z S, et al. Geomorphologic evidence of phased up lift of the north eastern Qinghai-Tibet Plateau since 14 million years ago. Science in China, Series D,2004, 47 (9):822-833
    [79]Lu H Y, Wang X Y, Ma H Z. The plateau monsoon variation during the past 130 kyr revealed by loess deposit at north-east Qinghai-Tibet (China). Global and Planetary Change,2004,41: 207-214
    [80]Miller K G, Fairbanks R G, Mountain G S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography,1987,2 (1):1-19
    [81]Molnar P. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica,2005,8 (1):1-23
    [82]Maher B A. Magnetic properties of some synthetic sub-micron magnetites. Geophys. J.,1988, 94:83-96
    [83]Maher B A, Thompson R. Mineral magnetic record of the Chinese loess and paleosols. Geology,1991,19 (1):3-6
    [84]Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes. Science,1990,247: 192-194
    [85]Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci.,1974,31:3-42
    [86]Meng X M, Debershire E, Kemp R A. Origin of the magnetic susceptibility signal in Chinese loess. Quaternary Science Reviews,1997,16:833-839
    [87]Mishima T, Torii M, Fukusawa H, et al. Magnetic grain-size distribution of the enhanced component in the loess-paleosol sequences in the western Loess Plateau of China. Geophysical Journal International,2001,145:499-504
    [88]Molnar P T, England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature,1990,346:29-34
    [89]Mudelsee M, Stattegger K. Exploring t he st ructure of the mid2Pleistocene revolution with advanced met hods of time-series analysis. Geol. Rundsch,1997,86:499-511
    [90]Mullins C E. Magnetic susceptibility of the soil and its significance in soil science:a review. Soil Science,1977,28:223-246
    [91]Nie J S, King J W, Fang X M. Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophys Res Lett,2007,34, L19705, doi:10.1029/2007 GL031430
    [92]Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and
    implications for its evolution. Nature,1992,360:647-653
    [93]Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature,1995,375:305-308
    [94]Pye K. Aeolian dust and dust deposits[M]. London:Academic Press,1987,1-256
    [95]Qiang X K, Li Z X, Powell C, et al. Magnetiostratigraphic record of the late Miocene onset of the East Asia monsoon, and Pliocene uplift of northern Tibet. Earth and Planet Sciences Letter,2001,187(1-2):83-93
    [96]Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature,1989,342:163-166
    [97]Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature,1997,386: 788-795
    [98]Raymo M E, Oppo D W, Curry W. The mid-Pleistocene climate transition:A deep sea carbon isotope perspective. Paleoceanography,1997,12 (4):546-559
    [99]Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature,1992,359: 117-120
    [100]Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan up lift, and cooling of the Northern Hemisphere. Paleoceanography, 1998,13 (3):215-224
    [101]Roberts A P, Y Cui, and K L Verosub. Wasp-waisted hysteresis loops:mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res,1995,100:17909-17924
    [102]Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature.2006,439:677-81
    [103]Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research (D15),1989,94:18409-18429
    [104]Rutter N, Ding Z L, Evans M E, et al. Baoji-type pedostratigraphic section, Loess Plateau, north-central China. Quaternary Science Reviews,1991,10:1-22
    [105]Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of icerafting and history of glaciation in the North Atlantic region. Nature,1984,307:620-623
    [106]Song Y G, Shi Z T, Dong H M, et al. Loess magnetic susceptibility in central Asia and its paleoclimatic significance. IEEE International Geoscience & Remote Sensing Symposium, 2008,1227-1230
    [107]Stevens T, Armitage S J, Lu H, et al. Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous, high-resolution climate records. Geology, 2006,34 (10):849-852
    [108]Sun D H. Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China. Global and Planetary Change,2004,41:63-80
    [109]Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophysical Journal International,1998,134:207-212
    [110]Sun J, Xu Q, Huang B. Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian ShanMountains. Journal of Geophysical Research,
    2007,112,B04107,doi:1011029/2006JB004653
    [111]Sun J M, Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth and Planetary Science Letters,2000,180:287-296
    [112]Sun J M, Liu T S. The age of the Taklamakan Desert. Science,2006,312:1621
    [113]Sun J M, Zhang Z Q, Zhang L Y. New evidence on the age of the Taklimakan Desert. Geology,2009,37 (2):159-162
    [114]Sun X J, Wang P X. How old is the Asianmonsoon system? Palaeo-botanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,222 (3-4):181-222
    [115]Sun Y, An Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. Journal of Geophysical Research,2005,110, doi:10.1029/2005 JD006064
    [116]Tao S Y, Chen L X. A review of recent research on the East Asian summer monsoon in China. In:Chang C P, K rishnamuirti T N, eds. Monsoon Meteorology. Oxford:Oxford University Press,1987,60-92
    [117]Thomas J. Crowley, Cycles, Cycles Everywhere. SCIENCE,2002,295:1473-1474
    [118]Thompson R, Oldfield F. Environmental Magnetism[M]. London:Allen and Unwin,1986, 1-227
    [119]Tsoar H, Pye K. Dust transport and the question of desert loess formation. Sedimentology, 1987,34:139-153
    [120]Wang E, Wan J L, Liu J Q. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan Plateau. Journal of Geophysical Research,2003,108:2401-2412
    [121]Wang P X, Clemens S, Beaufort L, et al. Evolution and variability of the Asian monsoon system:State of the art and outstanding issues. Quaternary Science Reviews,2005,24 (5-6): 595-629
    [122]Watson A J, Bakker D C E, Ridgwell A J, et al. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature,2000,407:730-733
    [123]William F. Ruddiman. Earth's Climate:past and future[M]. New York:W.H.F reeman and Company,2001
    [124]Xiao J L, An Z S. Three large shifts in East Asian monsoon circulation by loess-paleosol sequences in China and Late Cenozoic deposits in Japan. Palaeogeiopgraphy, Palaeoclimatology, Palaeoecology,1999,154 (3):179-189
    [125]Xu Y, Yue L P, Li J X, et al. An 11-Ma-old red clay sequence on the Eastern Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,284:383-391
    [126]Yang X P, Zhu B Q, Paul D. White. Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quaternary International,2007,175:71-85
    [127]Zachos J C, Pagani M., Sloan L. Trends, rhythms, and aberrations in global climate 65Ma to present, Science,2001,292:686-693
    [128]Zhang P Z, Molnar P, DownsW R. Increased sedimentation rates and grain sizes 2-4Myr ago due to the influence of climate change on erosion rates. Nature,2001,410:891-897
    [129]Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,2004,32(9):809-812
    [130]Zhang X Y, An Z S, Chen T. Late Quaternary records of the atmospheric input of eolian dust
    to the center of the Chinese Loess Plateau. Quaternary research,1994,41:35-43
    [131]Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desertsources linked to variations in atmospheric circulation. J GeophysRes [Atmos],1997,102(D23):28041-28047
    [132]Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeiopgraphy, Palaeoclimatology, Palaeoecology,2007, (245):317-331
    [133]Zheng H B, Powell C M, An Z S, et al. Pliocene up lift of the northern Tibetan Plateau. Geology,2000,28 (8):715-718
    [134]Zheng H B, Powell C M, Butcher K, et al. Late Neogene loess deposition in southern Tarim Basin:tectonic and palaeoenvironmental implications. Tectonophysics,2003,375:49-59
    [135]Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature,1990,346:737-739
    [136]Zhu R X, Matasova G, Kazansky A, et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophysical Journal International,2003,152:335-343
    [137]Zhu R X, Zhang R, Deng C L, et al. Are Chinese loess deposits essentially continuous? Geophys. Res. Lett.,34, L17306, doi:10.1029/2007GL030591,2007
    [158]Zu R P, Xue X, Qiang M R, et al. Characteristics of near-surface wind regimes in the Taklimakan Desert, China. Geomorphology,2008,96:39-47
    [139]Pye著.台益和,张选阳译.风飏粉尘及粉尘沉积物.北京:海洋出版社,1991,27-29
    [140]安芷生.古地磁方法在第四纪研究中的应用.地球与环境,1975,1:1-6
    [141]安芷生,王俊达,李华梅.洛川黄土剖面的古地磁研究.地球化学,1977,(4):239-249
    [142]安芷生,肖举乐.黄土高原风尘沉积通量研究的一个实例.科学通报,1990,35(3):220-223
    [143]安芷生,肖举乐,张景昭,等.季风与最近13万年黄土高原的气候历史.见:刘东生主编,黄土、第四纪与全球变化(第二集),北京:地质出版社,1991,108-114
    [144]安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长.第四纪研究,2006,26(5):678-693
    [145]奥勃鲁契夫B.A.等著.砂与黄土问题[M].北京:科学出版社,1958
    [146]曹军骥,张小曳,安芷生,等.最近6.5~2.2 Ma黄土高原粉尘通量变化及其指示的东亚冬季风演化和亚洲干旱化.海洋地质与第四纪地质,2003,23(3):97-101
    [147]陈发虎,张维信,等.甘青地区的黄土地层学与第四纪冰川问题[M].北京:科学出版社,1993,24-34
    [148]陈华慧,林秀伦,关康年,等.新疆天山地区早更新世沉积及其下限.第四纪研究,1994,(1):38-47
    [149]陈隆勋,朱乾根,罗会邦等.东亚季风[M].北京:气象出版社,1991
    [150]陈秀玲,方小敏,安芷生,等.黄土高原8.1 Ma以来方解石记录的夏季风演化.中国科学,D辑,2007,37(1):61-70
    [151]陈杰等.塔里木西缘晚新生代造山过程的记录-磨拉石建造及生长地层和生长不整合.第四纪研究,2001,21(6):528-539
    [152]陈杰,R.V.Heermance, D.W.Burbank,等.中国西南天山西域砾岩的磁性地层年代与地质意义.第四纪研究,2007,27(4):576-587
    [153]陈杰,尹金辉,曲国胜,等.塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究(增刊).地震地质,2000,22:104-116
    [154]成都地质学院陕北队.沉积岩(物)粒度分析及其应用.北京:地质出版社,1976,1-147
    [155]褚娜娜,潘保田,王均平,等.汾渭盆地黄土剖面0.9 Ma前后的粒度突变及其环境意义.中国沙漠,2008,28(1):50-56
    [156]崔之久,伍永秋,刘耕年,等.关于“昆仑-黄河运动”.中国科学,D辑,1998,28(1):53-59
    [157]德日进.中国之大陆沉积.中国地质学会(丁文江先生纪念册),1937,16:195-220
    [158]邓成龙,刘青松,潘永信,等.中国黄土环境磁学.第四纪研究,2007,27(2):193-209
    [159]丁仲礼.1.8Ma以来黄土-深海古气候记录对比.科学通报,1991,36(18):1401-1401
    [160]丁仲礼,孙继敏,刘东生.联系沙漠-黄土演变过程中耦合关系的沉积学指标.中国科学,D辑,1999,29(1):82-87
    [161]丁仲礼,余志伟,刘东生.中国黄土研究新进展(三):时间标尺.第四纪研究,1991,(4):336-347
    [162]董光荣,王贵勇,陈惠忠,等.中国沙漠形成演化与青藏高原隆升的关系.见:青藏高原研究会编.青藏高原与全球变化研讨会论文集.北京:气象出版社,1995,13-29
    [163]方小敏,李吉均,朱俊杰,等.临夏盆地环境变迁与青藏高原隆起的世界影响.见:中国青藏高原研究会编.青藏高原与全球变化研讨会论文集.北京:气象出版社,1995,41-51
    [164]方小敏,吕连清,杨胜利,等.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学,D辑,2001,31:177-184
    [165]方小敏,史正涛,杨胜利,等.天山黄土与古尔班通古特沙漠发育与北疆干旱化.科学通报,2002,47(7):540-545
    [166]方小敏,潘保田,管东红,等.兰州约60Ka以来夏季风千年尺度不稳定性研究.科学通报,1999,44(4):436-439
    [167]方小敏,吴福莉,韩文霞,等.上新世一第四纪亚洲内陆干旱化过程——柴达木中部鸭湖剖面孢粉和盐类化学指标证据.第四纪研究,2008,28(5):874-882
    [168]方小敏,徐先海,宋春晖,等.临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因.第四纪研究,2007,27(6):989-1000
    [169]高锐,黄东定,卢德源,等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报,2000,45(17):1874-1879
    [170]高卫东,姜巍.塔克拉玛干沙漠西部和南部沙尘暴的形成及危害.干旱区资源与环境,2002,16(3):64-70
    [171]管清玉.河西武威地区最近800ka黄土环境记录研究.兰州大学硕士论文.2000
    [172]郭正堂,刘东生,吴乃琴,等.最后两个冰期黄土记录的Heinrich型气候节拍.第四纪研究,1996,1:21-30
    [173]郭正堂,彭淑贞,郝青振等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系.第四纪研究,1999,(6):556-567
    [174]韩家懋,Hus J J,刘东生,等.马兰黄土和离石黄土的磁学性质.第四纪研究,1991,(4):310-325
    [175]韩文霞.柴达木盆地新生代地层记录的亚洲内陆干旱气候演化.兰州大学博士论文.2008
    [176]韩永翔,奚晓霞,方小敏,等.亚洲大陆沙尘过程与北太平洋地区生物环境效应:以2001年4月中旬中亚特大沙尘暴为例.科学通报,2005,(50):2649-2655
    [177]韩永翔,杨胜利,方小敏,等.塔里木盆地中的大气环流及昆仑山北坡的黄土堆积.中国沙漠,2006,26(3):351-355
    [178]郝诒纯,关绍曾,叶留生,等.塔里木盆地西部地区新近纪地层及古地理特征.地质学报,2002,76(3):289-298
    [179]郝诒纯,曾学鲁.从有孔虫的特征探讨中新生代西塔里木古海湾的演变.微古生物学报,1984,1(1):1-16
    [180]黄汲清,陈炳蔚.特提斯-喜马拉雅构造域上新世-第四纪磨拉石的形成及其与印度板块活动的关系.见:国际交流地质学术论文集(1).构造地质地质力学.北京:地质出版社,1980,1-14
    [181]黄汲清,杨钟健,程裕淇,等.新疆油田地质调查报告.中央地质调查所地质专报甲种第21号,1947,31-66
    [182]姜文英,彭淑贞,郝青振,等.上新世红黏土的碳同位素记录与青藏高原隆升的关系.2001,46(24):2065-2068
    [183]靳春胜,黄孝刚,张立原,等.六盘山东西两侧黄土古土壤容重的特征及其古气候指示意义.地质学报,2008,82(5):702-709
    [184]靳春胜,张立原,韩家懋,等.末次间冰期以来黄土古土壤容重特征.吉林大学学报(地球科学版),2008,38(5):801-805
    [185]靳鹤龄,董光荣.0.8MaB.P.以来西藏雅鲁藏布江中游地区沙地演化和气候变化.中国沙漠,1998,18(2):97-104
    [186]李保生,董光荣,张甲坤,等.塔克拉玛干沙漠及其以南风成相带划分和认识.地质学报,1995,69(1):55-63
    [187]李保生,李森,王跃,等.我国极端干旱区边缘阿羌砂尘堆积剖面的地质时代.地质学报,1998,72(1):83-92
    [188]李海兵,VALLI Franck, ARNAUD Nicolas,等.喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据.岩石学报,2008,24(7):1552-1566
    [189]李华梅,安芷生,王俊达.午城黄土剖面古地磁研究的初步结果.地球化学,1974,2:93-104
    [190]李吉均.青藏高原的地貌演化与亚洲季风.海洋地质与第四纪地质,1999,19(1):1-12
    [191]李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1568-1680
    [192]李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学,D辑,1996,26(4):316-322
    [193]李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391
    [194]李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式探讨.中国科学,B辑,1979,6:608-616
    [195]李吉均,赵志军.德日进“亚洲干极”理论的现实意义.第四纪研究,2003,23(4):366-371
    [196]李江风.沙漠气候[M].北京:气象出版社,2001,44-79
    [197]李江风.新疆气候[M].北京:气候出版社,1991,91-124
    [198]李琼,潘保田,高红山,等.腾格里沙漠南缘末次冰盛期以来沙漠演化与气候变化.中国沙漠,2006,26(7):875-879
    [199]李拴科.克里雅河流域黄土的性状与成因.干旱区地理,1991,4(4):25-31
    [200]李孝泽,董光荣.中国西北干旱环境的形成时代与成因探讨.第四纪研究,2006,26(6):895-904
    [201]李玉龙.阿尔金山脉北麓东段约15万年来水系下切的深度和速率研究.青藏高原形成演化、环境变迁与生态系统研究.学术论文年刊,1994.北京:科学出版社,1995,151~
    160
    [202]刘东生等.黄土与环境[M].北京:科学出版社,1985
    [203]刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,1998,(3):194-204
    [204]刘嘉麒.对“新疆普鲁火山岩及时代归属问题”一文的质疑.岩石学报,1989,(2):95-97
    [205]刘进峰.西部黄土高原中新世风尘沉积剖面的磁性地层学和沉积学研究.中国科学院地质与地球物理研究所博士学位论文,2005
    [206]刘明光主编.中国自然地理图集(第二版)[M].北京:中国地图出版社,1998
    [207]刘晓东,李力,安芷生.青藏高原隆升与欧亚内陆及北非的干旱化.第四纪研究,2001,21(2):114-122
    [208]刘秀铭,刘东生,夏敦胜,等.中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析.中国科学,D辑,2007,37(10):1382-1391
    [209]刘秀铭,夏敦胜,刘东生,等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨.第四纪研究,2007,27(2):210-220
    [210]刘志飞,拓守廷,赵泉鸿,等.南大西洋深水渐新世初大冰期事件.科学通报,2004,49(17):1793-1800
    [211]卢演俦.黄土地层中CaCO3含量变化与更新世气候旋迴.地质科学,1981,(2):122-131
    [212]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学,D辑,1998,28(3):278-283
    [213]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义.科学通报,1997,42(1):66-69
    [214]鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报,1997,42(23):2535-2538
    [215]鹿化煜,Huissteden, Ko van,等.中国北方更新世极端冷期冬季风的快速变化.中国沙漠,2000,20(2):192-196
    [216]鹿化煜,王先彦,李郎平.晚新生代亚洲干旱气候发展与全球变冷联系的风尘沉积证据.第四纪研究,2008,28(5):949-956
    [217]鹿化煜,Thomas Stevens,弋双文,等.高密度光释光测年揭示的距今约15~10 ka黄土高原侵蚀事件.科学通报,2006,51(23):2767-2772
    [218]旺罗,刘东生,韩家懋,等.中国第四纪黄土环境磁学研究进展.地球科学进展,2000,15(3):335-341
    [219]罗照华,肖序常,曹永清,等.青藏高原北缘新生代幔源岩浆活动及构造运动性质(增刊).中国科学,D辑,2001,31(S1):8-13
    [220]吕厚远,刘东生.C3,C4植物及燃烧对土壤磁化率的影响.中国科学,D辑,2001,31(1):43-53
    [221]潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动器与放大器Ⅲ青藏高原隆起对气候变化的影响.兰州大学(自然科学版),1996,32(1):108-115
    [222]潘保田,苏怀,刘小丰,等.兰州东盆地最近1.2Ma的黄河阶地序列与形成原因.第四纪研究,2007,27(2):172-180
    [223]潘保田,邬光剑,王义祥,等.祁连山东段沙沟河阶地的年代与成因.科学通报,2000,45(24):2669-2676
    [224]潘燕兵.西昆仑山北缘克里雅河流域地貌的初步研究.中国地质科学院硕士学位论文,2008
    [225]潘燕兵,黎敦朋,郭芳芳,等.克里雅河河谷地貌与塔里木盆地早—中更新世大湖环境.地质通报,2008,27(6):814-822
    [226]彭淑贞,高志东,吴秀平,等.山东青州地区黄土的粒度组成及成因分析.地质力学学报,2007,13(4):315-321
    [227]乔彦松,郭正堂,郝青振,等.安徽宣城黄土堆积的磁性地层学与古环境意义.地质力学学报,2002,4:369-375
    [228]乔彦松,赵志中,王燕.川西甘孜黄土磁性地层学研究及其古气候意义.第四纪研究,2006,26(2):250-256
    [229]施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-20
    [230]施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学,D辑,1998,28(3):263-271
    [231]史正涛.天山黄土与西北内陆干旱化.兰州大学博士论文.2002
    [232]史正涛,方小敏,宋友桂,等.天山北坡黄土记录的中更新世以来干旱化过程.海洋地质与第四纪地质,2006,26(3):109-114
    [233]孙东怀,陈发虎,易治宇,等.晚新生代塔里木盆地中西部地区磁性地层与环境演化.兰州大学学报(自然科学版),2009,45(4):1-6
    [234]孙东怀,刘东生,陈明扬,等.中国黄土高原红粘土序列的磁性地层与气候变化.中国科学D辑,1997,27(3):265-270
    [235]孙东怀,鹿化煜.晚新生代黄土高原风尘序列的粒度和沉积速率与中国北方大气环流演变.第四纪研究,2007,27(2):251-262
    [236]孙东怀,鹿化煜,DavidRea,等.中国黄土粒度的双峰分布及其古气候意义.沉积学报,2000,18(3):327-335
    [237]孙继敏,朱日祥.天山北麓晚新生代沉积及其新构造与古环境指示意义.第四纪研究,2006,26(1):14-19
    [238]孙建中,赵景波.黄土高原第四纪.北京:科学出版社,1991
    [239]孙有斌,安芷生.最近7Ma黄土高原风尘通量记录的亚洲内陆干旱化的历史和变率.中国科学,D辑,2001,31(9):769-776
    [240]孙有斌,安芷生,周杰,等.浸油法测量黄土样品的容重及其意义.地质论评,2000,46(2):220-224
    [241]宋友桂,方小敏,李吉均,等.六盘山东麓朝那剖面红粘土年代及其构造意义.第四纪研究,2000,20(5):457-463
    [242]宋友桂,方小敏,李吉均,等.晚新生代六盘山隆升过程初探,中国科学,D辑,2001,31(B12):142-148
    [243]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义.中国沙漠,2002,22(1):21-26
    [244]王树基,高存海.塔里木内陆盆地晚新生代干早环境的形成与演变.第四纪研究,1990,4:372-380
    [245]王永,李德贵,肖序常,等.西昆仑山前晚新生代构造活动与青藏高原西北缘的隆升.中国地质,2006,33(1):41-47
    [246]王勇,潘保田,管清玉,等.西北干旱区黄土—古土壤磁化率变化特征.海洋地质与第四纪地质,2008,28(1):111-114
    [247]文启忠,余素华,顾雄飞,等.黄土中稀土元素的初步探讨.地球化学,1981,(2):151-157
    [248]文启忠等.中国黄土地球化学[M].北京:科学出版社,1989
    [249]文启忠,乔玉楼.昆仑山北坡晚更新世以来沉积物的古气候记录.见:新疆第四纪地
    质与环境,北京:科学出版社,1991,96-04
    [250]吴海斌,郭正堂,方小敏,等.250 ka前后中国北方干旱区的扩张及其原因.科学通报,2002,47(17):1341-1346
    [251]吴福莉,方小敏,马玉贞,等.黄土高原中部1.5 Ma以来古生态环境演化的孢粉记录.科学通报,2004,49:99-105
    [252]吴福元,黄宝春,叶凯,等.青藏高原造山带的垮塌与高原隆升.岩石学报,2008,24(1):1-30
    [253]吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据.地质学报,2007,81:577-587
    [254]西尼村.亚洲中部气候变迁中的大地构造因素.地理译报,1956,(4):260-267
    [255]肖安成,杨树锋,陈汉林,等.西昆仑山前冲断系的结构特征(增刊).地学前缘,2000,7:128-136
    [256]肖华国,吴锡浩,蒋复初,等.黄土与古土壤容重指标与季风气候变化关系的初步研究—以郑州邙山赵下峪剖面为例.地质力学学报,1998,4(4):42-45
    [257]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志.北京:地质出版社,1993,1-841
    [258]徐先海,方小敏,宋春晖,等.临夏盆地新生代沉积物粒度记录与亚洲内陆干旱化.湖泊科学,2008,20(1):65-75
    [259]杨东,方小敏,董光荣,等.1.8Ma BP以来陇西断岘黄土剖面沉积特征及其反映的腾格里沙漠演化.中国沙漠,2006,26(1):6-13
    [260]杨景春,李有利.地貌学原理[M].北京:北京大学出版社,2001,110-125
    [261]杨胜利.青藏高原及邻区黄土磁性地层与环境事件研究.兰州大学博士学位论文,2004
    [262]杨胜利,方小敏,史正涛,等.青藏高原东部边缘“成都黏土”粒度记录的约500kaBP的干旱化增强事件.海洋地质与第四纪地质,2008,28(2):105-114
    [263]杨石岭.晚中新世以来中国北方风成沉积的磁性地层学和沉积学研究.中国科学院地质与地球物理研究所博士学位论文,2001
    [264]杨小平.克里雅河流域风成物质的粒度分析与讨论.第四纪研究,1999,4:373-379
    [265]姚檀栋,朱立平.青藏高原环境变化对全球变化的响应及其适应对策.地球科学进展,2006,21(5):459-464
    [266]叶学齐 编著,塔里木盆地[M].北京:商务印书馆,1959
    [267]余志伟,丁仲礼,刘东生.黄土记录的古气候周期性研究(增刊).地质科学,1992,270-278
    [268]于永涛.柴达木盆地西北缘尕斯库勒湖钻孔记录的中更新世气候转型.兰州大学博士学位论文,2006
    [269]张鸿义,门国发.塔克拉玛干沙漠腹地第四纪地层划分与环境变迁.新疆地质,2002,20(3):256-261
    [270]张家宝,邓子风.新疆降水概论[M].北京:气象出版社,1987
    [271]赵景波.黄土中古土壤淀积类型.地理学报,1995,50(1):35-40
    [272]赵松乔.中国沙漠,戈壁的形成和演变.见:赵松乔主编.中国干旱地区自然地理.北京:科学出版社,1985,1-17
    [273]赵兴有,买买提依敏,刘嘉麒,等.晚更新世中期以来克里雅河流域黄土沉积特征与环境演化.干旱区地理,1995,18(1):51-59
    [274]赵越,黎敦朋,刘健,等.关于西域砾岩与青藏高原西北缘的构造变形(增刊).矿物岩
    石地球化学通报,2008,27(Z1):415
    [275]郑洪波,陈惠中,曹军骥.塔里木盆地南缘上新世至早更新世风成黄土的古环境意义.科学通报,2002,47(3):226-230
    [276]朱震达,陈治平,吴正,等.塔克拉玛干沙漠风沙地貌研究[M].北京:科学出版社,1981
    [277]郑剑东.阿尔金山大地构造及其演化.现代地质,1991,5(4):347-354
    [278]周廷儒.新疆第四纪陆相沉积的主要类型及其和地貌气候发展的关系.地理学报,1963,29(2):109-129
    [279]俎瑞平,张克存,屈建军,等.塔克拉玛干沙漠地面风场特征及周边地区沙丘排列关系分析.应用气象学报,2005,16(4):468-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700